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%e introduce a new method of replacing spin operators with pseudofermions. For a spin value

S there are 2S pseudofermions each of which can have spin "up" or "down. " In contrast to the
standard Abrikosov method which has 2S+1 inequivalent fermions, i.e., one for each S, value,
the present pairs are all equivalent. It follows that the general spin expression is obtained by mul-

tiplying the S 2 result by a certain combinational factor. This aids in the construction of rota-

tionally invariant solutions for the general-spin Kondo problem for the case when n ~ 2S, where n

is the number of conduction-electron scattering channels.

In this Brief Report I wish to introduce a new method
for replacing spin operators by pseudofermions, as a step
in the Feynman-diagram formulation of the Kondo and
other spin problems.

The standard Abrikosov' projection method for general
spin consists of using the following replacement for a spin
operator 0.

0- g dg(S~@S'&d, , (I)
S,S'

where
~

S'&=
~
J S, J, S'& denotes an eigenstate of J,.

The alternative method uses a product of S —,
' repre-

sentations. This turns out to be more useful for the
n~2S versions of the Kondo problem. Here n is the
number of conduction electron scattering channels and S
the impurity (or ionic) spin value. There is one drawback
with the method in that it is not really useful unless the
zero temperature limit is taken. As was shown some years
ago the method can be adapted to finite temperatures but
becomes excessively cumbersome.

Consider the direct product of 2S spin S 2 spaces.
The standard decomposition of such a product is

(es'")"-s'e(2sxs'-') e "
where S 't denotes a spin- —,

'
spin space and, e.g.,

(2SXS ') indicates that there are 2S spin J S—I
representations in the direct sum on the right-hand side.

The interaction in the Kondo problem is

-JS s(0)

where S is the ionic spin and s(0) that of the conduction
electrons at the origin. As ~ith any relevant interaction,
this has no matrix elements between the different mani-
folds on the right-hand side of Eq. (2). If the system is

subject to a large enough magnetic field at zero tempera-
ture then only the lowest-energy state in the largest spin
manifold on the right-hand side of Eq. (2) will be occu-
pied, i.e., the state

( J-S,J, -S& .

Reducing the field will cause the interaction to become
effective and mix the states of the J S spin space.
Specifically for the Kondo effect, the ground state ap-
propriate to spin S will be obtained if the initial field is
such that

0&& Tg,
where Ttt is the Kondo temperature, and if the limits are
taken in the order

T 0 then H 0 .

As has been reported elsewhere the spin S —,
' Kondo

model can be exactly solved diagrammatically using the
magnetic field as the scaling variable. In that approach to
the Kondo problem the above procedure is that used in the
analytical derivation of the relevant renormalization-
group equations.

There is some choice possible as to the method used to
represent the spin operators in the direct product on the
left-hand side of Eq. (2). In the original finite-
temperature method this was done using the so-called
"drone boson" method (not to be confused with the so-
called "slave boson" method for the Anderson model ).
Although it is perhaps a matter of taste, and familiarity, I
now prefer to use the regular S —,

' Abrikosov method
along with the projection technique. Specifically, Eq. (1)
is used to represent the spin operators associated with a
given S —,

' subspace on the left hand side of Eq. -(2),
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Sr drfdrt» Sr dr/drt

S; 2 (d,ttd, t
—d,tld, l ),

where r, which has 2S values, is the subspace label. The
physical subspace for each of the product S 2 spaces
has only one-half the states of the associated pseudofer-
mion space. The unphysical states with two pseudofer-
mions are removed by Abrikemv's projection technique.
Technically this is not necessary since all three of the spin
operators give zero when they act on the pseudovacuum
and the offending doubly occupied state. However, the
projection reduces the number of diagrams and so is used
as a convenience. It involves adding a term, for each sub-
spaces

+pL ~(dg tdrt+drt dr[)

W Wgl M

(d) ra

r(s

FIG. 1. (a) A conduction-electron scattering diagram with a
single ionic loop. (b) A diagram with two loops. (c) Dyson's

equation implies irreducible self-energy parts, with an associat-
ed bare propagator, form a geometric series. (d) Using the clo-
sure trick causes an ionic loop associated with each of the prod-
uct spin- 2 spaces to begin and end at the extreme ends of the
conduction-electron propagator.

to the Hamiltonian and taking the limit k~ ~, before ei-
ther of the limits following Eq. (4) is taken.

