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A mean-field model is applied to the Verwey transition in Fe3(& q)O&. Parametrization of the
internal energy, in terms of the experimental dependence of transition temperature on metal-

oxygen nonstoichiometry, yields results consistent with the existence of two regimes on either side

of a critical composition 5, =0.0039. For 5 g5„5rst-order transitions occur, with singlet ground
states and doublet excited states. For 5 g 5„second-order transitions result, for ground and excit-
ed states of equal degeneracy. The density of states, determined by a single long-range-order pa-
rameter is used to calculate the Fermi potential of a free-electron gas and associated electrical
transport properties, as a function of temperature and nonstoichiometry. The canonical cusp ca-
tastrophe describes critical behavior in the mean-6eld approximation.

I. INTRODUCTION

The Verwey' transition of magnetite has received
widespread attention in the last 6ve decades, motivated
by interest in its typicality as a critical phenomenon, as
well as in associated physical properties of fundamental
and technological significance.

In common with all mixed-valence compounds„most
physical properties are profoundly influenced by changes
of concentration in cation oxidation states, associated
with departures from ideal metal-oxygen stoichiometry,
in the case of transition-metal oxides. Accordingly, re-
cent systematic investigations of the influence of non-
stoichiometry on magnetite have revealed additional ex-
perimental results, most dramatically illustrated by the
sudden change in the order of the transition, beyond a
critical level of cation deficiency.

The mean-field approximation provides a convenient
framework, in which these new observations may be in-
terpreted, with a minimum number of adjustable param-
eters. The ensuing description is not limited to the
fitting of experimental data to a heuristic equation of
state, providing, rather, some insight into physical be-
havior, on which more realistic models may be based.

It has long been recognized that all the interesting
physics in the canonical partition function is contained
in the density of states, since the exponential is a mono-
tonicaliy decreasing function. In 1965, Striissler and Kit-
tel provided an elementary analysis of the conditions for
phase transitions, alecting interacting systems in the
molecular field approximation, in which a minimum re-
quirement of two possible microstates yields very simple
closed form expressions for the density of states, @which

are the basis of the present work.

Il. REVIEW OF THE STRASSI ER
AND KI1=IXL (REF. 5) FORMALISM

Given a large number N of identical subsystems, vnth
ground state at energy zero and degeneracy go and an

excited state at energy e of degeneracy g„ the state of
the system is described by the single long-range-order
parameter:

where n i excited subsystems can be distributed in

gi go
n i!(N n, )!—

independent arrangements. VA'th the Stirling approxi-
mation, the entropy S(f}is

g(1t ) =N[p lngi+(1 ttt) lngo ——g lng

—(1—P) ln(1 —f)] .

Consistently with mean-field theories, the harmonic ap-
proximation is introduced, to truncate the Taylor expan-
sion of the internal energy (U) at the quadratic term,
such that

U=N(eg ——,'A, 1f ),
where A, is a positive constant, which accounts for all in-
teractions. Assuming e)A, /2, the ground state corre-
sponds to /=0.

The free energy per subsystem is

kT[g lng, +(1——ij't) lngo —g in/

—(1—P) In(1 —g)),

by substitution of Eqs. (2) and (3}, where kit is
Soltzmann's constant.

Application of the equilibrium constraint BF/BQ=O
yields the equation of state
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e A—Q , k—~T ln + ln
1

go

The conditions for the existence of erst- or second-
order transitions, at the temperature Tz, can be derived
in the usual manner, by the introduction of appropriate
constraints on the higher-order derivatives of the free
energy.

