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A lattice-dynamical formalism using the rigid-ion model due to Born and Huang is applied to
the ferroelectric crystals PbTiO; and BaTiO;, in the tetragonal phase. The model includes short-
range interactions of axially symmetric type between various ions in the primitive cell and long-
range Coulomb interactions. The stability conditions are worked out in the manner described by
Katiyar and are used to determine several first-order derivative potential constants for the crystals.
The number of potential constants was further reduced by considering the variation of radial force
constants with the ion-ion distance, as given by the exponential formalism of Born and Mayer.
Zone-center phonons and a few of the low-frequency zone-boundary phonons were used for the
nonlinear least-squares fitting. In general, we obtained excellent agreement between the calculated
and observed frequencies. The resulting parameters showed that the short-range interaction be-
tween the nearest titanium and oxygen is approximately 1 order of magnitude stronger than the in-
teractions between the lead and oxygen or between the oxygens. The calculations showed that the
lowest transverse-optic mode of E symmetry in PbTiO; has eigenvectors similar to those predicted
by Last, whereas in BaTiOj; the ionic movement in the lowest optic E mode can be approximated
by the description of Slater. The phonon dispersion curves for various directions of the wave vec-
tor ¢ were computed. These results are in good agreement with the inelastic neutron measure-
ments by Shirane et al. A calculation of the oblique phonons near the zone center is presented
and compared with the available experimental data. These calculations show that the long-range
Coulomb forces dominate the anisotropic forces in these crystals. A theoretical approach for com-
puting the elastic, dielectric, and piezoelectric properties is presented and the proposed model ap-
plied for calculating these constants. The results are compared with the experimental data where
existed. Finally, a least-squares analysis of the observed phonons in PbTiO; near the tetragonal-
cubic phase-transition temperature was carried out to understand the influence of anharmonic
forces and the mechanism of the phase transition in this crystal. In general, the variation in the
parameters obtained is very small. This shows that the small anharmonic forces may be sufficient
to explain the variation of frequencies with temperature.
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I. INTRODUCTION

Crystals of the perovskite family, such as PbTiO;,
BaTiO,, CaTiO;, etc., have been of constant interest in
physics because some of these materials show ferroelec-
tric behavior and undergo structural phase transitions. "
BaTiO; may be considered one of the most studied crys-
tal of this family. Above 120°C it is cubic and belongs
to space group Fm3m (O]). At temperatures below
120°C it is ferroelectric and its structure is P4mm (C}, ).
If the temperature is lowered further the crystals of
BaTiO; undergo new structural transitions at 5°C and
—90°C, transforming to orthorhombic and trigonal sym-
metries, respectively. A number of researchers have
studied the temperature-dependent vibration spectra of
this material®>~° utilizing Raman and infrared spectro-
scopic techniques. There are, however, conflicting re-
ports with regard to the interpretation of their experi-
mental observations in relation to the applicability of
so-called ‘‘soft-mode theory” originally proposed by
Cochran'® and Anderson'! independently in order to ex-
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plain the anomalous dielectric behavior and the structur-
al phase transition in ferroelectric materials.

Another important crystal of the perovskite family is
PbTiO;. Like BaTiO; this crystal is also ferroelectric at
room temperature and it undergoes a tetragonal-cubic
phase transition'?!3 at 493 °C, similar to that observed in
BaTiO; at 120°C. The Curie-Weiss temperature'* of this
crystal is 449°C showing that the 493°C transition is
weakly first order. Dielectric-constant measurements of
powder samples of PbTiO; showed small anomalies'*'®
for temperatures near —100°C and —150°C and these
authors suggested a possible antiferroelectric transition
at —100°C in PbTiO;. According to a recent x-ray
study'” PbTiO; undergoes a phase transition at —90°C
from cubic C,, point-group symmetry to C,,.

Experimental studies of phonons in PbTiO; were car-
ried out'® 2% using Raman, infrared, or neutron scatter-
ing techniques. These studies showed that the lattice
modes in PbTiO; are sharp and underdamped even in
the vicinity of the transition temperature. Experimental
studies of elastic and piezoelectric properties have been
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made only in the polycrystalline samples® ~*! of PbTiO,.
Bhide et al.’? have, however, measured the component
€33 of the dielectric tensor.

In the present work we make a theoretical study of
phonons and the elastic and piezoelectric properties of
crystals of PbTiO; and BaTiO; in the tetragonal phase.
The temperature variation of the zone-center phonon
frequencies and the oblique phonon dispersion curves are
also computed. A rigid-ion model with long-range
Coulomb forces and short-range axially symmetric forces
with some approximations are used to describe the above
properties.

