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A variety of ferrodisplacive transitions have Landau expansions which involve terms propor-

tional to p (Bp), i.e., three powers of the order parameter (p) and one gradient (8). Such expan-

sions have also been suggested for polymeric liquid crystals. %'e have studied a rotationally in-

variant, centrosymmetric ferroelectric in which the order parameter is a vector. The p bp term

leads to modulated phases when it is large enough. The modulated phase close to the uniform-

modulated transition and the location of the transition are discussed as a function of dimensionless

parameters in a simple model for the free energy. Modifications expected from dangerous ir-

relevant variables are discussed. The free energy is studied within the d =4—e renormalization

group. A number of fixed points (always including a stable fixed point) are found as a function of
the number of components of the order parameter and the dimensionality of space. The fixed

points and the renormalization-group Qows are discussed. Finally, the nature of the transition

when both mean-field theory and the renormalization group are taken into account is discussed.

I. INTRODUCTION

Since the discovery of the renormalization group' our
understanding of the behavior of a variety of systems
near phase transitions has greatly increased. However,
relatively little work has been done on systems wh1ch
allow, in the Landau expansion, ' terms proportional to
p (Bp), i.e., to three powers of the order parameter (p)
and one gradient (t)). Such systems seem to have been
studied relatively little even within the mean-6eld ap-
proximation. As a variety of ferrodisplacive transitions
and certain liquid-crystal" ' transitions allo~ such
terms, their study is of considerable interest. It has also
been suggested' that free energies of this nature are
relevant to certain polymeric systems.

In this paper we will discuss a simple, mathematically
(relatively) tractable example of such a transition; a sys-
tem in which the order parameter is an n-component
vector in d dimensions with nod (but n &d), which is
odd under spatial inversion and even under time rever-
sal. In general, such an order parameter is expected to
couple linearly to the electric 6eld. In consequence,
long-range interactions may be expected for the order
parameter. %e will assume that this long-range interac-
tion can be ignored, either because the coupling to the
electric field is small or because the long-range interac-
tions are screened by charged impurities. This simple
model has only three essential parameters and is in
consequence substantia11y easier to treat than models of
more realistic systems. In addition the model for
n =d=2 describes chiral smectic C, I, or I 61ms and,
more generally, for n=2, d=3 chiral smectic C, I', or I
systems in which the pitch of the director helix is very
large. Thus this model is both a mathematically simple
prototype for an interesting class of phase transitions

and a physically relevant model.
This paper is organized as follows. In the next section

we give the Landau expansion for this system and ana-
lyze it within mean-6eld theory. The interactions be-
tween the (~}p), p t)p, and p terms in a simple Landau
expansion lead to interesting transitions between uni-
form and modulated phases which are second order (in
less than four spatial dimensions) although this is not the
prediction of a simple Landau analysis and, even within
mean-field theory, have thermodynamic derivatives
which diverge with dimension-dependent exponents.
Near the uniform-modulated phase boundary the modu-
lated phase has a very slow modulation and is not well
described by a small number of spatial harmonics of the
order parameter, and must be treated by nonstandard
methods. However, we find that the order parameter 1s

not large in the modulated phase and that, except near
the uniform-modulated phase boundary, the modulated
phase is well described by a small number of spatial har-
monics of the order parameter. It is also shown that our
description of the uniform-modulated phase transition
must be modified very near the transition due to the
presence of "dangerous"' irrelevant variables.

Sec. III discusses the renormalization-group treatment
of this system. In contrast to previous work, we find
that there are a number of 6xed points including a stable
fixed point for d =4—e and all n, d & n & 2. For certain
ranges of n and d the flow near these fixed points is heli-
cal, i.e., is characterized by complex eigenvalues. The
stability of the fixed points is discussed, as are the gross
renormalization group flows.

Finally, in the last section we discuss our results and
the behavior expected in actual fluctuating systems from
the combination of the mean-6eld and renormalization-
group results.
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II. MEAN-FIKI. D THEORY

In this section we will discuss the phase-transition be-
havior of centrosymmetric ferroelectncs without long-
range interactions at the 1evel of Landau mean-field

theory. That is, we will assume that the order parameter
(the polarization p) is small in magnitude and slowly

varying so that the free energy can be expanded in

powers of p and the gradients. We then discuss the na-

ture of the minimum of this free energy as a function of
the parameters which appear in this expansion.

We will write the free-energy functional (FEF) as

F= +F2 (2.1)

where

F2 = GfX2P' p (2.2)

+
I ~up I

']+~
f p I

'~ p+&
I p I

'I

(2.3)

We have not displayed the F2~ explicitly for m & 2 (they
are rather complex). Here p is an n-component-vector
order parameter in d-dimensional space X:—(x,xz) with
n &d. The coordinates of the n components of X in the
space spanned by p are given by x and the remaining
d —n components normal to any p are given by x~, V is
a gradient in the n-dimensional space of p, and Vz is the
gradient in the (1 n)-dim—ensional space normal to p.
The n directions in the subspace of p will be indexed by
a= 1, . . . , n and the remainder by a=n +1, . . . , d. In
general F would be the integral of the sum of arbitrary
parameters multiplying all symmetry allowed terms con-
taining 2&m'gm powers of p and m —m' powers of
gradients. However, we will not be concerned in this pa-
per with F2 for rn«2, except for certain qualitative
features thereof. %e will be primarily concerned with
F=F2+F„. In a region of interest, sufBciently close to
the phase transition, the p(X) which minimizes F is (as
will be shown below} small and slowly varying. There-
fore the e8'ect of the higher-order F's is expected to be
small (but see Sec. II D below). The dimensions of p and
X have been chosen so that Vp is dimensionless and x
and xz have been scaled difkrently so that the gradient
terms in F& have the dimensionless form given above.
We assume that the coefficients of all the (Bp) terms are
non-negative so that this is possible. This implies that
—1(6& 1 (i.e., the terms proportional to I+6, cost en-

ergy). If this condition does not hold, Lifschitz transi-
tions driven by the negative square gradient terms, are
expected.

Now suppose p(X) is an arbitrary (but infinitely
differentiable) function of X which does not tend to zero
as X tends to infinity in any direction. Then if we make
the transformation p(X) ~)tp(XA) then F ~k F
More generally if p~o suSciently rapidly as X~ oo in
D dimensions so that there are no contributions to the

free energy as X—+ ~ in those dimensions, then
F ~A, F under this transformation. It follows
that either F is bounded below by zero or it is not
bounded below. Throughout this paper we will assume
that F is bounded below for m &4 and, in fact, that
F =0 only if p(X} is identically zero for all values of X.
If F is not bounded below for m «4 then there will

generally be first-order transitions which preempt the
transitions discussed below.

If the F for m «4 are bounded from below it follows
that the disordered state p=O is the minimum free-
energy state when F2 and F4 are both bounded below.
Provided F~ is bounded below there will be a transition
from this disordered state to an ordered state when F2
stops being bounded from below (r=O). This ordered
state may be either a uniform state (p constant) or a
modulated state (p not constant) depending on dimen-
sionless combinations of the parameters in F4. There
are two such dimensionless parameters in F4 which we
will parametrize by b, and 1+ /=2(1 —b )uw ~. There
may be a transition from the uniform state to a modulat-
ed state along some surface in this parameter space de-
scribed by a function g„(h). Along some (possibly
difFerent) surface, g, (b, ), F4 will cease to be bounded
from below.

A. Bounds on the free energy

It can be shown that for g & g, there is a second-order
transition (f =F/V-r, where V is the volume) from a
disordered (p=O) state to an ordered state when r=O.
Suppose M is the value of p for the uniform state which
minimizes the free energy F. %e easily see that M=0
for r&0, M =

~

r
~

l(4u) for r(0, and f„=FV ' in the
uniform state where f„=——,

'
~

r
~

M . We see that for

g)g,

where (p ) = V ' fdX
~
p(X)

~

. The first inequality

follows from the Schwartz inequality, the second from
the definition of g„and the last because the absolute
minimum of the free energy is bounded above by the
(constrained) uniform minimum. Clearly therefore
—(g —g, )

' (
~ f„~ 'f & —1. It is also clear that the

order-disorder transition is first order for g & g, . In par-
ticular, consider any state p(X) which (a) does not tend
to zero in any direction as X~ (x) in any direction and
(b) has F4(p) negative. A state satisfying (b) exists by
definition when g(g, . States satisfying (a) and (b) can
be constructed from states which satisfy only (b), as shall
be shown below. The free energy for the state )t,p(X)i. )

is, for small enough A.,

F= ,'rV(p )A, +F4—(p)A, +F6(p)A, +O(A, ) . (2.5)

Now F4(p) is negative by construction and (p~) and
F6(p) are positive by construction. For a range of posi-
tive r, 0(r &[F4(p)]z[2F6(p)V(p2)] ', this formula for
F is negative for a range of A, . As r ~0 this range of A.
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includes arbitrarily small k. Thus the minimum of the
free energy is negative for suSciently small positive r.
However, for any positive r there are no states with neg-
ative free energy arbitrarily close to the disordered state.
Thus the transition must be a first-order transition at
some positive r to an ordered state with (p ) =Of/B)r
+O.

It is possible to show that I'4 is bounded from below
and that the uniform state is the absolute minimum pro-
vided g &0. We can write

'2

F=f dX —(1—6) V p+ (IpI' —I')
2 (1—&)

0 (x &a),
Vg= qn

Ijg
(2.9)

x2—n S„' (x &a),
n —2

t((x}=
ga

n

a n —x (x&a) .
(n —2)

(2.10}

where S„=2m" ll (n/2) is the surface area of the n

dimensional unit sphere. The solution of (2.9) is

+(I+~) I V&p I
'+

I Vtvp I

'

+02 1 g ( IPI ~ ) +fu (2.6)

The free energy (2.8) was then calculated to leading or-
der in m=4 —n by integrating inside the spherical radius
from 0&x &a and outside the sphere from a ~x ~ 00.
The integral of (2.8) is zero for x & a because there is no
charge outside x =a. For x &a it is given by

xx" ' ' =4 —,'a ' —", —ln 2 . 2.11

As all the p-dependent terms in Eq. (2.6) are clearly posi-
tive for (&0 it follows that g„(h) &0 and g, (h) &0. It
is also easy to see that g„(b, }&0 as the uniform state is
linearly unstable for g & 0 so that g„(b, ) =0.

It is not so easy to calculate g, for arbitrary n, al-
though it is possible to bound it. For this purpose we
write I'"4

F,= fdX-,' (1—6) V p+ I p I

'

+(I+~) IV&pI'+ IV pI'

(2.7}

It is clear that if any p has I'4 negative then a p which
depends only on x (the n components of p) will also have
I'4 negative. In consequence we restrict our attention to
p's which have this property. If we additionally restrict
our attention to p's which have zero curl (VXP=O) we
will find an upper bound for g, and p can be written as
the gradient of a potential. If we write'
p=(1 —b )w 'Vln(itt) we find the remarkable
simpli6cation

'v fd [(4 'V'4)'+0
I 0 'V 4 I

']

(2.8)

where V~= jd "x~ is the volume of the space normal

to p. For a simple variational calculation the I.aplscian
of P can be chosen to be

The integral of the quartic term will be calculated ex-
plicitly for x & a, yielding

gf dx(g 'Vf) x" '=g(2 —e) f x" dx

=g(2 —e ) . (2.12)

The integral of the quartic term inside x =a yields in-
tegrals similar to (2.11). However, these contributions
are all of order one so the leading term is the I/F term
of (2.12). Thus the free energy diverges to —oo as F~O
and a~0 if /&0. Therefore we have the condition that
g&0 or w /[2u(1 —b)] &1 for F~ to be bounded from
below for n=4. It follows, therefore, that g, =0 provid-
ed n=4.

Note that while p for the state considered above goes
to zero in sll directions it is easy to construct states
which have negative I'4 snd do not go to zero in any
direction as x goes to infinity. This can be done simply
by placing equal charges in small hyperspheres around
the points of an infinite, n-dimensional lattice. When the
radius of these hyperspheres is much less than the lattice
spacing and g is negative, F4 will be negative. However,
for n &4, (=0, F~ will be zero only if V /=0 every-
where but g is never infinite or zero, as the discussion
above shows that the divergence in p implied by zeros or
infinities of P has infinite free energy. We therefore ex-
pect that g, &0, and, in fact, prove this below.