(a) Second orde-r transitions require at Tv

F'=F"=F"'=0 and F' ~0,
Since

'dF 1 1= —k~T
gq3

~ y2 (1 y)2

it can vanish only if /=1 —g=-,'. Substitution in Eq. (5)
yields

ln Fe3~& &]Oz, a critical composition 6, exists, for
which the transition changes from first to second order,
of coordinates T„ the transition temperature for this
composition, e, and X„ the values of the interna1 energy
parameters, which by Eqs. (8), (9), (14), and (15) should
correspond to their lower limits:

e, =[2+»(g, /go) jk~ T, and A,, =4k~ T, ,

and f„the critical value of the order parameter, which
must be —,

' by the arguments leading to Eqs. (8) and (12).
The internal energy parameters are expressed in units

of thermal energy and, following standard procedure, the
reduced variables are defined with a shift of the origin to
the critical point. Consequently, the control variables

e/ks Te= —1=
, /k'a T, kg T[2+ ln(g, /go)]

A, =4k~ Tv,

g&2+ 1n
go

kI, Tv, (9)

A. /ka Tl= —1= -- —1,
A,, /k~T, 4k~T

and the essential variable is

(18)

e/&=-,'+-,' »(g, /g, ) . (10) r = —1=2/ —1 .
1 f2 (19)

(b) First order tran-sitions occur at Tv if there exist two
values Pt and gz for which

F(Q)) =F(112), F'(g( ) =F'(p~) =0,
F"(P,)&0 and F"($2)y0.

These conditions can be met only if f, and P2 provide
symmetric solutions of Eq. (5) about P= —,', which re-

quires that

e —X/2=kaTv ln(gi/go

In addition, F must have a maximum at g= —,'; there-
fore,

For a single essential variable, the characterization of
the appropriate unfoldings may be obtained either from
the potential expansion or from its gradient, the equa-
tion of state, with equivalent results.

A. Standard form of the catastrophe manifold

Division of the equation of state (5) by ks T and sub-
stitution of the reduced variables yields

e[2+ in(g~ /go)] —21 —2(1+ 1 )r + ln
1+r
1 —r

must be negative at g= —,
' or, equivalently,

k) 4k+ Tp' a

(13)

(14)

and its Taylor expansion around the origin, divided by 2,
1s

r re[1+—,
' 1n(g&/go)] —1(1+r)+—+—+ . =0 . (21)

It follows from (11) and (13) that

e/A, & —,'+ —,
' ln(g, /go), (15)

and g] )go.
The ratio efA, is, therefore, the discrirninant for first-

or second-order character of the transition.

III. ANALYSIS BY CATASTROPHE THKGRY

There are conceptual advantages in examining the
Stra, ssler and Kittel potential in terms of catastrophe
theory, in order to describe the manner in which
changes of the internal energy parameters e and A, ,
which are functions of chemical composition, influence
the character of the tra.nsition.

At the origin, e =I =0, the first noncanceling term is
r /3, which makes the unfolding f (r) strongly three-
determinate and, consequently, strongly equivalent to a
cubic truncation. ' A smooth change of variables exists,
such that the mapping to the standard form is"

r 31r+3Ie[1+—,
' ln—(g, /go)] —I]=0,

which is readily recognized as the canonical expression
for the cusp catastrophe manifold.

B. Standard form of the potential unfolding

The mapping of the free-energy potential follows by
the same methods applied to the equation of state. The
free-energy potential [Eq. (4)], expressed in units of
ks T/2, in terms of the reduced variables, is
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F [2+1„(g /g )](e+1)(r+1) (I+1)(r+1)' —rin(g, /go)+»[(r+1)(1 —")]
k~T

0

r+1+r ln
1 —r

—ln(g tgo )—2 ln2, (23)

and its Taylor expansion around the origin is

2F =[2+ ln(g, /go)](e+1) —(1+1)—ln(g, go) —21n2
kqT

+ I [2+ ln(gi /go )](e +1)—2(l + 1)—ln(g, /go ) Jr 1r'+—,'r'+ —,'-, r s+ (24)

The algebraic sum of all terms independent of r,
known as the shear term, has no inhuence on critical be-
havior and may be omitted from the relevant potential
4, obtained from Eq. (24), by multiplication by a scaling
factor of —,':

critical exponent value —,', characteristic of mean-field

theories.
The projection onto the control space yields the bifur-

cation set of the cusp, solutions to the semicubical para-
bola:

@=3I[1+-,' in(gt/go)]e I Ir ,'Ir'—+ ,'r —+—,',r'+-— —41 +9I[1+—,
' ln(g, /go)]e I I =0 . — (27)

„'r4 ,'1r—i+—3I—[1+—,
' ln(gi /go)]e —I jr, (26)

which has the form of the standard cusp-potential un-

folding. It is readily veri6ed that its derivative vuth
respect to r, yields the cusp-catastrophe manifold [Eq.
(22)].