II. CRYSTAL STRUCTURE
AND NORMAL-MODE SYMMETRIES

The tetragonal form of PbTiO; has one formula unit
in the primitive cell. Its space group is P4mm (C},) and
the ions occupy the following positions in the primitive
cell:® Pb, (0,0,0); Ti, (£,4,u4); O), (1,L,v); OQ),
(+,0,w); and O(3), (O,1,w), where u =0.541, v=0.112,
and w=0.612. The room-temperature lattice parame-
ters* for the tetragonal cell are a,=3.904 A and
co=4.150 A.

Barium titanate is isomorphous to PbTiO; in the
tetragonal phase®® with the structural parameters
u=0.513, v=—0.0023, and w=0.487. The lattice pa-
rameters for the room-temperature structure’® are as fol-
lows: ay,=3.992 A and cy=4.036 A. For lattice-
dynamical calculations it is convenient to introduce an
identification index for each ion in the primitive cell.
We have, therefore, assigned the following indices for
the ions:

ions Pb Ti o(1) 0(2) 0O(3)
indices 1 2 3 4 5

Figure 1 shows various critical points in the Brillouin
zone. Following Montgomery,”” we have classified the
normal modes of vibrations for various high-symmetry
critical points in the Brillouin zone and they are listed in
Table I. The ions involved in a particular normal mode
of vibration are in parentheses and the subscripts denote
the direction of mode vibration. The basis vectors can
be obtained using the projection-operator technique®’
and they are listed in Table II. The normal modes of vi-
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FIG. 1. Brillouin zone for a tetragonal BaTiO; structure.

brations are the linear combinations of these basis vec-
tors with the linear constants involving the force-
constant parameters.

III. LATTICE-DYNAMICAL FORMALISM

There are many phenomenological models for the
study of lattice dynamics of ionic crystals, such as the
rigid-ion model,*® the shell model,*>* the breathing
shell model,*! etc. The use of a model other than a
rigid-ion model is rather complex and for crystals with
low symmetry and many atoms in the primitive cell they
involve a large number of parameters that have to be
determined by least-squares analysis of the observed data
on frequencies, elastic constants, etc. Such calculations,
in general, produce physically unacceptable solutions.*
The rigid-ion model, on the other hand, does not ac-
count for the polarizability of the ions. However, the
model is rather simple and in most materials it approxi-
mately describes the phonon spectra and the elastic
properties of materials. We have, therefore, restricted
ourselves to the applicability of the rigid-ion model with
the long-range Coulomb and the short-range axially

TABLE I. Classification of normal modes of vibrations at high-symmetry critical points.

Critical
point Symmetry Normal modes of vibration
rZA Cu 4 4,(Pb,Ti,O)e 5E(Pb,Ti,O)® B, (O)
R X, W C,, 54,(Pb,Ti,O)® 5B, (Pb,Ti,O)& 3 4,(Ti,0)&2B,(Pb,0)
.Y C, 7A4'(Pb,Ti,O0)d84 " (Pb,Ti,O)
U,AE C, 104'(Pb,Ti,0)® 54 " (Pb,Ti,0)
S,2,N C, 94'(Pb,Ti,0)®6 4 "' (Pb,Ti,0)
A, V,M Ca 24,(Pb,0)® 4,(0)e B,(0)® 3B,(Ti,0)8 4E(Pb,Ti,0)
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TABLE II. Basis vectors for the normal modes of vibrations at high-symmetry critical points.

Critical
point Mode Basis vectors
A A A A
r A, Zis 2y, 23, Z4+2s
A A
B, Zs—1Z4
" "~ A ~ A
E Xy, X3, X3, X4, X5
~A oA AT A
Yio Y25 ¥3 Y4 ¥s
A A & & A
R A4, Z;, Y2, Y3, Y5y Z4
a A a
Az X, X3, X5
PN
B, X, X4
PPN
B, Y Yo 22, Z3, Z5
s = o A A
T A’ Xy, X4, Y2, ¥3, ¥ Z1, Z4
" PN - A A A
A X2 X3, X55 Y15 Y4 Z2, 23, Z,
U 4 A A N A A A A A A
Yo Y2, ¥3, Ya ¥sy Z1s Z2- 23, Zgy Zs
r A ~ ~ ~ ~
A Xy, X3, X3, X4, Xs
’ ~ A ~ a ~ A o a
S A X +Y¥Y X+Y2 X3+Y3, X4+Ys, Xs+ ¥,
AT A
Zy, 2y, 23, Z4+Zs
4" PRSP
X1—Yi, X2—Y2 X3—Y3 X4—Y¥s5, X5—Ys
Zy—2Zs
A & A
A A4, Z), X4+Ys
s &
A, Xs—Y4
& A
B, X4—Ys
A aa A
B, Z, Z3, Xs+Y4
E ~ ~ ~ ~
X1 Y2, ¥3 24
a a3 A
Y, X3, X3, Zs

symmetric interactions.