First, however, we will give an upper bound for g, for
n ~4. This will be done by assuming that

p=(1 —h)w 'xg( Ix I
)/Ix

I

The free energy (2.7) then becomes

F= V~S„fdx x" [(n —2)g +2(n —2)g'+g (I+()]
2w

+x" '[2(n —2)g +2g'] +x" ' —g' (2.13)
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The following procedure was then used to write F in
convenient form; (i) the term proportional to x" was
integrated by parts, (ii) the substitution z =lnx was
made, and (iii) n was replaced by 4—e. The result is

(1—5)F= V~S„f dz e -"[V(g)+g''-],
2N

(2.14)

V(g) =2(2 —e)g +4(1—e/3)g'+(1+/)g",

g'=dg/dz. Since the integrand of I' is proportional to
V(g)+g', F can be less than zero only if V(g) has
enough negative contributions. Therefore the function
V(g) was minimized by taking d V/dg=O yielding g;„.
A minimum value for the g for which F is negative is
that value which V(g,„)=0. This minimum value of g
is found to be

1+(=2(1 e)/—3)/(2 —e) .

For n=3 (@=1), gg ——,'. For n=2 (e=2) gg —1, that

is, no useful lower bound on g, results. Although this
lower bound for the upper bound on g was found analyt-
ically, the actual value of g, for which F is negative must
be determined numerically. This was accomplished by
means of a variational calculation, replacing g with
g+5g and expanding F and setting the term of first or-
der in 5g equal to zero, yielding

2(2 —e)g +(6—2e)g +2(1+()g'+eg' g"=0—. (2.15)

However, as we have shown above, there is no nonzero
minimum for F, essentially because a change in length
scale will change the free energy. Thus„ to find a
minimum of I' we must specify a length scale. This is
done most easily by insisting that g =0 for some
(specified) value of z =zc [it is easy to see from the form
of Eq. (2.15) that all solutions, except those with (posi-
tive) infinite free energy are zero at some (unspecified)
~alue of z]. At zc no variation in g is allowed so that
Eq. (2.15) need not be satisfied at zo. It is then easy to
show that the function g which minimizes F subject to

FIG. 1. Plot of the function e ~'(V(g)+g') with the nu-

merical solution g (z) for e=1 and g= —0.37.

g(zo)=0 is identically zero for z &zo and that g~g;„
as z —+ oo.

The differential equation was solved numerically and
the free energy was integrated numerically to determine
the largest g for which F is negative. The solution g(z)
of Eq. (2.15) was calculated starting at z=O, g =g;„,
and a small negative slope g'. Two behaviors for g were
found. For

I g I
too small g diverged. For sufficiently

large and negative g, g was zero at some z which
(a posteriori) was chosen to be zo and the integration
was stopped. The least negative value for g for which Ii
was found to be negative for n=3 is g, & —0.37. The
previous upper bound for g, given by Blankschtein
et al. , using a trial function with a small number of spa-
tial harmonics, was g, = —

—,", = —0.79. For g, = —0.37
the free energy is found to be small and negative in the
interval integrating from z = m to about z = —5.5. For
g less than but close to —0.37, g (z) tends slowly to zero
(see Fig. 1). In this region the overall free energy is posi-
tive. For g& —0.37 g(z) approaches zero but never
reaches it and eventually diverges to —oo.

It is also possible to give lower bounds for g, . In par-
ticular for 6 g 0 we can write

F4 = fdx '-,' 2~
I
~ && p I

'+
I ~~p I

'+(1—~) g (ap, +spip, +s'&;,
I p I

')' + u'(s s')
I p I

' (2.16)

provided io =(1—b, )(s' —s/2) and

u'(s, s')=u ——,'(1 —b, )(s +2ss'+ns' ) .

%e have used the identity

fdx p, p, a,p, = ,
' fdx—,,—'a,p, ,

which follows from integration by parts. Now provided
u ~0, all terms in this equation are obviously positive.
Thus we can find a bound on g, by maximizing u' with
respect to s using the relationship between s and s from
the formula for m. %e find

u'(u —2(n —1)w /[(1 —b, )(n +8)] .

+(1+6.) g(a,pj+sp, p, +s'5;,
I p I

)

+u "(s,s', s")
I p I

(2.18)

Thus u can be chosen to be positive provided
1+ g&4(n —1)/(n+8) so that I+(, g4(n —1)/(n
+ 8}.

Similarly for 5 &0 we can write

F4= fdX —,
' —2b(V. p+s "p ) +

I V~p I
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provided

m = —2bs" +(1+b )(s' —s /2)

u "(s,s', s")=u ——,'(1+5,)(s +2ss'+ns' )+M"

Again sll terms are obviously positive so by maximizing
u" we find a bound on g„.

1+/, &4(n —l)(1—b, )/[(n +8)(1+6,) 8(n——1)h] .

It follows that for all 5, n ~4, there is a 6nite region
in which there is a second-order transition to a spatially
varying phase within mean-field theory. For n=3 and
5 & 0, g, is bounded from above and below by
—0.27&g, & —0.37. For n=2, b, =O, Felix et al. have
shown that g, & ——'„which agrees with the value ob-

tained from Eq. (2.16) for b, & 0. A lower bound

g, & —0.83 for n=2, has been calculated by Blanckstein
et al. using a trial function with s small number of spa-
tial harmonics. Thus we have shown that for n &4, g, is

nonzero and have bounded it from above and below.

B. Modulated state: Proof of 6niteness and smoothness

%e now discuss the nature of the minimum of the
free-energy functional equation (2.6) when O=g„& g & g, .
It is expected that the function p(x) which minimizes F
in the modulated state can not be precisely described,
even in the limit r ~0, by a small number of spatial har-
monics. However, we show that for g&g, the Fourier
transform of p, even in the modulated state, goes to zero
quickly with increasing wave vector Q provided d &4.
This is an important issue. First if the Fourier trans-
form of p did not go to zero more quickly than Q as

Q tends to infinity then it would follow that Fz +2 were
infinite for this state. In consequence the actual free en-

ergy for this state would be infinity, not the small value
deduced from I' and it would be necessary to find a new
minimum taking the elfect of (at least) F6 into account.
However, as we show below the p(x} which minimizes F
is small and infinitely difFerentiable so that this break-
down of the Landau expansion does not occur. In addi-
tion since the Fourier transform falls rapidly with in-
creasing wave vector the modulated phase may be well
described by s small number of spatial harmonics so that
expanding it in a 6nite series of spatial harmonics is a
reasonable procedure, provided enough terms are taken
into account.

In particular f„)f &f a f4 where a &0 a—nd
f4=F4/V and F4 is given by Eq. (2.6) evaluated for
P=Pp, 8=m, 6 =b, and g=g, . Choosing o. Pi= 1,
a/ =g/g, and substituting in Eq (2.4) we .find

with 0 small. This is because if cr is suSciently small
the most important efFect of this convolution will be to
make the derivatives of p 6nite, decreasing the contribu-
tion to the free energy. It follows therefore that the p
which minimizes F and its first derivatives must be finite
everywhere.

It is then easy to see provided p and its first derivative
are finite (again from the minimization condition) that p
satisfies the Euler equation

D spy H([pp, ——d~r I ) . (2.21)

Here and below sums are implied over repeated indices
and

H, =4up p +2wp V p 2wp&B~&—,

(2.22)

(2.23}

and 5,& is the Kronecker 5 function, unity for a =P and
zero otherwise. The formula for 0 was obtained by a
variational calculation on the FEF, Eqs. (2.1)-(2.3).
Note that right-hand side is everywhere finite as it con-
tains only p snd its first derivatives. This is adequate to
demonstrate that p is infinitely difFerentiable. In particu-
lar, consider any small hypercubical region, V, defined
by

~

X —X
~

& L for all a. The function p must be
finite and difFerentisble on the boundary of this region
and must satisfy Eq. (2.19) inside this region. Suppose p
is specified on the surface of this region; we may rewrite
(2.20) as

p (X)=fdX'6 p(X, X')Hp([pp(X'), Bpp'r(X')I }

+p (X), (2.24)

where p =p' and p is given by

p (X)= fs ps(X') dS' .

to zero as r goes to zero.
If d&4 square integrability of (first) derivatives of p

implies that if there is a singularity in Vp then
~ p ~

diverges less quickly than Vp at that singularity as Vp
must tend to infinity more slowly than 5X where 5X
is the distance from the singularity. Therefore the terms
in (Vp) dominate the contribution to the free energy
near the singularity. As all the terms in Vp in the free
energy are positive it follows that if Vp has a singularity,
the free energy can be decreased by smoothing that
singularity, say by letting

p(X) = Id X' p (X')(2m ca ) "exp( —
~

X—X'
~

2o i),
(2.20)

(2.19)

As (p & has already been shown to be bounded all (first)
derivatives of p are square integrable and (

~
Vp

~
& goes

Here 5/Bn is the normal derivative at the surface S
(directed outwards from inside the volume V) and G is
the Green's function for D, given that G(X,X')=0 for
X on the boundary of the system. It is easy to verify by
explicit construction that (a) p is infinitely differentiable
in the interior of the hypercube, (b) all integrals of the
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absolute value of 6 and its first derivatives are finite and
tend to zero as the size of the hypercube (L)
tends to zero, and (c) any integral of the form
JdX'G(X, X')h (X') where h is infinitely differentiable

is also infinitely differentiable inside V. Now consider
the sequence p' ', m =0, . . . , ~, where p' ' is the
right-hand side of (2.24) with p'=p' " on the left-
hand side. It follows from (a) and (c) that the terms in
this sequence are infinitely difFerentiable inside V, and
from (b) and the fact that p and its derivatives are
bounded on the surface that for small enough L, this se-
quence is absolutely and uniformly convergent inside V.
Therefore p must be infinitely differentiable inside any
sufFiciently small hypercube. As this hypercube is arbi-
trary p must be infinitely difFerentiable everywhere. It
follows that p(Q) tends to zero more quickly than any
power of the wave vector Q, for Q »r '~z

Therefore for g, «g «0 the lowest free-energy state of
the system is modulated but has a Fourier transform
with most of the weight of Jdg I p(Q) I

coming from

Q less than or of the order of
I

r
I

' . Unless g is small
there is no reason to suppose that the fundamental wave
vector is on a scale much less than r', as a range of
wave vectors with Qr ' finite are unstable. We expect
in consequence that the modulated state will be well de-
scribed by a small number of modes in this region. This
is confirmed by the fact that Blankschtein et a1. have
found a two-harmonic modulated state with energy less
than the uniform state for g= —0.048, very close to the
actual transition value (=0. In any case as p is small
and slowly varying the Landau expansion (i.e., neglect-
ing F,m &4) is legitimate, at least suSciently close to
the transition (r=O) for g & g, .

These bounds, of course, cease to apply when g —+g, .
However as g-+g, the free energy considered above is
inadequate, more terms must be considered in the Lan-
dau expansion. This is done by adding F6. If F6 is not
bounded below there will be a 6rst-order transition to
some other state for g & g, . Assuming therefore that F6
is bounded below, we also expect that the Fourier trans-
form of p will tend to zero very rapidly as Q tends to
infinity in this case, in extension of the discussion above.

C. Behavior near the uniform-modulated phase transition

We now consider the behavior of the system when g is
close to („=0. In particular we examine the behavior of
f as (~0 from below, i.e., as the transition is ap-
proached (g will be varied by varying u, keeping r, b„
and w constant). We see immediately from Eq. (2.3) that

Bf&B(=u'[2(1—&)] '{ fpI') .