C. Significance of the cusp catastrophe

The mapping of the Strassler and Kittel potential onto
a cusp catastrophe is assured by Thorn's theorem' of
elementary catastrophes. It is suScient to recognize in
the free-energy expression (4) the existence of a single
essential variable and two controls, which fix the co-rank
and co-dimension at 1 and 2, respectively; four-
determinacy is the only possible result. This is a direct
consequence of the mean-Seld approximation introduced
in Eq. (3), where the Taylor expansion of the internal en-
ergy was truncated in the quadratic term. Its Legendre
transform, namely the free-energy expression (4), is the
equation of the tangent hyperplanes to its graph with
manifest singularity. The cusp character is therefore
determined by the chosen internal energy function and
transferred by virtue of the equivalence of I egendre in-
variance and catastrophe invariance.

All the information obtainable from a mean-6eld mod-
el may be derived from inspection of the potential's [Eq.
(26)]. The relevant features are best summarized by a
three-dimensional plot of the catastrophe manifold [Eq.
(22)] and its projections (see Fig. 1).

A section of the cusp along its major axis yields the
parabolic Maxwell coexistence curve of solutions for two
identical minima of —,'r ——,'Ir, which corresponds to the

The same analysis used on Eq. (21) proves the poten-
tial at the origin, Coo (e =l =0), to be strongly four-
determinate and, conseq~uently, strongly equivalent to a
fourth-order truncation

This analysis is entirely analogous to the description of
criticality in a van der %aals fiuid. '

The major axis of the bifurcation set, 31, provi—des
the direction in which the Maxwell set of first-order
transitions leaves the "pucker" or cusp point, where an
isolated second-order transition occurs. Since ihe points
on this axis correspond to

[1+—,
' ln(g i /go)]e —I =0,

it is easily verified that, in terms of the original coordi-
nates, e and A, , this condition corresponds to the
Strissler and Kittel result for first-order transitions [cf.
Eq. (12)]. A similar transformation on the minor axis

FIG. 1. Schematic drawing of the cusp catastrophe and its

projections; r is the reduced order parameter 2t( —1; 1 is the re-

duced interaction variable A. /4k~T —1; I, is the reduced tem-

perature T&/T —1; go and g& are the degeneracies of the

ground and excited states.
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1 Tv —T
e [1+—' ln(g, /g ) ]—l =— ln( g, /g ),2 2 T

which represents a reduced temperature t, scaled by the
logarithm of the degeneracy ratio. Consequently, the
direction of the cusp pivots around the pucker point,
proportionally to ln(g, /go). In addition, the magnitude
of the discontinuity at the transition is determined by
the major-axis coordinate, gradually decreasing with di-
minishing 1ntelaction, until it vanishes at the cusp po1nt,
in a second-order inflection. Beyond this critical value,
the interaction term is too weak to induce a transition.

If g, equals go, the third term of the potential (26),
linear in r, cancels for the condition e/A, = —,'. The result-

ing unfolding is of the type —„'r ——,'lr, described by Pos-
ton and Stewart as "non transverse, unstable and atypi-
cal but, among even functions, the unique stable single-
parameter local family around the origin. "' The criti-
cality observed in this case is equivalent to that of the
%eiss equation of state for a ferromagnet under zero ap-
plied magnetic field. ' The absence of a third-order in-
variant in the potential expansion allows the existence of
contiguous second-order transitions' but, for the
Strissler and Kittel potential, contiguity under a smooth
change of control variables is possible, only if the condi-
tion on the degeneracies and the e/A, ratio stated above
are satisfied. Similarly, it is apparent that the absence of
the cubic invariant is entirely dependent on the mean-
field truncation of the internal energy expansion.