Following Born and Huang?® the dynamical matrix is
constructed in terms of atomic force constants anB(f(I,;')
that are second derivatives of the crystal potential ener-
gy with respect to the displacement u (%) of ion (!) in a
direction. The potential energy may be written as the
sum of the Coulomb energy ¢ and the short-range part
¢". Usually the short-range part is expressed as follows:

¢'=ae —Br s (1a)
¢f=-Ln , (1b)
r

where the constants a, 8, ¥, and n depend on the ion
pairs involved and r is the interatomic distance.

A more general approach, called the axially symmetric
model, has been introduced in order to represent the
short-range interactions, and they involve constants A
and B for each ion pair, defined as follows:

134" | _ >
roor |, B (2a)
24r 2
0| e, (2b)
3,2 |~ 2v

The subscript 0 denotes that the derivations are to be
calculated at the equilibrium position of the ions. The
eigenvalues of the dynamical matrix are the frequencies
of the normal modes of vibrations, whereas the eigenvec-
tors of the matrix represent the normal modes them-
selves. The matrix elements are known as coupling

coefficients. In a rigid-ion model*® the coupling
coefficients can be separated into the Coulomb sums and
the short-range repulsive part that can be obtained by a
Taylor expansion of their respective potential functions.
The Coulomb sums were evaluated using the method de-
scribed by Cowley.*?

A. Rigid-ion formulation for PbTiO;

The potential energy for the primitive cell of PbTiO;
is written as

2
= —aMi—+4¢13(’13 )+4¢14(r1g)+414(r'4)
0

+B23(ry3) +023(r 53 ) +4d24(r4)

+834(r34) +4d4s(rys) (3)

where the first term represents the electrostatic energy of
the crystal; a,, is the Madelung constant. The remain-
ing terms represent the short-range contributions from
various ion pairs. The numbers in front of the short-
range—potential constants represent the number of iden-
tical interactions, whereas the primed terms represent
the next-nearest contributions from the ion pairs with
the same identification indices as their unprimed terms.
In the axially symmetric representation of the short-
range interaction, the model has 16 short-
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range—potential constants, viz., A3, A4, Al Ais,
Ay, Ay, Ay, Agsy By, By, By, By, B, By, By,
and Bys. The long-range Coulomb interactions require
knowledge of the effective charges on the ions. With the
use of a charge-neutrality condition we may express the
effective charge on a titanium ion as a function of
charges on oxygen and lead ions and thus the rigid-ion
model involves two charge parameters in addition to the
16 short-range—potential constants mentioned above.
This number can, however, be reduced by considering
the stability conditions for the unit cell. This requires
the precise knowledge of the structural parameters of the
crystal. Following Katiyar,* the potential energy of the
primitive cell is minimized with respect to each structur-
al parameter. In the case of PbTiO;, there are five
structural parameters, namely a, ¢, u, v, and w, and,
therefore, five stability conditions may be written, thus
reducing the number of unknown short-range-potential
constants (B’s) from eight to three. The resulting equa-
tions are written as

4vB 3+ (v —u)By;+(1+v —u)By

doa
—8(w — 0By + LM (4q)
C av
4w —1)B,+4w —u)B,y,
oa
:—8(w—u)B34—4wB'14+2—I2/-——A1, (4b)
C aw
3
— (0 —w)Byy— (140 —u)By — 4w —u)B,, = 2 2%
c? du
(4¢)
4v°B 3 +4w —1)’B,+(v —u)’By; +(1+v —u)’B),
da
:—4w2B’14—8(w~u)zB34+~2—V Y @
¢ Odc
2B\3+B4+By=—B1,—2By,
2V day
—2B+ - .
45+ 2 oa (4e)

These equations can be utilized to determine five pa-
rameters, say B3, B4, By;, B3;, and B,,. The number
of independent parameters of the model may be reduced
further by assuming that the short-range radial force
constants for an ion pair are approximated by a Born-
Mayer potential, i.e., they are given by