Thus if the transition is to be first order in the sense that
Bf/8$ is discontinuous across the transition it follows
that as g goes to zero from below the lowest free-energy
state must have (

I p I")&M or ((
I p I

—M ) )&0.
However, it is easy to see that ((

I p I

—M ) ) is bound-
ed so that this state must have

f'V=fv —V{gw [2(1—b, )] '{(IpI —M ) )+f„)

=Vv Jdx —,
' (1—b) Vp+ — (IpI —M )

(1—6)

+( I+~)
I

V x p I

'+
I V,„p I

'

(2.25)

4(x)= J d0'%(Q')exp(ax 0') (2.27)

where 0 is a n-dimensional unit vector and the integral
is with the usual weighting for solid angles. Then pro-
vided + is non-negative and noninfinite it is clear that
the conditions above are satisfied for finite x. However,
it is also clear from a steepest descent analysis of (2.27)
that for large enough x, V in(i)j) tends quickly to ax in

almost all directions x so that ((
I p I

—M ) ) =0. We
have not been able to construct potentials l( which satis-

fy the conditions above and have ((
I p I

—M ) )&0.
The free energy for («0 can be bounded by any trial

potential f In order to .obtain a good bound when (~0
we have considered a potential in which the contribu-
tions to f' occur only at a small number of points and
the contributions to g(( I p I

—M ) ) occur along sur-
faces between the points. Thus as the separation be-
tween the points grows the importance of the favorable
terms grows relative to the importance of the unfavor-
able term. In particular consider the potential

@=g K~„2~&2(a I
x —x, I

)

where the x, form an infinite lattice and K(x ) is the po-
tential (P) which minimizes the free energy of Eq. (2.26)
above subject to the conditions that (a) K is rotationally
invariant, (b) K(

I
x

I
) tends to zero as x goes to infinity,

and (c) VX=0, E&0 when x=O. There is an undeter-
mined constant in E. As shown below, for large x, IC(x )

tends rapidly to a constant times E,„~~2( 2)x, the associ-

tending to zero as (~0. As all these terms are non-
negative this is a very stringent condition. We have not
been able to find any function p which satisfies (2.25)
with ((

I p I

—M ) )&0 and speculate that no such p
exists.

It is, however, still possible to put bounds on the be-
havior of f as (~0. This is done (as above) by assum-
ing Vxp=O and writing' p=(1 —b, )w 'Vln(g) where

g is assumed to depend only on x and not xz. Restrict-
ing p to have this form leads to the simplification

f'V =— V,„f dx I (g)
1 (1—5)

(2.26)
l8

where I"(1()=(a —P 'V 1() and a=
I
r

I

'~'[2(1
—b, )] ' . For f' to be zero requires V P=v f every-
where except when P~ ao. However, it is easy to see (as
above) that for n «4 a region in which f~ ao has
infinite free energy so that V /=a itj everywhere. Simi-
larly we see that i)'I can not be zero. It is now easy to
construct states which have f'=0 and

I p I
&M . Con-

sider
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F/V-u 'A, "ff [„[F,—[ g/F (RA»)'" "7, (2.31)

ated Bessel function of the second kind of order
( n —2 ) /2. Tllc llndctcl mined GonstaIlt 1Il E will bc
chosen so that this constant is unity. Close to the lattice
points (within distances of order «. ) there are contribu-
tions to f', however, these contributions fall off rapidly
with increasing distance. Away from the lattice points
the major contributions to the free energy come from

~ ((p' —M') ).
To demonstrate these facts we note, from Eq. (2.26),

using the varistional principle, that

dl /dx =2tu(l —b, ) 'p xl

with p=(l —6)tu 'P 'Vg. However, P=E is, by as-
sumption, a decreasing function of

~

x
~

so that I de-
creases rapidly with increasing x. Therefore, the contri-
butions to f' also decrease rapidly with increasing x. If
I is small the equation for 1( approaches Bessel's equa-
tion so E must approach the Bessel function. Therefore
the asymptotic expansion of the Bessel function can be
used to determine p. For large x the Bessel function'
E(x)-x '~ e ' tends to zero exponentially. It follows
that for large x p= —(1—b)tu '«(I+ I/2x + )x,
which points in for mg0. Note that for large x the
magnitude of the order parameter is nearly the constant
M. However, it is clear that the p implied by this po-
tential does not equal Ml within a distance of order»
of the boundaries of the %igner-Seitz cell of the lattice,
i.e., near points which are equidistant from two or more
nearest lattice points, Therefore if the lattice points are
much more than ~ apart the free energy of this tex-
ture, shown for 2 —d triangular lattice in Fig. 2, can be
calculated approximately.

%ith the scaling transformation x~~ 'x, the free en-
ergy f', Eq. (2.26), becomes

f'V = VIv» "F, ,
2Q)

(2.29)

F, =fdx(1 —P 'V t()

Therefore for (~0 and large
~
x; —x, ,

~

we find the
difference in the free energy from the uniform free ener-

gy for this texture is approximately

F/V-u '
i f i

(F» "
i g i

8" 'F «. '), (230)

where u is the (average) volume per lattice site and R is
the distance between the lattice points. The difference in
the free energy within the core from the uniform free en-
ergy (i.e., the value of f' —f„when g=E) is given by
F,f„« " and the diff'erence in the free energy of the wall
from the uniform free energy (the edge of the Wigner-
Seitz cell) is

~ g ~

R" 'F f„» ' given by g((p —M ) ).
The free energy of the wall, proportional to

~ g ~, de-
pends on the lattice and mill be discussed further below.
This approximation becomes exact when the lattice spac-
ing is much larger than» ' and g is small. If we now
consider the scaling transformation x,.~(hc) 'x; we
find

p ~ ~ 4 +-~ X - ~~ 0 ~ +- O

~ ~ q%%Yl11P/~ ~
~

X ~ ~ -+ 4 ~ ~ p ~ ~ ~ g m ~ ~ X

tilt~~
llT'Pp ~ ~

+ Iir +- +- ~ X ~ ~ -+ Iir ~ M p

FIG. 2. Two unit cells of the triangular lattice for proposed
modulated phase showing the %igner-Seitz cell. In two dimen-
sions there are vortices at the lattice site (C) } at the center, at
the corners (st }, and at the center of the sides {&(). A repre-
sentation of the magnitude of the order parameter is shown.
The wall of width x ' is formed along the sides.

which, when minimized with respect to A, , yields

g=» 'g [ ~ g ~

F~/(nF )]

so that A, ~ 00 as (~0. The free energy is given by

(2.32)

'~" If. I
(1— )[

I 0 IF.'/( F.)]""" "
(2.33)

g(([ )'—M')')- ~g~u-'»-'F'~"-' (2.34)

8" 'F =fdic f (8), (2.35)

where the integral is over sll solid angles 0, dA/dQ is
the area of the boundary of the %'igner-Seitz cell per
unit solid angle, and f„t8) is the dimensionless free ener-

gy of the wall per unit area, given by

f (8)=cos 8 f dX cosh (2)=—', cos 8, (2.36)

where x =ex'cos8. Clearly the integral over solid angles
depends on the nature of the lattice. For one side of the
mall of the triangular lattice F =0.1458. Thus the free
energy of the entire wall is 0.83$R

~ f„~«

%e now calculate I' snd I', . It is easy to see, for ex-
ample from the asymptotic expansion of the Bessel func-
tion, that in s region nearly equidistant from two lattice
points the order parameter is given by

p(x ) = —sgn( tu )M [x'tanh(x '»cos8)cos8+ y'sin8] .

Here x' is a unit vector normal to the equidistant sur-
face, x' is the distance from this surface, snd y' is s unit
vector in the plane of this surface pointing away from
the lattice points. The angle 8 is the angle between x'
and the line from the lattice point to the part of the wall
under consideration. The direction of the order parame-
ter changes by an angle m —28 going through the wall.
Substituting the order parameter p given above into
g((

~ p ~

' —M')') yields
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with the difference in the free energy within the core and
the uniform free energy, with n components, given by

I fu I

~ "I;vF, with

F, =S„dze "g' +V g —e 'g (2.38)

These equations are identical to (2.14) and (2.15) except
for the term proportional to e ' (z =lnx) which appears
as a result of including the term proportional to r in the
free energy. The zero for z has been chosen so the
coefFicient of e ' is unity. We have solved this equation
numerically for (=0 [w =2u (I —b, )], subject to the
constraint that g —+0 as

I

x
I

0 and
I
x

I
oo or

z~+ w. This was done by assuming a solution of the
form g =Aoexp(2z) as z~ —~, i.e., p~x as x~0. By
adjusting the value of Ao the condition as z~+ Oo can
be satisfied. The values of F, were found to be
F, (n =2)-7.4 and F,(n =3)-17.0.

It should be noted that when 5 is close to —1 we ex-
pect that the details of the solution will be modified be-
cause it will be favorable near the lattice points to have
nonzero VXp, decreasing both the free-energy cost of
the vortex cores and the lattice constant of the resultant
lattice. It is even possible that the nature of the modu-
lated phase will change when 5 is sumciently close to
—1.

This calculation, together with the bounds of
I p I

imply that the difference between the uniform free ener-
gy and the actual free energy for $~0 is bounded from
below as $~0 by a power law (

I g I

"~'" ") and from
above by another power law (

I g I
). We note that any

bound for n ~n —1 is also a bound. However it is obvi-
ous from these formulae and Eq. (2.35) above that the
bound for n —1 is greatly inferior to that for n as (~0.
This disproves the possibility that the transition, like a
nucleation transition, has an exponential dependence on
the control parameter, g.

We speculate that F= Vf„—const&&
I g I

" '" " is in
fact the correct asymptotic power-law behavior for the

It is clear from these formulae that the lattice which
minimizes this (negative) free energy is that which max-
imizes m=u '8 "F . Clearly m is less than its value for
a sphere co, ( n)= 3nS—„' '" ". We believe that the max-

imum value for ~ in two dimensions is the value for a
simple triangular lattice and that the maximum value for
m in three dimensions is that for a close-packed lattice.
As these values are lower bounds within 10% of the
upper bound they can not be far off, even if they are not
exact.

We have calculated the free energy within the core nu-
merically for n=2, 3, as follows. As k~ Oo, p in the vi-

cinity of the lattice points x; tends to a spherically sym-
metric solution. Assuming

p=(1 —~)'"
I

«
I

'"~
and rescaling x by (1 b)'

I
r—

I

' and substituting
into F Eq. (2.6), we find, by the variational principle

2(2 —e)g +(6—2e)g'+2(1+()g' —eg' —g"—e "g =0,
(2.37)

minimum of the free energy and the state p which mini-
mizes the F as (~0. In particular for n & 2 we have not
been able to find any states for which the negative con-
tributions to the free energy increase as a larger power
of the lattice size nor for which the total positive contri-
butions to the free energy per unit cell decreases without
bound with increasing lattice constant. %'e remark that
for n=2 a phase like the "striped" phase discussed by
Langer and Sethna' with stripes of widths L would have
a free energy per unit volume of the form

f„—
I g I f~L '+ —,

' J ( b, )L . Minimizing with respect
to L me find the difference between the minimum free
energy and the uniform phase scales in the same way, g,
for both the hexagonal state we have discussed and this
striped phase. Thus to determine the nature of the
modulated phase the simple scaling arguments which ap-
ply for n g2 cannot be used. Rather it would be neces-
sary to calculate with some precision the constant multi-
plying the g term in the free energy, minimizing it over
the possible textures of the order parameter (as a func-
tion of 5). We will not carry out this calculation. Given
the similarity between the free energies of the two-
harmonic approximations to phases with the same sym-
metries for 6=0 and larger negative g we expect that
the differences between the free energies of the two
phases is not large and that approximate calculations are
therefore hard to interpret, at least for 6=0.

In summary we envisage a behavior somewhat like
that suggested in Ref. 9, a star burst of modes with the
Fourier transform of p(Q), tending to zero only slowly
for a range of

I gI
' '" "~r' Q '&1. However, we

expect this behavior only for small g and only for Qr '~

small, as g becomes more negative the range of
I Q I

over which p(Q) decreases slowly will decrease, as will
the number of harmonics necessary to give a good
description of the actual physical state.

D. Range of validity for mean-field theory

In general it is expected that the mean-field approxi-
mation mill be legitimate provided that the order param-
eter is small enough (so that higher-order terms in the
Landau expansion are not important) and provided the
nonlinear terms are small enough so that the effects of
fluctuations are small, i.e., a "Ginzburg" criterion is
satisfied; u (1 —5 ), w (1—5 )

I
r

I

' A' where
A is the maximum wave vector for which the description
given above is legitimate. In this case, however, the
range of validity is smaller than this, for small g.