I

IV. APFLICATION TO THK VKRWKY-TRANSITION
PROBLEM

The transition temperatures, determined by relaxation
calorimetry experiments on Fe3($ Q)04 single crystals of
controlled stoichiometry, have been plotted as a func-
tion of 5 in Fig. 2, with solid circles for first-order and
open circles for second-order transitions.

Within experimental error, the data may be fitted by
first-order regressions in 5, which implies that e and A,

may be expressed as linear functions of 5. This
straight-line dependence is not guaranteed by the typi-
cality arguments used in preceding sections, because
strong equivalence preserves the direction in which the
Maxwell set leaves the cusp point but not necessarily its
curvature. However, e and A, are functions of the
[Fe +]/[Fe + ] ratio in octahedral sites, which is linearly
related to 5 by preservation of electroneutrality.

The existence of a second-order regime for 5 & 5,
(5, =0.0039) requires that go=g, and e/A, = —,', as dis-

cussed in the preceding section. Within experimental er-
ror, the slope of the regression for the first-order regime
(5 & 5, ) is ln2 times that of the second-order transitions,
which is consistent with the assignment g, /go =2, for a
corresponding rotation of the Maxwell set on the control
space.

The entropy of transition for the first-order regime
(Sv) is easily obtained from the difference of the entropy
expression [Eq. (2)], evaluated for f, and $2, the magni-
tudes of the order parameter which satisfy conditions
(11), namely

~v=S(A) —S'(1('i)=&[(0z—4i)»gi+(0&+I)j2)»go+Pi in/, $2lng, +(I——g, ) ln(1 —P, ) —(1—$2) ln(1 —It('z)] . (29)

It is convenient to adopt the function 6 for the
difFerence $2 ItI„as define—d by Strissler and Kittel:

For a first-order transition, the excitation density at
infinite temperature is

QI =-2(I —6), 1(2= —,I(1+&) . (30) 0 =gi/(go+gi) (33)

Substitution of these definitions into Eq. (29) yields a
simple expression for the entropy of transition:

Substitution of this value in Eq. (32) shows that the

Sv=waln(gi/go) . (31)
I I I I I I I I

For stoichiometnc Fe304, the experimental value for
the molar entropy of transition ' is R ln2; consequently,
allowing for two octahedral sites per formula unit, 5= —,

'

and g& /go ——2.
Strissler and Kittel obtain the relation between 5 and

e/A, , from the difFerence of the p, and 1tz solutions to the
equation of state [Eq. (5)] at the first-order transition,
with the result

l20

!00=

90-

2 ln[(1+ 6)/( I —&)]
~BTv 2

(32)
ln(go/g, )

80
0.005 O.0 I 0At the limit for b, ~0, the left-hand side of Eq. (32) is

—,', in agreement with Eq. (10) for a second-order transi-
tion. Regardless of the degeneracies g] and go, the value
of the order parameter (1() above Tv for a second-order
transition is fixed at, 2, as ieqlllled by conditions (6) alld.

(7).

FIG. 2. Vermey-transition temperature ( Tv ) vs non-
stoichiometry (6) (Ref. 3). Linear regressions on 6rst-order
(solid circle) and second-order (open circle) transitions (solid
lines), extrapolations (short-dashed line), and range of inacces-
sible normal first-order regime (long-dashed line).
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value of the order parameter at the transition equals P„,
if

A,,=ka (6.338Tv —236.1), (35)

et ——ka ( 3.862Ti —118.0), (36)

where the subscript I denotes the first-order character, in
the range 121.5 & Tv & 101

Equation (35} may be used to obtain a numerical solu-
tion of Eq. (32) for 6 and, hence, the transition entropy
[see Eq. (31)] as a function of Ti„ in good agreement
with the experimental results (see Fig. 3).