A=Ba’% . (5)
The coefficients can be related to the exponential factors
n appearing in Pauling’s potential in the following
manner:

alzapb.oz(nl+l)/r14 ) (6a)

=0 o0=(n,+1)/ry , (6b)

a3=a0_0=(n3+1)/r45 . (60)
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The use of the above equations results in the reduction
of radial force constants from eight to three as follows:

A=A yexpl —ay(riz—ril, (7a)
Aly=Ayexpl —a(riy—riy], (7b)
Ay =Apexp[—ay(ryiz—ryll, (7c)
Ay = Ayexpl —ay(ryy—ryll, (7d)
Ay = A sexpl —aj(ryy—rys)] . (7e)

Summing up all of the above considerations, the num-
ber of unknown parameters for the model are n(np, ),
n,(Ti-0), n;(0-0), A4, Ay3, Ays, Bla By, Bys, Zpy,
and Z,. These parameters were determined by non-
linear least-squares analysis of the experimental phonon
frequencies at various wave vectors in the Brillouin zone
taken from Refs. 21 and 23.

The values of n;, n,, and n; were taken from
Pauling’s book.** It was noted during the calculations
that the variation in the value of n; from an initial value
of 7 produces insignificant changes in the phonon-
frequency fit. We therefore fixed it to 7 as suggested by
Pauling® for the oxygen-oxygen interactions. The best-
fitted values for the remaining ten parameters are as fol-
lows: n,;=5.40, n,=3.15, 4,,=38.01, A4,,=192.80,
A4s=6.33, B4,=-2.02, By, =-—1.38, B,=-—2.01,
Zp,=1.70, and Z,= —1.46. These values were used to
compute axially symmetric short-range force constants
and they are listed in Table III. All of the computed pa-
rameters appear to be physically acceptable. As expect-
ed, the radial constants between the titanium and oxygen
ions are large compared to other potential constants,
whereas the small values of 43, and 4,5 show that the
interactions between the oxygen ions are considerably

TABLE III. Force-constant parameters of the rigid-ion
model for PbTiO; at room temperature and at temperatures
near the transition point.

Room Transition
Parameter temperature temperature

Ay 19.254 16.868
Ay, 38.010 37.354
A, 6.935 7.375
Az 192.800 196.525
A3 48.893 49.838
Ay 122.797 102.369
Ay 4.852 3.903
Ays 6.266 4.187
B, —2.623 —3.370
By, —7.267 —7.507
B, —2.024 —1.882
By —25.097 —32.024
B —0.491 —1.973
By, —14.306 —15.725
B, —1.384 —0.931
Bys —2.007 0.899
Zpy, 1.695e 1.825¢
Zs —1.456e —1.433e
Zy 2.673e 2.474¢
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TABLE IV. Observed and computed phonon frequencies for Q- *O‘—Jo- N —T vo-- ) --Q+
PbTiO; at room temperature. ? ; 1 | 3 ;’
Observed Computed ‘Q Ok Q’ ’Q ©- Q' Q' ©- O’
Critical Mode frequency frequency - O - : ’ ' !
A 1 1 -0 -~ o™~ O~ 00’*--@;*“6‘ 00‘*-@“»@4»
point symmetry (cm™") (cm™") ATON ALTO Ao
r A,(TO,) 147 119
4,(TO,) 359 301 o O==0 o= -O=-0m o= =0
E(TO,) 88 o7 O--0O- O O~ OG-0
E(TO,) 220 259 i ; ; ! r i
E(TO,) 289 305 ~6 - (O==0 o O - () -=0
E(TO,) 505 553 E(T0,) E(TO,) E(TO3)
A,(LO)) 189 167 -
A,(LO,) 465 514 ?"Q”?‘ U9 o
A,(LO;) 796 763 ‘ ' Loe T
E(LO,) 128 149 Oﬁ @”Q @ © Q 0o
E(LO,) 289 300 r 1 ‘ |
b - - -
E(LO,) 439 475 E(Om o o 9 ©
E(LO,) 723 758 ‘ '
B, 289 263
FIG. 2. Graphical representation of zone-center normal
Z ggg; 123 12(3) modes of vibrations for PbTiO; with atoms projected on an x-y
basal plane. The corner atoms are Pb and the shaded atoms
X A (TA) 7 64 are Ti. The oxygen atoms are shown by large open circles.
1
A A (LO) B L . .
700 ‘ b
|
600 v =
(to) A
A oy EE T
_— A._(L_m___,\_>-<m—'—m
Lo — 4
. 500 B: £ o g E ——
sg _'A:,,//
-
© 400 B
Z B,
s L :
] — A E
= :’ e —— A (T0) £ Ag (Tﬂ”,//
“ 300 £ A o E B, ke
_ B | o
Az A (To) E |E (T0) E 3
200pM N
3 As o — A 1A (LO) A
(T0) &
——— * Al
ba, \“\\A‘\ E (La)
o
-0.5 -0.4 -0.3 -0.2 -0.1 o 0.1 0.2 0.3 0.4 0.5