The free energy which we are studying is very extraor-
dinary as a wide variety of defects cease to have positive
free energy and begin to have negative free energy along
the line /=0. In particular any order-parameter texture
which can be written as the logarithmic gradient of a
function of the form of (2.27) has positive free energy for
g&0 and negative free energy for $~0. Such textures
includes, inter alia, wall defects in which the order pa-
rameter rotates through an arbitrary angle and vortices.
It is easy to see that when F6 is included in the free-
energy expansion then (except for very special values of
the parameters in F6) it is no longer true that all such
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defects have zero free energy for the same value of g. Of
course as r ~0 the magnitude of the order parameter
and its gradients tend to zero for all states which need to
be considered near (=0 and n &4. Thus the differences
between the free energies of the various defects will be
very small as r~0 and, therefore will be irrelevant in
this limit for any nonzero, specified value of g. Howev-
er, for any specified r &0 there will be a g so small that
the contribution to the free energy of various defects
coming from F6 will dominate the contribution from g.
Therefore there will always be some small region near
the uniform-modulated phase transition in which the I'6
terms play an important role in determining the nature
of the modulated phase (and even the order of this tran-
sition). Therefore in this region some of the parameters
in I'6 are "dangerous" irrelevant variables, and the dis-
cussion above must be modified to account for them.

In addition for small g, and for F6 sufliciently small so
that it can be ignored, the states discussed above are un-
stable to thermal fluctuations. In particular, consider
the case n =d. %e have shown above that there are
states with point defects at arbitrary positions in the
volume. Each such state has a free energy of the form

V(f„~ "F,pD+ga 'ApD"),

where pD is the density of defects and 3 is a
configuration-dependent factor of order one provided the
defects are, at least, a distance x ' apart. Clearly, there-
fore if g is sufficiently negative then the lattice discussed
above will be stable under thermal fluctuations. If

~ g ~

is sufficiently small (whether g is positive or negative)
then fluctuations will be important and we expect a gas
(or liquid) of defects. However, if g is sufficiently posi-
tive the long-range interactions between defects reflected
in the gApa term are again important so that there are
no defects in equilibrium. To get a rough idea of the re-
gion in which these various terms are important we first
ignore the defect interaction term. %e then expect,
from the usual treatment of statistical mechanics, that
the density of defects will be

pD -ii exp( « "f„F,/T) .—

%hen the interaction term becomes important at this
density there will be changes in the behavior. Therefore
for the mean-field theory to be legitimate we require

~ g ~
) 3 exp[ v f„F,(1—d ')/—T],

where A is a constant of order 1.

III. RENGRMAI. IZATIQN GROUP

The free energy F, Eq. (2.3), can be written in Fourier
space as I=Fo+F& where

Fo ——f (I [r+(6,+A)q +hsqN]5~p

2h—q q& Jp (Q)p&(Q )), (3.1)

Fi =iia f f [q~.(Q)p~(Q')p~( —Q —Q')],
Q'

+" Pa Pa Pp

&&pp(Q —Q' —Q")] . (3.2)

where L &(q) is the longitudinal projection operator,
L p(q)=q q~/q, and T &(q) is the transverse projec-
tion operator, T 13(q)=5 & L~(q). The pa—rameter 6 is
assumed to be O(1) and is restricted to —1 & 6 & 1 so
that the free energy is stable. The parameters r, y =m,
and u are assumed to be small.

Here p(Q) =fdXe'~' p(X), and 5i ——b, ~
—l.

The wave vector Q is Q=(q, q~) where q is a vector
in the n-component space spanned by p and qz is a
(d n)-—component vector in the orthogonal subspace
and the integral

f—:(2n )
"f dqdq

Q l&A

Note that all fluctuations with
~ Q ~

p A have been elim-
inated from the free energy. Expectation values are
defined in the usual way as functional integrals with the
weight exp( F). The—RG calculation is performed
by' ' eliminating fluctuations in an elliptical shell given
by

(qlb) +(qN/a) )A )q +q~

with a, b&1, treating Fo exactly and using a perturba-
tion expansion in I"

&. The wave vectors q and qz are
then rescaled anisotropically by the transformation
q'=qb and qz ——qua with b, a & 1 and the order parame-
ter p is rescaled by p(q', q~)=Pp (qb, qua) where P is the
spin rescaling factor determined below. The propagator,

G,&(Q)= V '(p (Q)p ( —Q)p), ,

where ( )0 indicates the expectation value with the un-
perturbed free energy I'0 is given by

T p(q) L,p(q)
G,p(Q) =

2 2+ 2 2r +(I +b, )q +biqN r+(1 —b, )q +biqiv

(3.3)

In this section we will give a renormalization-group
(RG) calculation for the properties of this model, in an
expansion in a=4 —d where d is the spatial dimension.
This calculation consists of successively eliminating the
spatially quickly varying part of the order parameter and
then rescaling lengths and the order parameter so that
the space on which the system is de6ned is essentially
unchanged.

A, Recursion relations

The recursion relations can be obtained from a di-
agrammatic expansion of I'. The contributions to the
parameters r, y, and u are evaluated from the Feynman
diagrams obtained doing a perturbation expansion in
powers of E, around the unperturbed free energy I'o and
are evaluated using the propagator (3.3). The diagrams
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are constructed from the m- and u-type vertices given
schematically in Fig. 3. Other contributions to the re-
normalized free energy of I' are all of higher order in u,
m, or e. All contributions of lowest order in u, m, or e
have been included (see Fig. 4). Thus all the terms
which have been neglected are clearly small compared to
at least one of the given terms. There are numerous dia-
grams constructed from m- and u-type vertices and com-
binations of m and u vertices and evaluating them is an
arduous task. Fortunately most of these calculations
have been performed by Blankschtein et al. and Aharo-
ny,

' graphs involving u alone which contribute to the
renormalization of u and 5 for n =d =4—e by Aharo-
ny, ' and graphs involving m as well as u by
Blankschtein et al. As we shall see below, these calcu-
lations are adequate for an understanding of the
renormalization-group fiows.

%e have checked and employed their results. %'e will
not comment in detail on their calculation except to re-
mark that the evaluation of graphs involving e can be
simpli6ed, in comparison to the methods of Ref. 8.
Similar tricks may decrease the labor in related prob-
lems. Consider a graph in which an external line is con-
nected to a m-type vertex. For each m vertex in a 6xed
graphical topology there are three diferent such graphs
as the gradient can be along any of the three lines at-
tached to the u vertex. Consider the contribution to this
graph in which the internal propagators are longitudinal,
i.e., corresponding to the second term in Eq. (3.3). It is
useful to sum immediately over the possible orientations
of the w vertex (prior to summing over topologically
equivalent graphs), yielding, for the contribution of the
u vertex and the two longitudinal projection operators
in the propagators,

(3.4)

where Q is the wave vector of the external line and

Q =(+Q' —Q/2) are the wave vectors along the inter-
nal lines. The subscript a is the vector index of the
external lines and P and y are the vector indices of the
internal lines. The immediate consequence is that the
contribution of the sum over all orientations of the m

vertex for any graph in which two longitudinal propaga-
tors meet at a m vertex goes to zero as q goes to zero, If
there are two or more u vertices attached to external
lines at which two longitudinal propagators meet then
simple extensions of the above argument show that the
value of the sum of such graphs over all orientations of
the m vertex goes to zero as the product of the q's along

FIG. 4. The Feynman diagrams for the contributions to the
recursion relations: (a) and (b) are contributions to r; (a), (b),
and (c) contribute to b' and the spin and space rescaling fac-
tors. The graphs (d) and (e) contribute to w', and (g)-(h} to u'.

+O(y, yu, u )Iin(b) . (3.5)

%ith this result along with the results given by Aharo-
ny' an order-parameter rescaling factor can be deduced.
The result is

the attached external lines. %e also note that graphs in
which the gradient of the m vertex are along a line with
a transverse propagator are trivially zero. This immedi-
ately eliminates from consideration a large number of
graphs; for example the only graph which must be con-
sidered in the m term in the recursion relation for u is
that shown in Fig. 5. This compares to four (more com-
plex) graphs required by the previous analysis. It im-
plies that none of the graphs calculated (except the u

contributions to 5, the graphs of Fig. 5) need involve
more than two transverse or two longitudinal propaga-
tors,

The ratio a/0 was determined by requiring that the
renormalized coeScient of the term proportional to qz,
(b,3), be unity. The order-parameter rescaling factor P
was determined by requiring that the renormalized
coefficient of the q term, (6', ), be unity. The result is

ln(a) = I 1+[X,(A) —X,(b.)](y/2)+ [ I', (b, ) —Fz(5)]u

(c)

FIG. 3. (a) and (b} show two graphical representations of
m-type vertices. The arrow in the leg of the (b) represents the
leg along which we have V.p. The u-type vertices are given in
(c) and (d). The spin labeling is shown in (b) and (d).

FIG. 5. Diagrams of (a) order m' contributing to r' and (b)
contributing to u . The wavy line indicates that this inter-

nal line contributes only the transverse part of the propagator
and the solid internal line indicates only the longitudinal part
of the propagator.
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21n(P}=(d +2+X, (b, )y + F, (h)u +(4 —n) I[X,(b, ) —Xs(b )](y/2)+[K, (h) —F&(h))u I+O(y, yu, u'))ln(b),

(3.6)

where b is the momentum rescaling factor and the func-
tions X&, X3, Ã&, and F3 are the results of graphical cal-
culations which are given in Table I, insofar as they are
required for discussion in this paper. Once this factor is
determined the recursion relations in the parameter
space (b„y, u } can be found to lowest order.

The renormalized parameter r', which has not been
given in previous work, will now be obtained explicitly

to O(e). The graphs contributing to r' are proportional
to w [Figs. 6(a) and 6(b)] and u [Figs. 6(c) and 6(d)].
The graphs of order u are obtained by taking a u vertex
and contracting two legs in all possible ways. The
graphs of order m are constructed by taking two w ver-
tices and contracting pairs of legs in all ways that create
connected graphs. From these diagrams (see Fig. 6) we
find r' is the coefficient of 5~& in

p'b "a d+" r +4u5~& f G»(Q)+8u f G~&(Q)+4tU' f G,&(Q)Grs(Q)qrqs —4to' f G,p(Q)Grs(Q)qrqp
g

(3.7)

where sums over repeated indices are implied. The Arst
term of (3.7) results from rescaling r The .integral pro-
portional to u will be evaluated explicitly. Inserting G~~
and summing over y from 1 to n gives

(n —1)
q r +(1+6,)q'+b, ,qnt

q" 'q„' "dqdq~ -q" 'q„' "dqdq„
(I+5, )q +h&qz [(1k'}q +bsq~]

E [(1kb, )' ~' 6'~ 2' —1]=(1 b)—
(2—n)( 1kb, ) —b, s

1+f
q r+(1—h)q +h&qz2 2

(3.8)
r(1+—h) " b, '" ' E lnb (3.9)

We will assume that the parameter r-(T —T, } is of or-
der e. The denominators in the above integrals are then
expanded to 6rst order in r. Evaluating these integrals'
for d =4 dimensions we find

where K~=S4(2n) and S~ is the area of the 4-sphere,
given in Sec. II B. Other contributions to r' can be eval-
uated similarly, yielding

r'=P b "a "+" r + (n +2}u— I4(n —1)
P1 2h

+ —(n +2}u + I
26

(3.10)

(b)

To find the change in r with length scale in differential
form, b is taken as e' and r'=r(1 +51). Then using Eq.
(3.6) for (() in terins of b, and expanding the exponential
in small displacements of / to 0 (M) and taking the limit
as 51~0 with n =d =4—e, yields

dr = (2+Xiy + Y'i u )r +2F4u + Fsru +21'6y + Y7ry,2

(c)

FIG. 6. The Feynman diagrams of order u [(a) and (b)] and
w' [(c) and (d)] which contribute to the renormahzation of r.

(3.11}

where the functions Y4, Y5, F6, and F7 are given in
Table I.

Similarly the RG equations for (b„y,u) in differential
form for arbitrary n are

dh =b[(X,—X2)y+(F, —I'2)u ]+O(yu, y, u ),2 2 3

(3.12)



GEORGE A. HINSHA%', JR. AND ROLFE G. PETSCHEK

TABLE I. The functions X;(5) (i = I —8) and the functions F;(6) (i =4-7) for arbitrary n.