The change in subsystem states, which determines the
character of the Verwey transition, responds to the de-
crease in free energy associated with s rearrangement of
the energy levels. The intersection of the potential un-
foldings for the respective cusps is ruled by the shear
term of Eq. (24). At the cusp point (i.e., I =e =0), in the
second-order transition limit, the subsystems with higher
ground-state degeneracy are stabilized by lower free
energy. Consequently, the singlet ground-state config-
uration is possible only if a depression of the internal en-

ergy offsets the entropic advantage of the doublet. This

0.8-

I
/

0.2-
-/

L a + a I a s a w I ~ a s a i

L00 f05 t lQ Il5
a a i e a

l20

FIG. 3. Experimental entropy of transition (5&) (Ref. 3) vs

Verwey-transition temperature Ti (circles) and calculated
dependence in the supertransition (solid line) and inaccessible
normal first-order (dashed line) regimes.

e/~=gi /(go+gi ) ~

when e/A, &g, /(go+g, }, the excitation density at the
transition exceeds g„; conversely for e'/A, &gi /(go+gi ),

g&g„at all finite temperatures. Strissler and Kittel, '
following Chesnut, denote the first of these two cases
as s "supertrsnsition, " and the second as an ordinary
first-order transition.

Since e and }i, are linearly related to the transition
temperature [see Eq. (12)], the experimental values of Ti,
at the two extremes of the 6rst-order regime fully deter-
mine the corresponding straight-line equations. For
stoichiometric magnetite, b, equals —,

' at Ti. 121.5——K
and Eq. (32) yields A, =4 ks Ti, ln3. Taking the second-
order limit (i.e., 5=0), at Ti,—101 K, with A. =4k& Ti,
[cf. Eq. (8)], it follows immediately that

requirement for the onset of the first-order transition re-
gime can be stated in terms of the partial molal internal
energy ( U } as

At high temperature [see Eq. (33)] this limit is deter-
mined by Eq. (34). With the substitution of expressions
(3S) and (36), the condition e/A, & -', is satis6ed by

Ti, ~108.4 K. The values T„=108.4 K and b, =—,
' [see

Eq. (32)] at 5, =0.0039 are lower limits for the first-
order-transition regime, indicated in Fig. 3, by a change
from a solid to a dashed hne in the calculated entropy of
transition, and correspondingly in Fig. 2 for the compo-
sitional dependence. Similarly, the intersection of the
second-order regression with the extrapolation of the
first order at 81 K corresponds to the lowest possible
Verwey transition for 5=0.012.

In the terms used by Strassler and Kittel, the two re-
gimes observed for the Verwey transition as a function
of nonstoichiometry correspond to supertransitions for
0&5&0.0039 with go= 1 and g, =2, and second-order
transitions with go=g, =2 for 0.0039&5&0.012. The
"normal" first-order regime is not possible. The corre-
sponding solutions of the equation of state [see Eq. (5)]
for the order parameter as a function of temperature,
w»ch are sections of the cusp-catastrophe manifold (see
Fig. 1), have been plotted in Fig. 4 for each case. In this
context the change from first- to second-order behavior
is associated with a constraint catastrophe, 2i where the
boundary e —kp„&0 limits the domains of the jnterjor
catastrophes, excluding the topologies of Figs. 4(b) and
4(c).

V. ELECTRICAL TRANSPORT PROPERTIES

To the extent that the mean-field approximation is val-
id, the thermodynamic description presented above fully
characterizes the equilibrium aspects of all physical
properties of the system. Electrical transport involves
this representation, because it proceeds via degenerate
states restricted, in the case of magnetite, to the octahe-
dral sublattice, which contains cations in multiple oxida-
tion states. In this spirit, the calculations of dc electrical
resistivity snd Seebeck coef6cient outlined in this section
are intended to test the relevance of a single long-range-
order parameter, to describe the thermal and composi-
tion dependence of the density of states, rather than to
investigate specific transport mechanisms.