In a departure from previous work, because they are
easier to computer generate, I denote the pseudopropaga-
tors by dashed lines and the conduction electrons by solid
straight lines. To begin with it is necessary to use a label r
for each dashed line to denote which of the 2S spin- —,

'

spaces it belongs in.
Because of the Abrikosov projection a diagram with

more than one loop is proportional to e ~ "where m is
the number of loops. As compared with the usual S
technique, a new complication arises because a given dia-
gram with m loops corresponds to several classes of dia-
grams depending upon the number N of subspace labels
involved. Clearly the maximum number of such labels is
2S but in general a diagram will have less than this max-
imum number. In principle, because there is a term corre-
sponding to Eq. (6) in the Hamiltonian for each subspace,
it might be expected that there is a projection factor e~~
independent of the number of spin labels involved in a dia-
gram, i.e., independent of ¹ However, in applying
Wick's theorem to the string of operators associated with
a diagram with 1V labels, it is observed that the pseudovac-
uum gives the dominant contribution to the trace for sub-
spaces which do nor occur in the diagram and hence the
net compensating factor is e~~. It follows that no given
spin subspace can have more than a single loop.

Consider speciflcally the diagram illustrated in Fig.
1(a); it has only a single ionic loop, and it must be that
m 1 and N 1. This diagram is multiplied by 2Se+,
where the factor of 2S corresponds to the number of possi-
ble values for the subspace label r. A diagram such as
Fig. 1(b) has two loops; therefore, m 2 and there is an
apparent choice of W 1 or 2. However, with X 1 there
would be two loops with the same spin-space label and so
such diagrams are projected out in the k ~ limit.
When ~ 2 the 6rst subspace label ranges over the 2S
possible values; however, the second label cannot repeat
the flrst and has only 2S —1 values. There is now a pre-
factorof 2S(2S—1)e~~ 4S(S——,

' )e~ . Clearlynodi-

agram can have a total of more than 2S ionic loops.
The "2Sloop rule" implies that there can be no Dysoni-

an self-energy for the pseudofermion lines which contain a
dashed loop. Consider Dyson's equation illustrated in Fig.
1(c). If this is iterated, each diagram has a different
counting prefactor and, in addition, there can be no more
than 2S inclusions. Clearly Fig. 1(c), which implies a
geometric series, makes no sense. This fact can be viewed
upon as reflecting the spin algebra or, more physically,
that the restricted number of loops carry the spin's
"memory" of previous scattering events.

Also, because of the 2S loop rule, it follows that the
linked cluster theorem does not work. More speciflcally it
must be recognized that the usual result that the vacuum
polarization diagram cancels against the explicit partition
function in the denominator of the expression for a propa-
gator also no longer works. As with the usual Abrikosov
method each diagram must be divided explicitly by the ex-
act partition function. However, now because 2S loops
are allowed, a diagram with m loops can be multiplied by
a vacuum polarization diagram with no more than 2S —m
dashed loops.

There are various "tricks" which can be used to aid
with the complications outlined in the previous para-
graphs and to facilitate the calculation of the exact parti-
tion function. These are based on what might be called
the "closure trick. " The decomposition of unity can be
written as

1 - (d„ttd„l+ d„t)d„l),
where again r is the spin-space label. This factor of unity
can be inserted, at will, at any vertex in a Feynman dia-
gram. For example, it might be usefully inserted at the
beginning and end of a conduction electron line, as illus-
trated in Fig. 1(d). This eliminates some vacuum polar-
ization diagrams and, with a little experience, makes the
scattering diagrams easier to evaluate.

The partition function can be evaluated by taking the
expectation value of Eq. (7). By the usual prescription
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the expectation value (d,ted, t) is obtained by performing
the imaginary frequency sum on the corresponding pseu-
dofermion propagator. This implies

Z 1—g [D,1 (ito„)+D, 1 (ito„)1, (8)
ZQ

where here D„(ito„), a t or f, denotes the sum of all
pseudo-propagator diagrams without including the expli-
cit factor of one over the partition function. When there
is no broken symmetry the pseudofermions are each
equivalent and hence any spin-space label can be used in
this relationship. However, this symmetry is broken for
the Kondo problem when the number of channels n is less

than S and Eq. (8) must be reexamined. This is beyond
the scope of the present report.

In conclusion, I have devised a new Abrikosov method
for the general spin Kondo problem which permits results
to be obtained by simply multiplying the S & diagrams
by a suitable factor. This aids in the construction of rota-
tionally invariant solutions to the Kondo, and possibly
other spin problems, since the pseudofermions are not as-
sociated with states corresponding to a particular axis of
quantization as they are in the usual general spin Abriko-
sov method. The application of this method to the solu-
tion of the multichannel Kondo problem will appear in a
separate publication.
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