[qxoo] [004,]

FIG. 3. Computed phonon dispersion curves for PbTiO; along [100] and [001] directions. The shaded circles denote experimen-
tal observations.
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weak. The charges on Pb, Ti, and O ions are about
85%, 67%, and 73%, respectively, of their free-ion
values. This suggests that the crystal is highly ionic.
The values of n,(Pb-O) and n,(Ti-O) are considerably
smaller than those calculated using the criterion suggest-
ed by Pauling for ionic crystals. A comparison between
the calculated and experimentally observed phonon fre-
quencies is shown in Table IV. In general, there is good
agreement between the observed and the calculated ones,
with a maximum disagreement of about 11% in the
lowest optic mode. These differences may be explained
due to the fact that we have neglected the ionic polariza-
tion forces by restricting to the rigid-ion formulation.

The computed eigenvectors were used to find the nor-
mal modes of vibrations for the zone-center modes and
their graphical representation in two dimensions is
shown in Fig. 2. The lowest E(TO,) and 4,(TO,) modes
need special attention as their frequencies vary consider-
ably with temperature. In the E(TO,) mode both Ti and
O ions move against Pb ions along the x or y axis. Simi-
lar movements occur in the soft-mode 4,(TO,) along
the z direction. This description of the soft mode is in
agreement with the proposed picture of the normal
mode by Last* for BaTiO;.
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The calculated phonon dispersion curves along [100]
and [00 1] are plotted in Fig. 3. The observed points are
marked by solid circles. These curves may be useful in
carrying out further experimental studies of phonons.*’

B. Rigid-ion formulation for BaTiO;

The potential energy for the primitive cell of BaTiO;
is written as follows:

aye’

¢=— +4¢3(r3)+4014(r14) +4¢14(r1,)

+623(ra3) +853(r3 ) +4054(ryy ) +4¢3,(r3y)
+4034(r34 ) +404s(rss) . ®)

There is a difference between the potential-energy ex-
pression used for PbTiO; and BaTiO;. In PbTiO;, there
are eight interactions of type 3—4 with identical separa-
tion, whereas in BaTiOj; four of them have slight separa-
tion. The approximations used for reducing the un-
known number parameters are the same. The potential
stability conditions for BaTiO, may be written as fol-
lows:

da
4vBl3+(v——u)B§3+(1+v—u)Bz3=4(w—v)B'34+4(w—v——1)B34+—2—2K-6—M— , (9a)
C v
da
4(w—1)B']4+4(w—u)Bz4=—4(w~v)B’34-4(w—v-1)B34~4wB14+2—12/——a—£ , (9b)
C w
doa
—(0—u)Byy— (140 —w)Byy — 4w —u)Byy = L M 9c)
C du
4v’B 3 +4(w —1)’B, +(v —u)*By +(14+v —u)*B,; +Hw —u)*B,,
, d
=—4w?B,—4(w —0)B — 4w —v — 1By + LM 9q)
¢ dc
, : 2y da
2313+Bx4+324=—314—334“334—23454‘7 = (9e)

da

We utilized the above linear equations to compute B3,
B\, B,;, B)3;, and B,,. The remaining parameters, viz.,
n,(Ba-0), n,(Ti-0), n;(0-0), 4, Ay, Az, By, By,
B3, B,s, Zg,, and Z; were determined by nonlinear
least-squares analysis of the observed phonon frequencies
using the above model. Just as in the case of PbTiO;, it
was necessary to fix the value of n; to 7, thus reducing
the adjustable parameters to 11. Their best-fitted values
are as follows: n,;=5.99, n,=3.48, A4,,=28.28,
A,;=148.40, A,,=5.44, B,=—0.82, B;,=-—0.96,
By, =—0.46, B,s=—2.67, Z,=1.58, and Zo=—1.42.
The experimental phonon frequencies were taken from
the publications by Scalabrin et al.,* and by Lima
et al.” We did not include the observed zone-boundary
phonon frequencies in the fitting procedure in this ma-
terial. The lowest observed phonon frequency is over-

damped, suggesting the presence of large anharmonicity
effects.