The density of states for the system follows trivially in
terms of the long-range-order parameter f. For the ex-
cited state, at energy E, , the probability per octahedral
site is g, g and, for the ground state at Eo, it is go(1 —P).
In the simplest possible approximation, these states wi11

be populated by s noninterscting Fermi gss of electrons,
with a Fermi potential q. The number of electrons in
the system msy be obtained from the number of ferrous
cations in the genershzed structural formula unit
Fe +[Fe,++6sFei+9s]04. Consequently, the balance of
carriers expression per octahedral cation hss the simple
form
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Q l V I 1 i 1 I 4 I f i I I 1 t I ~ I I i T 5 l II. 1 —95 1

2—35 ' 1+ exp[(E, —t))/ka T]

Q,e-

0.4-

050
1 i g i i 1 i i i i l ) i i I

l50 200 250 MO

T{K)

+go(1 —
1}( )

l
(38)1+ exp[(EO q—) /ka T ]

where the carrier occupation of each state is obtained
from the product of the probability for the state and the
corresponding Fermi-Dirac statistical function.

It is appropriate to refer all energies to the energy of
the transport state E&. Accordingly, the Fermi potential
is rede6ned as

(39)

I.O

0,8-

08-

0.2

Qso

I f T ~ i ~ l ~

IOO I50 200
T{K)

250
a i i i 1» s ~ 1 i i i i 1

300

and the energy difFerence between the two states, which
corresponds to the change of energy due to the excita-
tion of one subsystem, is the partial molal internal ener-
gy:

Ei —Eo ——U=e

[see Eq. (37)].
The balance-of-carriers expression [Eq. (38)], with the

redefined energy origin, obtained from Eqs. (39) and (40),

1 —95 1

2 —35 ' 1+ exp( —g/ka T)

1
+go(1 —4) 1+ exp i [—(e —A p) +g]/ka T J

Q f I f 1 i f I 'f f i I V I f i & I I T i I I II.

0.8-

0.4-

l.0 —
~ l 1 i T I I &

f
~ t I f 'f F I

0.8-

0,2-
(C)

50 ~00 I50 200 250 500
T(K)

(41)

can be solved numerically to obtain g as a function of
temperature from the equilibrium value of g [see Eq.
(5)]. For a magnetite phase of arbitrary non-
stoichiometry (5), with a transition temperature Tv, the
energy parameters e and A, are obtained from Eqs.
(35),(36) and (8),(9) for first- (i.e., g, =2, go= 1) and
second- (i.e., g, =go =2) order regimes, respectively.

Emin has defined the Seebeck coelllcient (a) as "the
change in entropy of the total system per unit charge
upon adding a charge carrier. " It is usually sim ler to
calculate the isothermal Peltier heat (m), which is ' "the
heat that must be supplied when a charge carrier is iso-
thermally injected into a material. " There are two con-
tributions to the Peltier heat: The first, associated with
placing the carrier in the material, can be calculated
from equilibrium thermodynamics; the second, derived
from the net energy flow in carrier motion, depends on
the transport mechanism. In the adiabatic limit, the
latter term cancels and Emin's final expression for the
Peltier heat is

0 B(F' I' )—
m =I' —F —T

aT
(42)

50 IGO l50 200 250 500
T (K)

FIG. 4. Order parameter (P} vs temperature. (a} 8=0,
Tv ——121.5 K, supertransition; (b) 5~5„T&——108.4 K,
"super" to normal Srst-order limit; (c) Tz ——103 K, inaccessible
normal 6rst-order transition; (d) 5,~5, Tz ——101 K, second-
order tr ansltlon.

The difFerence I' ' —I", which represents "the change in
free energy when a solitary carrier is added to an other-
wise carrier free system, " corresponds to the free energy
of formation of a transport state [Eq. (4)] and is identi-
cally zero by virtue of the equilibrium condition
BE/BQ=O [see Eq. (5)]. The second term of Eq. (42) is
the entropic energy
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—ke T ln[(g, /go )( 1 P—)/f], I i f 1 ] \ I 1 7 )~ T0 f L ~ 1 T ~ 1 ) t

Thc number of carriers pcr formula umt of FC3[i g)04
is obtained directly from the first term of Eq. (41):

1
nc =(2—35)g, g (44)

In the simplest possible description of electrical trans-
port between localized states, the mobility can be
modeled in the small-polaron approximation as

which equals —(e—A,g) [see Eq. (5)], and the Fermi po-
tential rl is the solution to Eq. (38).