2(n —1)

n (4—n)(n —2)h

[ —,
' (n' —n ') n—-'+ 5n —2]b, '+2n b,

-'

—[n -'+ 3n —2]b —2n

[-,'( —n '+ n ') —4n +6]~'
—[2n '+2n —6]h' —2b, —2

(n —2)h +nb+2

—,
' [n

' n' —4n—+6]b, ' —1

[2n ' —5n +2]i) ' —3n -'6'

—[n' —3n +2]b+2n

[2n ' —5+2]b, ' —3n '6'

+(3n '- —6)h-' —(2n —2)5+2
—{n —2)h'+n 6 —2

[n ' 3]b,'—nh+—1

[ n'+—4n —5]b, + n —2 [2n- 7n—+5]5+3—n

4(n —1)
n (n- —4)A

{n —1)
n (n —4)A'

n (n"- —4)h

[—3n -'+ 8]h 2n—

[n '+7n ' —16n ' —24n +32]h —8n + 8

[n ' —8]h+2n

[n '+4n ' —32]b + 8n —8

where X;=a; (f3;I+ +y;I ) and I+ =(1+6 ) "~26,,

4(n —1){n+2) 4(n +2)J++
4( —1){ +2) 4( +2)

5 I++
n n

2 4(n —1)
nA n

2 4(n —1)
nb,

'-
n

( 1+g }(2—n)/2g(n --2)/2

where J+ =K4
{2 )(

dl
=(e—2X4u)y +[3X,+2Xs+ —'(n —4)(X, —X, )]y2

+O(y u, yu ), (3.13)

dQ 2 I

dl
=au —Xsu +[2X,+X6+ (n —4)(X, ——X&)]yu2

—X~y +O(u, yu, y u,y') . (3.14)

Note that the X; (i =1,8) are polynomials in n, I;(i=1,2)
are given only for n=4 and both are functions of A. It
has not been necessary to calculate F3 as it does not ap-
pear in Eqs. (3.11)—(3.14). All X, are positive for
—1~6~1 except X2,' LY2 is negative for —1~kg l.
For the case n =d, X3 does not appear in the above
differential equations since it is associated with the
(n —d )-dimensional subspace perpendicular to p and
hence must not enter. The higher-order terms indicated
in the difkrential equations for 6, y, and u above mill be
neglected henceforth, except the yu term of the y equa-
tion, mhich mill be needed for reasons discussed below.
%'hen these terms are neglected the resultant nonlinear
ordinary diiTerential equations can be analyzed.

B. Fixed points

—(I', —F~)u
3' =

(X, —X~)
(3.15)

The fixed points are those values of the parameters
(b, ,y, u) which are invariant under the RG transforma-
tion. These points ( b, ",y ",u '

) are found from Eqs.
(3.12), (3.13), and (3.14) by setting the right-hand sides
(rhs's) equal to zero. When b, ~+1, there are diver-
gences in all the functions X, and as 5~1 there are
divergences in Y, and Ã2. This case requires a some-
mhat different treatment which mill be given separately
below. There are three possible conditions for fixed
points for 6&+1: (i) y =u=O, (ii) y=O but u&0, and
(iii) y&0 and u&0. First if y =u=O then the rhs s of
Eqs. (3.12)—(3.14) are zero for any h. This results in the
trivial (Gaussian) fixed line. If y=O but u&0 then (3.12)
implies that 6 must be zero since (F]—Y'z) is never
zero. Hence the fixed-point value for u is determined
from (3.14). It has the usual Wilson-Fisher value

u *=@/X,(0)=F./[4I „(n +8)] .

Finally if y is nonzero then (3.12) implies
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Turning our attention to Eq. (3.12) the following possi-
bilities are considered: (i) ( F, —F2 ) «(X, —Xi ) which
liilplles tllat y « tl; (li) ( Pi —Fy ) (Xi —Xp ), wliich iiil-

plies that y —u; and (iii) ( F, —Fi )»{X,—Xi ) which
would imply thaty~~u . The values of X; and F; were
calculated numerically for all 5 with —1 gh ~1. It was
found that (X, —Xz) is always at least 1 order of magni-
tude larger than (Fi —Fz }. Therefore condition (iii) nev-

er applies because (X, —Xz) is greater than {Y, —Fi )

for aB 5, so y ~ u 2 to lowest order in e for any h. Since

y is at most O(u ) the terms of order yu and y in (3.14)
are negligible near the axed point. Thus the fixed-point
value of u is u'=e/Xs(b, )+O(e ). Sincey' is O(u ), y
is at most 0 (e ).

The Axed-point values for 6 and y can now be deter-
mined. For y&0, y =O(ei), the rhs of Eq. (3.13) can be
zero only if (e —2X~u') is of order e . Replacing u with
u ' =e/Xs {b, ) shows that (1—2X„/Xs ) =0+0 (e). This
determines 5' to order e. It is found, for n =d=4, that
(1—2X4/Xs) vanishes when 6=0 and when 6= ——', .
The quantity (1—2X4/Xs) reaches its maximum value
of about 0.1 between 6=0 and 6= —

—,
' (see Fig. 7). We

note, however, that e(1 —2X4/Xs) is very small (-0.1)
throughout the region in which it is positive, and the
slopes near the zeros are also small. In consequence it
may be that the value of 5' (and even the existence of a
5'} will depend strongly upon the next-order terms,
which are expected to be roughly e /(n+8)-0. 1 for
@=1. We have not pursued a higher-order calculation.
For n=3 and n =2 (1—2X4/Xs)=0 only at one point
for b, '(n =3)=0.22 and b, '(n =2.05)=0.53.

The y recursion relation determines the 6xed-point
values for b„and the recursion relation for b, Eq. (3.12),
must be utilized to find y'. From Eq. (3.15} it is found
that if 6 &0, y is less than zero because both (I', —Fz)
and (X, —X~) are less than zero. On the other hand if
b, '&0 (F, —Fz)&0 but (X, —Xi)&0 so y'&0. The
fixed points occurring in the y =m p0 region will be re-

0.0

G2 —0.5-

FIG. 7. Plot of 1 —[2X~(h}/X, (hl] for —1&6,&1 for
n =2.05, 3.0, 4.0.

ferred to as ferroelectric while those 6xed points occur-
ring in the y~0 will be referred to as polymeric. Now
for n=4 substituting b, '= ——,', and u'=e/Xs( ——', ) into
(3.15) determines y '. The results are b, ' = ——,',
y'= —5.443&10 e and u*=0.2492m. %e expect that
this fixed point will be qualitatively the same for other n,
provided it exists.

For n =4 there is also a y'&0 fixed point for
b, =O(e). As the nature of the fixed point changes when
b =0 it is interesting to determine the nature of the fixed
point in the vicinity of n =1=4. To do this we will as-
sume that d =4—e and n =4—ge. This not only allows
us to discuss this fixed point when it is near 5=0, which
occurs for an interesting case, n =d, but also implies
that knowledge of I', and F2 for n =d (which is avail-
able from the literature) suffices to determine the behav-
ior. To determine the fixed point near b, =0, for
n =d =4—ge to lowest nontrivial order requires calcu-
lating the behavior of the X; as 6~0. It is found that

(3)

TABLE &I. The fu~~tio~s &;(~)(~ =1-8), ~)(~), a~d ~2(~) fo«=4.

X) ——-'K4(8 —25+2652) 1
3 4

( 1 Q2)2

1~2 = —'K4( —7+46 —256 )3 {1 Q2)2

X4 ——E4(24—165+3252) 1

( 1 Q2)2

X5 ——JC4(7+ 5) 1

(1—52)'

X6 ——E4(24 —85)
(1—6 )'

1
Xp ——E4( —)2 (1 +2)2

X8 ——E4(48—486+406 )
1

( 1 +2)2

Y'I ———32%4(1+5) 3 8 5 19
2 3 1 —5 6 1 —6

'2

y 32g2(1+g)2 + 1 g + 1 g2
6 1 —6 3 1 —5

3

J

3
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all X; except X2 are continuous in this limit; L2 tends to
(7/3b, )E4. However, Eq. (3.12) still remains finite as
~z is Anite. Actually it is a pleasant task to determine
the limiting values for all X; since they reduce to a such
simple form for the case n=4 (see Table II). The term
( Y', —I'i) is also finite and goes to ( ——", )K4 at b =0.
Equation (3.15) and the above limiting values determine
y'=( —", )b,*u* . Since both u' and b, * are 0(e), y' is

0(he ).
The value of 5* is determined principally by

e(l —2X4/Xs} in the y recursion relation. It is easily
shown that X,(b, =O)=2X4(b, =O) for n=4 so that at
b, =O the term proportional to y in (3.13) vanishes.
Therefore it is necessary to expand X4/Xs near 5=0
with n =4—ge and to keep all terms which are of order
e or A. This yields

L4
2 6 24
1+ lg l g~

8

(3.16)

The X9 term is the 0(yu ) of (3.13) and cannot be
neglected for the 5=0(E) fixed point because the first-
order terms of (1 —2X4/Xs) cancel exactly and the next
term in the expansion, eu, is the same order as u .
Therefore to determine 6' the following equation for
dy/dl=0 must be used,

(e —2X4u')+( —', X*, +X~ )y'+2X9u' =0

where

(3.17)

,2
—3(n +2)(7n + 16)

4(n +8)

X9u'2(n =4—ge)= —
—,",e +0(e ) .

Thus we find b, '=C(g)e and y'=C(g)e'/(3X36)
with C(g)=( ——'„'+g/4) where g & 1. Since the fer-
roelectric region has y & 0 the magnitude of g determines
whether or not the Axed point is in the ferroelectric re-
gion. If g & —", the Axed point is not in the ferroelectric
region. For g & —", a y'&0 ferroelectric fixed point ex-
ists aild is chaiacterlzed by 5 0( ), ey 0(E), and'
u'-0(e). In summary near b.'=0 the fixed point is
given by b, ' =C (g)e, y

' =C (g)ei/(252@4 ), and
u'=e/(48E4}. This completes the list of fixed points
for 5*~+1.

%'e next consider the possibility of fixed points for
5~+1. This region is most easily studied after the
transformation p~p(1 —b, )

'" " ", x~x,
x~~(1—b, )

' xz which changes the free energy to

dl
=2(1—6)y(X, —X2)+16(1—b. )u ( Y, —I', ),

(3.21)

and

dl
=(e—2X4u )y+6(X, —X2)y +0(y u, y '),

(3.22)

dl
=su —Xsu +4(X, —X, )y u+0(u '), (3.23)

where X, =X, (1—b, ) and F= F(1—b, ) . Terms which
are zero in the limit 6~1, u, y finite have been excluded
in dy/dl and du /dl. The value of 1hldl, Eq. (3.21), is
clearly zero in this limit. The fixed points y* and u ' for
b, = 1 are then found by setting the rhs's of Eqs. (3.22)
and (3.23) equal to zero. There are four conditions for
which the resultant fixed-point equations are solvable:
(i) y=u=O, (ii) y=O but u~O which implies
u =e/Xs =e/(40K4), (iii) y&0 but u=0 which implies

y = —e/[6(X, —X2 )]= —e/(120K4),

and finally (iv) y and u nonzero which implies

where to=w/(I —5 )' "' and u =u/(1 —5 )

Scaling the free energy in this Inanner changes the prop-
agator to

Tcp I. pG g(Q)= —1 2 2 —1 2 2r +(1—6) q +qv r +(1+9) q +qz

(3.20)

This is a useful way to express 6 & because 6 remains
finite in the entire region ( —1 & 6 & 1). Thus the contri-
butions to perturbation theory are small for K and u
small, w'hile they diverge as b, ~+1 for ui, u fixed (and
small}. Also for b, =l (b, = —1) we see that the trans-
verse (longitudinal) part of the propagator vanishes so
that such fluctuations are strongly suppressed. It will
still be assumed that there are only fluctuations with
wave vectors

I Q I
&A. We remark that it is generally

the correct strategy in the renormalization to scale
lengths so that the propagator is of order one for

I Q I
=A, in so far as possible, and tends to zero (not

infinity) when it is not of order one.
The renormalization equations are changed by this

transformation because the relative scaling of x and x~
is changed and because u and y are changed. In what
follows we discuss only the case n =d in which the rela-
tive scaling of x and x~ is irrelevant. The RG equations
are, in the limit h~ 1,

(3Xs —4X4) 40K4

+
I ~~p I

'+~
I p I

'(~-p)+u
I p I

'

(3.19)

X8

4(X, —X2 ) (3X8—4X4)
—1

40/4

(3.24)
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TABLE III. The observable fixed points for d =4—e and n =4—ge and qualitative nature of the eigenvalues. The stability, that

is, the sign of the eigenvalues and the power of e for each eigenvalue, is shown. All constants are positive. For specific numerical

values see text.