The computed axially symmetric force constants and
the ionic charges for BaTiO; crystal are shown in Table
V. Strong interactions between Ti and O ions are evi-
dent from large values of the force constants 4,3, A3,
and A4,,. These and the other radial force constants are
very similar to those observed in PbTiO;. The large
effective ionic charges on Ba(79%), Ti(67%), and
O(71%) ions are indicative of predominant ionic charac-
ter of the crystal. A comparison between the experimen-
tal and the calculated zone-center phonon frequencies is
made in Table VI. There appears to be a reasonably
good agreement between them. The lowest E(TO,) mode
is overdamped in the observed Raman spectrum. Just as
in lead titanate, we have deduced the normal modes of
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TABLE V. Force-constant parameters of the rigid-ion mod-
el for BaTiO;.

ik Agk Bix

ri 26.483 —3.563
ris 28.279 —0.821
ris 22.854 —0.126
ri3 148.399 —42.990
ry 74.083 —24917
I 109.759 —20.599
ri4 5.436 —0.958
ri, 4.616 —0.460
ras 5.239 —2.672

Zy,=1.582e Zp;=2.678¢ Z,=1.420e

vibrations for the zone-center optical phonons from the
computed eigenvectors, and their graphical representa-
tions on the x-y plane are shown in Fig. 4. For BaTiO,
we have plotted only those normal modes of vibrations
which differ from PbTiO,.

IV. OBLIQUE DISPERSION OF PHONONS

Studies of the variation of phonon frequencies with
the direction of the wave vectors were made by
Loudon*® and Merten.*’ According to Loudon, the vari-
ation of phonon frequencies is due to the change in the
electrostatic and short-range forces. Two cases were
studied in detail. (a) The short-range forces prevail on
the electrostatic forces:

| W(A1o)—WEo)| >>v(Ao)—Vv(Aro) s (10a)

| v(A1o)—Vv(E1g) | >>V(E o) —vE1o) . (10b)
In this case the following relations are valid:

V=vH A 10 )sin?0+vH A o)cos?0 , (11a)

TABLE VI. Observed and computed zone-center phonon

frequencies in BaTiO;.
Observed Computed

Mode frequency frequency
symmetry (cm™!) (cm™!)
E(TO,) 38 39
E(TO,) 180 196
E(TO,) 308 320
E(TO,) 489 514
E(LO,)) 180 182
E(LO,) 308 308
E(LO;) 466 462
E(LOy) 722 699
A,(TO,) 178 155
4,(TO,) 267 193
A,(TO;) 512 554
A,(LOy) 189 193
A4,(LO,) 473 466
A4,(LO;) 740 729
B, 308 282
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FIG. 4. Graphical representation of zone-center normal
modes of vibrations for BaTiO; with atoms projected on an x-y
basal plane. The corner atoms are Ba and the shaded atoms
are Ti. The oxygen atoms are shown by large open circles.

v?=vX(E1o )cos?0+ v E g )sin%0 (11b)
where 6 is the angle between the ¢ axis and the wave
vector of the phonon.

(b) The electrostatic forces prevail on the short-range
forces:

| (Epg)—v(Arg) | <<V(E | o)—V(E1g) (12a)

| UELg)—v(Ao) | <<V A1o)—v(A10) (12b)
In this case the following relations are valid:

v?=v3( A0 )sin’0 +v(Eqg )cos®0 , (13a)

V2=vX Ao )cos’0+ v E o )sin’0 (13b)

Equations (11) and (13) are valid for uniaxial crystals
with two atoms in the primitive cell. The validity of
Loudon’s approximation in the case of well-separated
phonons from the remaining ones of the same symmetry
in PbTiO; and BaTiO; was, however, confirmed by com-
puting the phonon frequency variations for very small
wave vectors in different directions. Since the electro-
static forces dominate the short-range forces in these
crystals, Eq. (13), therefore, should apply in the present
cases. The results of the phonon dispersion relations in
PbTiO; for small wave vectors propagating in the k, -k,
plane are shown in Fig. 5. The experimentally observed
points are shown by solid circles.”> The computed
dispersion curves approximate very well Loudon’s Eq.
(13), except in the region around 300 cm ™!, where there
are many phonons. The k,-k, planes have only mirror
symmetry and therefore the phonons at a general point
in the plane can be classified as of species A’ or 4". It
is interesting to note that a crossing of two 4’ phonons
around 300 cm™! occurs. This is because one of the two
phonons involved is a nonpolar B; mode for small wave
vectors strictly along the z or x axis. The oblique disper-
sion curves for BaTiO; are shown in Fig. 6. There are
no experimental observations available for oblique pho-
nons in BaTiO; so far.
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V. ELASTIC AND PIEZOELECTRIC PROPERTIES