Numerical solutions of Eqs. (5) and (41) can be used to
calculate the Seebeck coef6cient from the fundamental
relation a=m/qT, with m determined by Eq. {42). The
result for stoichiometric magnetite (i.e., 5=0) has been
plotted in Fig. 5{a), for comparison with the experimen-
tal data, Fig. 5(b).

The fundamental expression for electrical conductivity
(o ), in terms of carrier density (n ), charge (e), and mo-
bi11ty (p), is

(43)

-200-

&-300-

ef -400-

500 t I I I I i a 1 I i a i i i I s a c i I

50 100 150 200 250 300
T (K)

I I i r 7 1 I t I ~ I 7 f i l I I ) I I I0
~ ~ OQ ~ $'0 ~ ~ ~ ~ OOO ~ 0 ~ Q ~ QQ ~ ~ + ~ 4 ~ ~

0

~ -200-

+ -300-

-400-

1p=(1 —c)ea I
kaT ' (45) 50 100 150 200 250 300

where a is the lattice constant of an fcc structure, c is
the fraction of sites which contain an electron, and I is
the jump rate of the polaron. For subsystems with only
two possible states, the fraction of unoccupied transport
states {1—c) is equivalent to the fraction of carriers in
the ground state, determined by the second term of Eq.
(41), namely

1 —c =go(1 —p)
l

1+ exp[[ (e Af)+g—]/ka—T]
(46)

The jump rate of the polaron, from one site to a specific
neighboring site, is generally described by

EH
I =Pv, exp-

B
(47)

where v, is the appropriate optical-mode phonon fre-
quency, EH is the activation energy for hopping, and P
is a factor for the probability of electron transfer associ-
ated with the displacement of the polarized
configuration.

Since the polaron involves the formation of a trans-
port or excited state, the activation energy EH may be

I

FIG. 5. Seebeck eoeffirient (a): (a) calculated and (b) exper-
imental (Ref. 26).

estimated from the partial molal internal energy, in the
absence of interactions:

EH ——lim U=e .
$~0

The probability I' is a function of the time for electron
transfer t, ~A/J, where J is the electron-transfer in-

tegral, and of the corresponding polaronic quantity: t .
In the adiabatic limit, used in the calculation of the See-
beck coef6cient, t, &&t~, no energy is transferred, and
P=l. If r, pter and P &~1 [P~J /(k~T)'~ ], a nonadi-
abatic condition exists, associated with a net transfer of
energy. The modeling of nonadiabatic behavior exceeds
the scope of an equilibrium treatment and will not be
considered further.

In the adiabatic limit, the optical frequency v, is the
only unknown factor in the electrical conductivity ex-
pl esslon

ea Av, 1o = (2—35)g, nfl+ exp( —g/ksT)] 'go(l —g)I1+ exp[( e+Ag+g)/ksT]—I
' —exp( e/ksT), —

kBVf„
1 8 0 8

obtained by substitution of Eqs. (44)-(48) into (43), with
Avogadro's number (A) and the volume per formula
unit ( Vf „)used to convert to units of carriers per unit
volume.

%'ithout further assumptions, the validity of the mod-
el may be tested by comparison with the experimental

1

data. For this purpose, a function 8 (T) will be defined:

T exp(e/ks T)
8 ( T) = [1+exp( —g/k~ T ) ]

giga

)& 11+exp[( —e+Ag+g)/kz T]I,
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which groups the inverse of all temperature-dependent
factors of Eq. (49), where g, e, and j can be calculated
from Eqs. (5), (36), and (41), respectively. Logarithmic
plots of E. versus dc electrical resistivity of
stoichiometric (5=0) magnetite above [see Fig. 6(a)] and
below [see Fig. 6(b)] the Verwey transition show that,
below Tv, the experimental resistivity approaches the
straight line of unity slope expected for adiabatic behav-
ior, whereas a marked departure exists above Tv. This
result is consistent with the experimental observation
that the ac resistivity is frequency dependent above, but
not below, Tv.

The calculated R and experimental p values at room
temperature may be used to evaluate v„by substitution
of the appropriate constants in Eq. (49), with the result

v, =10', which is the order of magnitude for polaron-
ic efkets in the 3d states of transition-metal oxides. A
similar calculation yields v, =10', for the ordered struc-
ture below Tv, simulating the softening of the mode.