Fixed point

Gaussian

Wilson-Fisher

(g & '4')

Wilson-Fisher
i]

)

ferroelectric

Eigen values

{O,e, e)
( —cl2e, —C22e, —e)2 2

(C )26, —C226', —6)

( —Cl3E', —C236, —6')2 2

ferroelectric
100 )

({—c l4+ic )4 )e, ( —c l4
—ic 'l4 )e, —e)

polymeric
(g & —") (C )56, —C256, —6')2 2

polymeric

polymeric

ferroelectric

—C eP

pl—C

Cpa (lc)66' —C )66, —lc )6E —C )66', —E)

(0, —e, e/3)

( C]SE C28 6 C38e)

= —(1+6 )y '(X ', —X 3)—T](1+b ) u '
( F] —F2 ),

(3.25)
I

dl
=(e—2X4u ')y '+[3X,+2X5+2(X', —X2)]y '

+O (
—&3 —&3) (3.26)

Conditions (i) and (ii) are simply restatements of the
Gaussian and the Wilson-Fisher fixed points, respective-
ly, for 5= 1. For condition (iii) a new fixed point is
found in the polymeric region. Finally (iv) defines a
nonobservable fixed point. However, note that y/u=1
or (=0.

The 6xed points for h~ —1 cannot be determined in
the same way. In particular no new Axed points are
found for finite y. The reason is that for the u]- (y-) type
vertex to contribute to the RG equations there must be
longitudinal fiuctuations. As the longitudinal fiuctua-
tions are suppressed in this limit the e8'ect of y is very
small and the contribution to the RG equations is finite
even if y is as large as 0(1+6,), as each pair of ]J ver-
tices requires at least one longitudinal propagator with
the associated factor 1+h. %'e expect this result to
remain true to all orders in perturbation theory. There-
fore replacing y and u with y '(1 —b, ) and u '(1 —5) in
Eqs. (3.12)-(3.14) and taking the limit as b,~—1 results

p

dl
=tu ' Xsu ' —+[2X]+X6+2(X',—X2}]y 'u '

l2+ 0 (
—t3 —l3

) (3.27)

Again dhld1 is zero in the limit h~ —1. The term
[X](—1)—X2( —1)] is zero. However,

X', —X 3 ——[dX, (b, )/db, ]—[ Xd(2h) /bd, ]

is nonzero at 5= —1. Setting the rhs's of these equa-
tions equal to zero results in 6xed-point equations which
again have four possible solutions. There is a trivial
solution for y

' and u ', and a solution with y '=0 on the
Wilson-Fisher fixed line with u '=e/136&4. The solu-
tion for nontrivial y

' and u
' is found to be given by a

quadratic equation in u which yields solutions for posi-
tive and negative u '. The solution for positive u

' is
given by u "=He and y "=Be, where 3=0.1385 and
8=0.7894. In summary there are in addition to the
fixed points discussed above four new fixed points in the
region 5~+1: a polymer fixed point, a ferroelectric
fixed point, and two nonobservable fixed points (u &0).
All the 6xed points have been displayed in Table III.

C. Stability and exponents

The behavior of the di8erential equations near the Axed points is now calculated in order to determine their stabili-
ty. Equations (3.12)—(3.14) are expanded in small displacements near the fixed points with the substitution
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h=h*+M„y =y*+5y, and u =u'+5u. The functions X;(b,'+53) and Y;(6*+56,) are expanded in a Taylor
series. Terms of linear order are retained, yielding the dift'erential equations

= [(Xi —X2 )y'+( I'i —I'2 )& "+(Xi' —X'i* )&*y '+ ( &i' —Y',* )6, 'u *']56
dI

+[6'(X*, —X~ )]5y +[25"u'(P; —Y2 )]5u,

=
I
—2X4*y'u *+[3X',* +2X~' + —,'(n —4)(X",

—X& )]y*+X',*y'u ' I55

+ Ie —2X4u'+2[3X", +2X5 +2X,'+ —,'(n —4)(X; —X3 }]y'+X9u* )5y+( —2X~y'+2X~y'u*)5u,

(3.29)

=
I
—XII'u'+[2XI*+X6*+,'(n ——4)(X',* —X3' )]y*u' —X~"y' I5b,

+ I [2Xi +X6 + —,'(n —4)(Xi —X3 )]u*—2X7y'I5y

+ [e—2X,'u" +[2X*, +X6 + —,'(n —4)(X; —X,* )]y* )5u, (3.30)

where X' =X (b'), X'*=dX /db
~

Since the terms containing r in the 6, y, and u difkrential equations are of higher order in e than the terms con-
sidered above, they will not be included. The eigenvalue for r can be found by expanding Eq. (3.11) in terms of r +5r.
The term proportional to 5r is the exponent v

v '=[2—e+(X*, + Y'7 )y'+ Y, u "] . (3.31)

In determining the Rows for small 5h, 5y, and 5u it is useful to write Eqs. (3.28)—(3.30) in matrix notation. The ma-
trix will be indexed with the following convention: the first, second, and third row (or column) corresponds to b„y,
and u, respectively.

Substituting u'=y'=0 in Eqs. (3.28)-(3.30) we immediately find that the Gaussian fixed point is unstable. If ei-
ther y or u is nonzero then they will increase as e' with increasing I. By substituting u* =@/Xs(O), y*=0 into the
above differential equations, the stabi1ity of the Wilson-Fisher (WF) fixed point can be determined. To find the eigen-
values explicitly we assume that near the fixed points the displacements 5h, 6y, and 5u vary exponentially, i.e.,

5x; —A;exp(A1). This leads to the following determinantal equation for k:

43
24y48

(l+e)
~

(3.32)

Since the only nonzero contribution to this determinant is along the diagonal the eigenvalues to lowest order in e are
given by A, =( —e /(3)&36), —(lie /96)+43ge /(24X48), —e). Therefore the WF fixed point is stable for g ~ —", ,

and has one unstable direction for g p —", . The eigenvectors were calculated. In this case, as in the other 6'&+1
cases, it was found that the relaxation in the u direction was predominantly controlled by the k = —e eigenvalue and
the relaxation in the 5 and y directions by the remaining eigenvalues.

Next we consider the y &0 fixed points. Substituting 5X;= 3;exp(kl} into the above equations yields the following
determinantal equations for A, at the b, =O (e) and the 5= ——,'fixed points, respectively:

—C(g)e
18g21

48

~+O(") "C"" =0,
21

I,
'3.33)

R iy3(A ) =
(A. —2.045m X10 ')

—3.266m &10
1.455m

—9.372y10 '
(A, —2.754m )

—4.094m &10
2. 184m X 10 =0 .
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Equations (3.33) and (3.34) have a solution provided the
determinant vanishes. The quantities in the determinant
written 0(e}or 0(» ) can be ignored to lowest order in
». The determinant Ro(A, )=0 yields

»'A, C(g)e' =0,

where the coefBcients of each power of A, have been
determined only to lowest order in e. Corrections of rel-
ative order e are expected. There are three solutions to
this cubic equation which are easy to calculate by sup-
posing A, -»J Fo.r j=1 the A, and the»A, terms dom-
inate (the other terms are of higher order in») so that
A, = —». Similarly supposing j=2 we find that the I, , A, ,
and A, terms are of O(e ) and the l(, term is of 0(e ).
Thus the remaining eigenvalues are

A, + ——+i
~

A'
~

'~ » ~ —(A —A')el/2, (3.38)

where
~

3'
~

=7.274X IO and (3 —3')/2=2. 889
&10 . Since the eigenvalues are complex conjugates
with a positive real part, they describe a system whose
ffows begin at the Axed point and spiral outward. Clear-
ly this Axed point with eigenvalues of the form

0(e ). However, as A' is positive this yields
A=, +i

~

A'
~

'~ »1~2, i.e., purely imaginary eigenvalues.
In order to determine the stability of the spiral the next-
order term in e must be included. This is accomplished
by writing A, =A,o+0(e ). This term of 0(e ) in A, can
be determined entirely from the A, and A, terms in Eq.
(3.37) as the corrections to this equation are of relative
order in e, e.g., 0(» ), 0(A. e ). Thus the eigenvalues
are

A+ ——e 6 1
t
—1%[1—144C (g) ]'i ] . (3.36) (iO(e ) 0(e—), iO—(» ) 0(—» ), —»)

In the ferroelectric (y &0) region there are three possible
types of ffows near this fixed point depending on the
choice of g. Since both 5' and y' are proportional to
C(g), C(g) must be greater than zero (g & —", ) for the
y'+0 fixed point to be a ferroelectric fixed point. The
stability of the y&0 fixed point is determined from
(3.35). For —",, &g & ',~ the eigenvalues are of the form
I,=( —c,», —cl», —e) where c, and cl are small posi-
tive constants. Therefore this set of eigenvalues de-
scribes a stable Axed point. For g ~ —'„ the eigenvalues
are A, = —», A, +.——»' 6 ( —I+c'i}, where c' is a constant
whose value depends on g. Such complex-conjugate ei-
genvalues with a negative real part imply a stable fixed
point with ffows which spiral in towards the fixed point.
%'e thus conclude that the fixed point is stable for
g & —", . Finally the fixed points coincide and are margin-
ally stable for g = —", . As the %'ilson-Fisher fixed point is
stable for g & —", (i.e., one eigenvalue is zero), we con-
clude that there is a stable ferroelectric Axed point for
any g.

Consider the case 1&g g '4'. In this range of g, the
quantity C(g) ranges from —

—,', &C(g}&0. Since C(g)
is less than zero and both y* and 6' are proportional to
C(g), this fixed point occurs in the polymeric region.
For C(g) &0 the eigenvalues A. which are proportional to
c~ = [ —1+[1—144C(g)]' ) of (3.36), are real. They
are given by A, =(c+e,c e, —e). Since c+ is positive
and e is negative this fixed point near 6=0 has one
unstable eigenvalue and one parameter in addition to
temperature (r). Thus it is a tricritical fixed point; it can
be reached only by adjusting another parameter in addi-
tion to r.

Next consider the 5'= ——', Axed point. Evaluating
R 2gl(A, ) yields tile cllblc eqllatloll

k +@A, + Ae A+ A'e =0

where A and A' are the appropriate coefactors. As be-
fore assuming A, =O(») gives A, = » In a first ap—pro. xi-
mation if we suppose that A, =0 (e ~ } the A, and A, terms
of this cubic equation are found to be 0 (e ~ ), and negli-
gible relative to the A, and A. terms which are

is unstable.
Finally we discuss the stability of the observable fixed

points for 5~+1. For h~ —1 a nontrivial ferroelec-
tric fixed point was found with y =Be and u = Ae. Us-
ing the procedure given above a determinant R, (A, ) is
found:

(A, +0.420») 0 0
R l ( A, ) = 0 (» ) ( A, + 18.95» ) —113.7»

0 (» } 0.4854» (A, + 11.42» )

=0. (3.39)

Clearly this reduces to the product of (A, +0.420») and a
2X2 subdeterminant which has the solutions given by
k+ ——17.0e and A, = —9.47m. Thus the 5—+ —1 non-
trivial fixed point is unstable. The stability of the order
polymer fixed point for 6~1 with u "=0 and
y

' = —e/120K& is easily seen by observing that
d5u /dl =5u»'/3 and d5y/dl = —5ye. Therefore this
fixed point is unstable. The stability of the nonobserv-
able Axed points will not be given.