PbTiO; and BaTiO, belong to the piezoelectric class
of crystals in which applied stress produces an electrical
polarization. Depending on the direction of the wave
vector and on the piezoelectric tensor, the acoustical
wave can be followed by a longitudinal electric field that
increases the elastic constants. Hudson and White®
made a general study of the elastic and electrical proper-
ties of the piezoelectric crystals. Following these au-
thors, the differential equations that describe the propa-
gation of an acoustical wave in the [100] direction is
written as

%u; . 3%y oE

’ P

— =Clilk— —€yi—— , (14a
P atz 1i1k ax:; pli axl )
3’E, 3 |, 9w , 3E, (14b)
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FIG. 5. Oblique phonon dispersion curves for PbTiO; for
small wave vectors in the k,-k, plane, with the experimental
observations marked by shaded circles.
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where c;, is the elastic constant modified by the com-
ponents of the piezoelectric tensor e;;, €; is a com-
ponent of the dielectric permittivity tensor, p is the den-
sity of the crystal, and p, is the magnetic permeability.
Solutions of the plane-wave type are valid for Egs. (14a)
and (14b),
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FIG. 6. Oblique phonon dispersion curves for BaTiO; for
small wave vectors in the k,-k, plane.
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where K =2 (q, /a, q, /a, g, /c). This choice of solution
gives us the following linear equations:

(16a)
(16b)

2.0 2.1 0 . '
pou; =K cyup+jKegy;
2 s 2.2 1 0 2.
K Ep =juoK ‘@ ep1ild; +Ho0 €y, -
Hudson and White>® showed that the correct acoustical-

wave solutions can be obtained by solving only Eq. (14a)
and neglecting the term e, (E, /jx ) in it:

po’ul=Kciug - a7

The above results can be applied to PbTiO; and BaTiO,
or any other crystal with C,, symmetry. In what fol-
lows a two-index matrix notation will be used for the
elastic, piezoelectric, and dielectric tensor components.
Equation (17) can be solved for various directions of g.
Following are a few cases for which the secular equation
was solved to yield the following relations.
(a) g=(q, /a, 0, 0):

el =pvialx)/q*, (18a)

Ces =pviay)/q?, (18b)
e vi,.(z)

Cot——=p— (18¢)
€1 q

(b)g=(0,0,q,/c):
J

M, =cos*@c,, +sin*0 ¢33 +cos?0sin’0(2¢c; +4c )+ %[sinzeeﬁ +cos?@sinf(2e s +e3,)]* ,

2

(:33+-i3—=pvf,,‘(z)/q2 , (19a)
€33
Cas=pvialx)/q*. (19b)
(c) g=(q,/a,q,/a,0):
via(x +y)
C66+%(C“+C|2)=p—£‘A——2"—“ , (20a)
%(C“ —012)=pv%-A(x —y)/q2 » (20b)
13 v, (z)
c44+1—115—=p TAZ . (20c)
q

(d) ¢ =(q,/a,0,q,/c): For this wave vector we use
the secular determinant, written as

V2

Mu“‘P? 0 M,

det 0

Ml3 0 M33_ )

where

(22a)

M 3 =co0s’0sinb(c|; —c 3 —2¢44 ) +c0sOsin0(c 3 — 33 +2¢44)

1 . . .
-2 {[cos’@ e s +cosOsin?B(es; —e s —ey; )][cos’Osind(2e s +e4, ) +sin’Bey3]]

My, =cos’0 ceg+5in*Ocyy

. . 1 .
M3 =co0s’0sin?0(c|; —2¢ 3 —2C 44 +C33) +C08*0 ¢ 44 +5in*0 ¢ 4y + :[cos3t9e,5 +cosfsin’6(ey; —e s —ey ) )7,

€=cos’0 €, +sin’*0 €;; ,

with
g:/a
cost)= 2 29172
[(gx/a)"+(g,/c)’]
and
. q:/¢
sinf= 2 2172 °
[(q,/7a) +(q,/c)*]
Equation (21) gives the following results:
Via(p)
L4 =c0s%0 ceg+sinOcy, , (23a)
9,9
Vi=3M + M)A 2 (M +M )%
PP
—4M | My; —M), (23b)

(22b)
(22¢)
(22d)

(22e)

f

where v =vp(x2), v_=vpa(x2).