The usual logarithmic plots of resistivity as a function
of inverse temperature for experimental and calculated
values in stoichiometric magnetite are shown in Fig. 7.
A direct temperature plot (see Fig. 8) reveals that the
calculated resistivity displays the shallow minimum at
360 K, characteristic of the experimental data. '

VI. DISCUSSION

The results of systematic experimental investigations
of the Verwey transition in Fe3(] &)04, as a function of
nonstoichiometry (5), have been interpreted in terms of
a simple mean-field model. It has been shown that the
di8'eomorphism, which maps the critical manifold to the
cusp-catastrophe characteristic of the mean-field approx-
imation, depends on the degeneracies of the relevant
states of the microsystems. The appropriate degeneracy
schemes are dictated by thermodynamic relations, rather
than by speci6c models of the microstates. The resulting
criticality is a function of the magnitude of an internal
energy parameter, which subsumes all interactions be-
tween subsystems, linearly related to composition by the
change of the [Fe'+]/[Fe'+] ratio.

It has not escaped the authors' attention that various
descriptions of the subsystems„ including elementary
crystal-Geld models, can account for the assigned degen-
eracies. It was deemed preferable, however, to preserve
the integrity of the thermodynamic treatment, refraining
from assumptions on the nature of the microstates.
Hence, the scope and limitations of this work are those
of the mean-field approximation employed. In this per-
spective, it is clear that the critical exponent value, —,',
arises as a consequence of identifying the average state
of the system with the most probable one, and requires
renormalization techniques for further investigation.
Similarly, the long-range-order parameter g has been
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FIG. 6. Logarithmic plot of the temperature-dependent part
of resistivity (R), calculated in the adiabatic small-polaron ap-
proximation, vs the experimental (Ref. 34) dc electrical resis-
tivity (p), (a) above and (b) below the Verwey transition. Unity
slope Hne is the reference adiabatic limit.

7 g I I I3

I000/T (K )

FIG. 7. Logarithm of dc electrical resistivity vs inverse tem-
perature {a) calculated in the adiabatic small-polaron approxi-
mation, and (b) experimental (Ref. 26).
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count for the thermal dependence of the density of
states, the main features of electrical resistivity and
Seebeck-coei%cient measurements can be interpreted
with nothing more elaborate than an elementary small-
polaron model. The need for additional characterization
of the microstates arises whenever knowledge of the ini-
tial and 6nal states of electron transfer is required, such
as in the evaluation of nonadiabatic terms or of specific
scattering mechanisms. Even then, the equilibrium
treatment defines the limits for application of intrinsic
conduction models. Since the conductivity is propor-
tional to the square of the order parameter [see Eq. (49)],
it is clear that below liquid-N2 temperatures, for
$~0.01, the impurity content of even the best available
samples contributes signifjlcantly to electrical transport.
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in the adiabatic small-polaron approximation, and (b) experi-
mental (Ref. 31).

treated as a scalar, which precludes any attempt to de-
scribe anisotropic behavior. However, higher dimen-
sionality of g will not change the physics, unless
different functionals of the e and A, parameters are intro-
duced. Finally, although it is clear that any externally
induced change in the e/A, ratio would alter critical be-
havior, the investigation of possible symmetry-breaking
terms also requires additional information on the subsys-
tems.

These considerations extend quite naturally to the in-
terpretation of the physical properties of magnetite. The
description of electrical transport has shown that, with
the use of a single long-range-order parameter to ac-

APPENDIX

+r.J'
~

Fo, , ot„.. .I' (Al)

if f is strongly k determinate, k &3." lt has been ap-

plied here in the first of the possible cases:
"M„'C:Qk+&(f), with p &2k —3 and q & k —2." j" is

the Taylor expansion to order k, J" is j minus its con-
stant term, and the t, are the control variables; M is

the vector space of homogeneous polynomials in n vari-

ables of degree k and hk the subspace of J„" spanned by

g k(gf ygx )k
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