D. RG Ho~s

The local picture of the trajectories on the parameter
space will now be extended to a more global picture.
The fiow equations (3.12)—(3.14) for the ferroelectric re-
gion and polymeric region differ only in that y is of op-
posite sign. However, this has a significant effect on the
ffow behavior and y &0 and y &0 will be discussed sepa-
rately. However, for any y the (I', —1'2)u and X9yu
terms affect the system of equations only when y is small
compared to u. If y &&u then the y term of (3.13) sends
the trajectories away from the fixed points and (3.14} to-
ward u=0. If u ~&y Eq. (3.13) brings the fiows into the
fixed-point region. Therefore a region of interest is the
region where y and u are small [0(»)] and comparable
and b, is between +1. The change of variables (y~»y,
y ~eu, alld i ~&I) gives'
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=(X, —Xz)by+0(e),
dl

dy =(1—2X4u )y
dl

(3.40)

+[3X&+2X5+2(3—d + —,'n)(X, —Xi)]y, (3.41)

du =u —Xsu
dl

+ [2X, +X6+(4——'„d + ,'n )(X, ——X&)]y u —X7y

(3.42)

in this region. These three differential equations in l were
changed to two dift'erential equations in 6 through the
chain rule:

(e—2X4u)+(3X& +2X& )y

b, (1—b, )u (X, —Xz )

(eu —Xsu +(2X, +X6)yu —Xzyz)—Z.
yb. u (X, —Xz)

(3.43)

d0 /d 5 =du Id l ( d 5 Id I )

dy Idh=dy Idr(dhldl )

This can be done unambiguously because (X, —Xz)h is

never zero. These equations were solved numerically.
For y ~ 0 three difFerent behaviors were found depend-

ing on the initial values of b„, y, and u: (i) the flows were
inward toward y=0, (ii) the flows remained on a surface,
which we will call the separatrix given by
y[u(1 —b)] '=Z, (n, b, ), and (iii) the flows were out-
ward toward y = ()c or u &0 away from the fixed points.
Near 5= —1 it was found for n=4, starting with ap-
propriately chosen y and u values, that the solution ex-
tended out away from y=O, along a similar path, and
then all the way around back to 6= + 1 and y=O. This
happened for all y and u chosen with a certain ratio.
Since this was a surprising result the ratio
Z, =y [u (1 —5)] ' was calculated. This was accom-
plished simply by calculating Z, for each new 6, y, and
u generated by the integration scheme. %e found Z, =2
(which is precisely (=0, also found to be of interest in
mean-field theory). In other words the line which for
n =4 separates a region in which there is a second-order
transition to a uniform phase and in which there is a
first-order transition to a modulated phase is exactly
reproduced by the RG to lowest order in e. This can be
shown analytically. %e have

tially less than 2 will remain within the surface and will
eventually Aow into and terminate at the stable fixed
point. Near 5=+1, u and y are expected to be finite as
du/dl, dy/dl, and du/dl are finite. However, this im-
plies db, /dl —(1 —b, ). Therefore the flows inside the
surface y/2u (1—b, ) never cross 6=+1. Flows that
start outside the surface either escape to infinity or, if
y &u, Aow to negative u, indicating a first-order transi-
tion. Therefore y[u(1 —b)] '=2+0(e) appears to be
a tricritical surface separating systems with second-order
transitions from systems with Auctuation-induced first-
order transitions. However, it is important to note that
there is no tricritical fixed point on this surface. It is
easy to see that along the separatrix du/db, is of the
form ef(b, )(1 —5) ' —g(z), )u where f and g are finite,
smooth functions (except as b, ~ —1). These functions
are positive as 6~1. Therefore u diverges as a power of
6—1 as 6~1. Thus the RG Aows are out of the region
in which perturbation theory can be applied. See Sec.
IV for further discussion.

The invariant nature of the curve Z, =2 for n=4 is

easy to check at the graphical level. In particular it is
easy to see from the graphs of Fig. 8 that to lowest order
ln u andy

(p.(e)p.(e')p, (e")p,(-e-e -Q"»,

= —Su+4 = —4u(2 —Z, ) (3.44)
1 —5

provided a&)33, Q, Q', Q", Q+Q'+Q", and q+q' are
all nonzero and q =q' =q& ——q&+q&+q& ——0. Thus
the statement that Z, =2 is unchanged by the RG is

equivalent to the statement that the expectation value of
(3.44) is also zero to second order in y and u when

Z, =2. This is easy to verify. Consider any graph which

contains a u vertex. For each such graph there is a

graph in which this vertex has been replaced by a pair of
iL) vertices connected by a single longitudinal propagator

(c)

(e)

Substituting Z, =2 into (3.43) we found that for n=4,
but not for other n, dz, /dh=0 as an identity in h.
Thus this ratio completely maps out the region in
(A,y, u) space for yyO where second-order phase transi-
tions occur. In particular, flows with y [u (1—5)] ini-

FIG. 8. The Feynman diagrams which contribute to the re-
norrnalized value of Z, =2. (a) and (b) are the contributions to
lowest order; (c) and (d) are examples of graphs which cancel
by simple arguments when n =d, Z, =2. Graphs (e), (f), and

(g) cancel, but not by these simple arguments, when n =d,
Z. =2.
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in the configuration shown in Fig. 8(b). If these graphs
are counted prior to considering all topologically
equivalent graphs it is clear that there is exactly one
graph with this configuration of m vertices for each
graph with a u-type vertex. As the u vertex contributes
a factor —u and this configuration of m vertices contrib-
utes a factor 2y(1 —4) ' these pairs of graphs cancel
when Z, =2. In consequence when Z, =2 it is only
necessary to consider graphs which contain neither u

vertices nor pairs of m vertices in the configuration of
Fig. 8(b). This decreases very appreciably the number of
graphs which must be considered. In fact there are only
three such graphs contributing to the expectation of Eq.
(3.44), shown in Fig. 8. These are easily evaluated,
directly or by reference to the w'ork of Blankschtein
et aI. , and are seen to cancel each other. Thus we have
verified this (somewhat surprising} result. This gives us
considerable confidence in the (rather complex) calcula-
tion required to calculate the renormalization-group
equations.

It is also instructive to find the separatrix for n+d.
For n&d the surface is given by Z, =Z, (n, b, ). We note
that the argument given above in the case n =4=4 fails
when n&4; in fact when n&4, Z, is no longer constant.
However, it is easy to see that dZ, /dl=0 when 5,= 1

and Z, =2, independent of n The.refore, as dS, /d1=0
when b, ~l (u,y finite) the separatrix must end at
Z, (n, b, =l)=2. The values of Z, for n&4 must be
found numerically by integrating Eq. (3.43). For
n =d=4, Z, =2 is a straight line and for n=3, Z, is

roughly constant and close to but slightly greater than 2.
Around n=2. 5 the quantity Z, and the (low equations
change dramatically in that for 6 &0 the (Iowa become
directed outwards. Figure 9 shows how the behavior of
the Aows changes as n is varied.

Flows originating outside the separatrix Row away
from the fixed point. Any Row which begins within the
separatrix described above will stay inside this surface.
Such flows Row eventually to small values of g. This
motivates the study of the Row equation for small y.
The g term in (3.41) and (3.42) and the gi7 term in
(3.42) can then be ignored. This approximation leads to
an analytic solution for u with

2.0
3.0

1.0

0.0
0.0 1,0

FIG. 9. Plot of separatrix Z, (n, d ) for n=3, 2.6, 2.55, and
2.05 in the ferroelectric region. The straight line Z, (4,5)=2 is
not shown.

of this quasifixed line is numerically very small (in more
than two spatial dimensions), in actual experiments a
point on this fixed line may control the behavior of the
system except for temperatures unattainably close to the
transition temperature. Because of this it is interesting
to calculate the critical behavior along this line. The ex-
ponent v '=2 —e(1+Y /5X )swas calculated along the
quasifixed line u ' =e/Xs with y=O, for n=3 (e= 1). It
was found that v ' was essentially constant (v '=1.5)
in the interval —1(h & 1. The minimum value of
v '-1.45 occurred at 6=0 and the maximum
v-'-1.53 at a=1.

%c now discuss the behavior of the RG Bows after
they come close to this quasifixed line. Solution (3.45)
simply restates that the Qows for u are inward toward
the fixed line in a region of 6's. So starting in the region
with y small but nonzero and (1—2X4/Xs) &0 the tra-
jectories (low inward toward y=0 and the quasifixed line
given by u =e/Xs. Of course this line, y =0 and
u =E/Xs, is not actually a fixed line because of the u

term in db, /d/. As y is very small the How equations for
6 and u are

B'e' 1

(1+8'Xse') Xs
(3 45)

dh 2

dl
=5( Y, —Yi)u (3.47)

Then assuming u is close to X8 ' we find

1 (X4 —2XS )I /X8Be Be

(1+X I) 4 8 X 4 8
(3.46}

where B and 8' are constants and ihc second quantities
indicated above in (3.45) and (3.46) are the asymptotic
forms. The solution for y in this region shows that the
Rows are inward toward the y =0 plane for
(1—2X4/Xs ) &0 and outward for (1—2X~/X, ) & 0.
Thus these (incomplete) equations have a stable fixed line
for u =e/Xs, y=O, (1—2X4/X8) &0. Of course for the
full equations this is no longer a fixed line, although be-
cause thc terlTl which has bccn ignored ln thc deIivatlon

du =u —X8u (3.48)

(e—2X4u )y

b( Y, —Y, )u'
(3.49)

Since b, ( Y, —Y2) is positive for b, &0 and negative for
6~0 this quantity will always take the Aows toward
5=0.

%e must also account for the behavior of y in the re-
gion where y is small but nonzero and u -e. This will
be done by calculating the function y =y(4) for b. &0.
To find this function (3.13) is divided by (3.12) and only
the leading terms in y are retained yielding
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Substltutlilg il =E/'Xs we flild

y =exp —[6(b)—6(bo)]1

6(b)= Jdb 1—

(3.50)

y-exp[e '[6(n, b, ) —6(n, b,„)]I
so the flows are inward, all the way to the %'ilson-Fisher
fixed point. However, for 2*~0, the flows originating
with 6»0 cannot flow directly through 6=0 to the
b*=C(g)e, y =C(g)e /252K4 fixed point. This is be-
cause as 5~0

[6(n, b ) —6(bo)]~0(e),

G(n =4—ge, b, )=36@ '(b, —5'1n
~

b, /b, '
i

) .

Since 6(n, b) has a logarithmic divergence at b, =O for
A'&0, the nature of the Aows reaching the quasifixed
line in the ferroelectric region depends on the sign of 5'.
If b, ' & 0 then 6 ( n, b, )~ —ao as b, ~0 and

—1.0 0.5

FIG. 10. Plot of the function G(n =4, A) for —1&6&0.
The point where G(h) crosses the 6 axis is 5= —0.77.

and 6(bo) is a constant of integration. The function
6(&) was evaluated numerically for n=4 and is shown
in Fig. 10. To order e, 60 is the value of 6 at which the
Aows of Eqs. (3.40)—(3.42) reach the quasifixed line.
Thus it is found that if the flows have 6o» —0.77 or
hog0, the flows will flow all the way into the Wilson-
Fisher fixed point along the quasifixed line. If
—0.77»ho»0 the Aows will flow along the quasifixed
line until [6(b, ) —G(bo)]-0(e) when y grows rapidly.
The Aows then follow Eqs. (3.40)—(3.42) and Aow into
the Ag0 region and to the quasifixed line. They then
flow in again along this line to the Wilson-Fisher fixed
point. Note, however, that when y=0 the flows will fol-
low the fixed line all the way to the Wilson-Fisher fixed
point u ' =e/48K4.

The flow behavior near the 6-e fixed point for n &4
(or, more properly when the y'&0 fixed point does not
coincide with the Wilson-Fisher fixed point) is also de-
scribed by the function 6{n,b). The function
[1 2X4(n, b)—/Xs(n, b)] is nonzero at b =0 except for
n=4 (see Fig. 7). It follows that 6(n&4, b, =O)&0. Us-
ing the expansion of Eq. (3.16) it is found, to leading or-
der in 5 (near b, =O), that

y -exp I e '[6 (n, b) 6—( bo)] I

grows rapidly. However, in the ferroelectric region,
Aows beginning with y[u(1 —b, }] &Z, remain in this
region, as we have shown above. When
6 (b ) —6 (bo) =0 (e), y increases, the Aows follow Eqs.
(3.40) —(3.42) and cross b, =O and for some by b, " Aow

inward and reach the quasifixed line. As the function
6(n, b, ) is minimum at b =b, ' such Aows, or any Aows

which reach the quasifixed line for A&A* first flow in-

ward along it. However, provided ho is not too close to
6' for some 5» 6' they flow out of this region when

6(n, b. ) —6(n, bo)=0(e) and flow via Eqs. (3.40) —(3.42}
which takes the Aows increasing in b, [db, /dl =by(X,
—Xi) &0], and towards y=0 again. Since the Aow lines

never cross, they are trapped and flow inward within the
previous flow lines and repeat this cyclic process, and
spiral into the fixed point.

In the polymeric region (y &0) the surface Z, outlined
above is very difFerent. The Aow equation (3.12)—(3.14)
for this region will be discussed only for n =d. Since
y&0, dbldl =by(X, —X2) &0 for all b [b{X,—X2} is

always positive], and the Aows have b, decreasing unless

y is very small. In addition if y and u are O(e), Eqs.
(3.40) —(3.42) can be used. When y becomes significant
the ~y ~

term of Eq. (3.41) becomes dominant and y
grows rapidly. For y-u, the terms y u and y of du/dl
are both negative which takes u quickly to zero unless
both g and u «1. Therefore y must grow faster than g
tends to zero to reach the fixed point region.

There are three di6'erent regions with —1» 6» 1,
y» 0, and u g 0, where second-order behavior occurs.
The largest region extending from 0» 6» 1 was deter-
mined by numerical integration. It was found that flows

beginning within a hne Z,
' —1 IZ,'=y/[u (1—b. )]I, flow

into y=0 and to the Wilson-Fisher fixed point. There is
also a very small region which extends from 6=0 to
6= —0.4 with Z,'-e '' ". In this region the flows

follow Eqs. (3.47) —(3.50) towards b, =O. If the initial
value of y is small enough the flows have y less than the
tricritical value at the tricritical polymeric fixed point
and will tend to the Wilson-Fisher fixed point. Finally
there is an interesting region extending from 5= —0.4 to
5= —1 with Z,'-1. This is the region which contains
the 6*=——', fixed point. Because of the unstable nature
of this fixed point, (i.e., the flows spiral outward) flows

originating in this region can either flow inboards to y=0
and along the quasifixed line to the fixed point or out-
wards and into negative u. This behavior is schematical-
ly shown in Fig. 11.
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FIG. 11. Schematic representation of the polymeric (y&0)
region for —1 & 6 & 1. The regions enclosed by Z, (n =4,5, )

are (a) Z,'=0(1) (0&6&1), (b) Z,'=e 0 '~ &

( 0.4&~&0),
and (c) Z,' =0(1) ( —1 & 6, 5 —0.4). The function Z,

'
is

minimum at h, = ——,. The unstable 6 = ——', fixed point is in-

dicated by an open circle and the tricritical 6 =C (g)e
[C(g) &0] fixed point is indicated by X. All flows originating

in the shaded region eventually reach the stable, Wilson-Fisher

fixed point. Flows which originate in the unshaded region flow

away.

This last region can be best understood by considering
the function G (b, ). As we have shown above, the flows

originating with b,c& —0.77 and y «1 flow along the
quasifixed line to the Wilson-Fisher flxed point. There-
fore any point which flows following Eqs. (3.40)—(3.42)
to the quasifixed line (y ~0) with —1 ~ 6 ~ —0.77 flows

to the %'ilson-Fisher fixed point. Some flows originating
with 6& —0.4 and with y[u(1 —b, )] '&Z,' flow to this

part of the quasi6xed line. Other Nows, however, will

reach another part of the quasifixed line. These flows

flow along the quasifixed line until G (6')=G(bo), when

they are once again controlled by Eqs. (3.40)—(3.42). If
b, '~ —0.4 the resultant flow is to a flrst-order region; if
b,

'
& —0.4 the resultant flow again reaches the quasifixed

line, with a more negative value of ho. In the shaded re-

gion this cycle continues until ho» —0.77 is reached
when the Bow reaches all the way to the axed point.
Similarly the Bows beginning in the unshaded region go
through this same cycle but Bow out of this region be-
fore they Aow to 60» —0.77. Clearly there must be an

unstable region which Qows to y small and 5» —0.77
because Row lines never cross. This spiral behavior
matches smoothly on to the spiral behavior around the
unstable 6xed point.

In Sec. II we have discussed mean-field —theory calcu-
lations of the disordered, uniform, and modulated phases
of the free energy (2.6). In Sec. III we discussed the RG

Bows for the same model. In this section we review and
combine the results of these two sections and discuss the
results which would be expected in actual systems.

In Sec. III we found a separatrix for —1 » 5 (1 given
by /=0(e) for n =d =4—e and g of order one, but
tending to 0 (e) as b, -+1 for n &d =4—e. Flows with g
initially more than the separatrix value remain within
this region under the RG fiows, except that if the system
is initially too close to this separatrix the RG Bows flow
out of the region in which perturbation theory can be
applied. Therefore all systems for which the initial
"bare" parameters have g larger than, but not too close
to, the separatrix, will Qow to a stable fixed point with
small ui (large, positive g). In Sec. II we showed that for
positive g there are, within mean-field theory, two possi-
ble phases separated by a second-order transition; the
disordered and the uniform ordered phase. Therefore it
is expected that such a system will have a second-order
transition between a disordered and a uniform state, as a
function of the temperature (r). The RG flows are very
slow in part of this region and, in fact it is expected that
for most initial values of the parameters the flow will
reach a quasifixed line rather than a Axed point for any
experimentally feasible approach to the critical tempera-
ture Th.us the transition is better described in terms of
e8'ective exponents than actual exponents. However, the
e8'ective value for v, given Sec. III C, is essentially con-
stant. It is interesting to note that the actual flows near
the fixed points are, in some cases, predicted to be heli-
cal, resulting in (slowly) oscillating corrections to the
asymptotic critical behavior. Also, the quasifixed-line
behavior (slowly changing critical behavior) may, very
close to the critical point, revert to quickly changing
critical behavior. This occurs as the flows approach the
helical fixed points.

On the other hand flows which start outside, but again
not to close to, the separatrix are carried by the RG
flows away from this surface and g decreases to —1. As
has been shown in Sec. II A and elsewhere I' ceases to
be bounded from below for some g=(, with (for
2&n &4) Op/, ~ —1. We conclude that systems with
initial parameters in this region of parameter space will
have a transition between the disordered state and a
modulated state. This transition is strongly Srst order if
the initial value of g is sufficiently negative or weakly
(fluctuation-induced) flrst order if the initial value of g is
not so negative. Thus systems in which fluctuations are
important have first-order transitions from the disor-
dered to the modulated state (as a function of the tem-
perature r), for most of the range of initial parameters,
unlike the second-order transitions found in the mean-
Aeld treatment of Sec. II C. The nature of the modulat-
ed state when the transition is strongly first order wiH

depend on the nature of the higher-order terms, which
have not been discussed. In the case of Auctuation-
induced phase transitions (with initial values of g not to
close to the mean-field value of g, ) we expect that the
modulated phase is correctly given by the texture which
minimizes F for g slightly less negative than g, . This
state may be the phase discussed by Blankschtein
et al. , for n=3, a body-centered-cubic (bcc) phase and
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for n=2 either a linear modulated phase or a hexagonal
phase.

As the temperature decreases from the transition tem-
perature it is appropriate to stop the RG when r (I) is of
order 1. Thus the efFective value of —g for which
mean-field theory should be applied decreases with de-
creasing temperature. This has interesting consequences.
In particular we have shown in Sec. II C that the modu-
lated phase, for n p 2 and small —g, is expected to be a
close-packed structure. This is, for n=3, inconsistent
with a bcc phase. It is also diScult from the point of
view of the harmonic expansion, which is expected to be
legitimate for large, negative g, to see that either of the
close-packed lattices, e.g. , face-centered cubic (fcc) or
hexagonal close packed (hcp), should have lower free en-
ergies than the bcc phase previously studied, as the de-
crease in free energy in the harmonic expansion comes
mostly from triplets of the smallest reciprocal-lattice
vectors which add to zero. There are no such triplets in
the reciprocal lattice of the fcc lattice, and fewer in the
reciprocal lattice of the hcp lattice than the bcc lattice.
This suggests that, for n=3 and small enough initial
values of

~ g ~, there are two modulated phases with
different symmetries and a transition between them as a
function of the temperature (r) or the initial value of g.

In addition the efFective value of g may change sign as
a function of temperature (see Fig. 1), resulting in a tran-
sition between the uniform and modulated phases. As
discussed in Sec. IIC this transition will be afFected by
fluctuations very (exponentially) close to the transition.
There may also be new phases which appear due to
dangerous irrelevant variables for suSciently small g,
again as discussed in Sec. II C. %e have not discussed
the efFects of the dangerous irrelevant variables quantita-
tively in this paper; we have only demonstrated their ex-
istence.

The question of what will happen to systems with ini-
tial parameters very near the separatrix is more compli-
cated. In particular we did not And a tricritical fixed
point on the separatrix and it is easy to see that, to the
order we have calculated, the Bows along the separatrix
Aow out of the region in which perturbation theory can
be applied. Usually such a How in the d =4—e RG is
interpreted as implying a Arst-order transition. Howev-
er, we do not believe that this is the correct interpreta-
tion in this case. Rather we speculate that the situation
is rather like that in two-dimensional point-defect-
mediated transitions, ' ' e.g., the 2 —d X-F model and
2 —d melting. It is easy to see that, provided the system
is initially in the region in which perturbation theory can
be applied, then perturbation theory can still be applied
for the Aows along the separatrix until 6 is close to 1.
As the separatrix tends to /=0(e) for any n as b, ~1
we find that the Aows will Aow out of the region in
which perturbation theory can be applied only when g is
small. We have shown in Sec. IID that for g small
enough the fluctuations associated with localized defects
(which have not been included in our momentum-space
RG treatment) become important and are expected to
result in a disordered state. Thus it seems reasonable
that the momentum-space RG should be stopped when

the value of the perturbation parameters is of order one
(y -u —1). When this is the case the core energy of lo-
cal point defects, which is inversely proportional to these
parameters, is also of order one. In addition, the core
energies of a number of higher-dimensional (line, area
etc. ), defects is of order one per unit size, in units in
which the current cell size is one. Therefore a correct
treatment of the fluctuations requires treatment of these
fluctuations. Such a treatment is complicated. The rela-
tive energies of these various defects depends on the
values of dangerous irrelevant variables, as discussed in
Sec. II D, and it is easy to verify that these variables are
still finite when perturbation theory ceases to be applic-
able. In addition there are interactions between these
defects because low-energy defects are only consistent
with certain order-parameter textures so that there must
be nontrivial textures between defects. Because there are
important new fluctuations in this region we speculate
that the disordered-ordered state transition temperature
will be strongly suppressed in this region. However, we
have not performed such a calculation and, in conse-
quence, can not verify this speculation. Nor have we de-
duced the nature of the transition in this region.

These flows near the separatrix are particularly
relevant to the discussion of the uniform phase to modu-
lated phase transition for n =d (or for n «d in the limit
5~1). We have shown that, within mean-field theory,
the uniform-modulated phase transition occurs at (=0.
This transition was shown, within mean-field theory, to
be a higher-order transition with dimension-dependent
exponents. It was also seen that dangerous irrelevant
variables were expected to efFect the transition and that
fluctuations would be important close enough to the
transition. However, for n =d or as 6~ 1 the mean-
field transition coincides with the RG separatrix, at least
to within corrections of order e. Because of this coin-
cidence and because we have shown that the Aows close
to the separatrix tend to a region which has not been
treated theoretically we cannot, on the basis of the treat-
ment in this paper predict the nature of the uniform-
modulated phase transition. However, given that, as dis-
cussed in Sec. IID, dangerous irrelevant variables can
efFect the nature of the modulated phase we speculate
that there are several difFerent modulated phases with
transitions between them as g, r, or other variables are
varied.

It is important to note that crystalline ferroelectrics
are not well described by the free energy of Eq. (2.1)
with m=2. Even in cubic crystals two other terms are
allowed in F4. The extent to which the results of this
paper will be changed by the efFects of these terms is un-
known. It should, however, be noted that screened,
chiral smectic C films and screened, chiral but untwisted
bulk smectic C ferroelectrics are expected to be well de-
scribed by this free energy.

Finally we remark that the system described in this
paper is a simple (at least in the statement of the prob-
lem) example of a wide class of ferrodisplacive transi-
tions which have symmetries which allow for terms of
the form p ikey. %'e anticipate that the techniques dis-
cussed in this paper are more widely applicable.
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