The above results can be conveniently applied to study
elastic, dielectric, and piezoelectric properties of PbTiO,
and BaTiO;. Let us first consider the case of a PbTiO,
crystal. The measurements of elastic and piezoelectric
constants for PbTiO; were made in polycrystalline sam-
ples.?® The only measurement of the static dielectric
constant €;; was made by Bhide er al.,*? giving the
value €;;=30. Frey and Silberman,”” using the
Layddane-Sachs-Teller (LST) relation, obtained the
values €;,=125.6 and €;;=30.4. The calculations of the
elastic and piezoelectric constants were made by com-
puting the frequencies of the normal modes of the
dynamical matrix. The value of ¢, used was 0.05. For
waves propagating in direction [001], g, was fixed at
0.05. For waves propagating in direction [101], a
choice of the values of g, was made giving the angles
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TABLE VII. Observed and computed elastic, dielectric, and
piezoelectric constants for PbTiO;.

Observed Computed
values values
c, c; (10" N/m?) c; (10" N/m?
cn 1.433 1.327
Cr2 0.322 0.846
c13 0.241 0.891
Cy3 1.316 0.934
Cas 0.558 0.801
Coo 0.556 0.927
d, d; (107'2/N) d, (107'%/N)
ds 53.0 45.521
dy, —4.4 —15.070
ds; 51.0 51.000
€,/€ €, /€, €; /€
€,,/€ 230 (125.6) 125.6
€33/€ 170 (30.0) 30.0

30°, 45°, and 60°.

Some of the equations mentioned above relate the
same elastic constants to different acoustical-wave fre-
quencies. The calculations show that the results of these
equations are compatible, showing that the potential en-
ergy of the crystal for the ions in the equilibrium posi-
tion is a minimum. The elastic piezoelectric and dielec-
tric constants were obtained by utilizing the above equa-
tions for various values of 6 (30°, 45°, and 60°). These
quantities were obtained by adjusting the frequencies of
the acoustical waves calculated from the dynamical ma-

TABLE VIII. Observed and computed elastic, dielectric,
and piezoelectric constants for BaTiO;.

Observed Computed
values values
¢ c; (10" N/m?) c; (10" N/m?)
c 2.751 (1.618) 1.544
[ 1.789 (0.818) 1.154
s 1.515 (0.861) 0.973
C33 1.648 (1.039) 1.399
Caa 0.543 (0.185) 0.743
Coe 1.131 (1.234) 1.152
d, d, (107"%/N) d, (107"%/N)
dis 392.0 (1160) 286.110
dy, —34.5 (—63) —36.915
ds; 85.6 (165) 85.600
€,/€ €,/€, €, /€
€,,/€ 1970 (600) 1970
€3,/€ 109 (90) 109

trix for the wave vectors considered. The preliminary re-
sults showed a high correlation between the parameters
ej3, €3y, €1, and €;33. This was due to the fact that the
product of these constants give a small correction to the
elastic constants. Therefore the parameters e, ¢33, and
€,; were fixed during the least-squares analysis. The ex-
perimental value of €;, was taken from the work by Frey
and Silberman.?? A comparison of the experimental and
calculated values of the elastic, dielectric, and piezoelec-
tric constants is shown in Table VII. The values in
parentheses are the values for single crystals. The
differences between the experimental and calculated
values may be due to the fact that the measurements
were made in polycrystalline samples. The same formal-
ism was applied to compute the above constants for a
BaTiO; crystal and the results are compared with the ex-
perimental values in Table VIIL’! The experimental
values were obtained in multidomain samples of BaTiO,
(Ref. 52) instead of a single crystal. This may explain
the differences between the experimental and calculated
values of the elastic constants. The values in
parentheses in Table VIII were obtained by De-
vonshire.®®> The elastic constants calculated by De-
vonshire agree with the present calculations, with the ex-
ception of c4y.

VI. VARIATION OF PHONON FREQUENCIES
OF PbTiO; WITH TEMPERATURE

The calculations presented in this work are based on
the harmonic approximation, in which the potential en-
ergy is expanded to second-order terms. In this approxi-
mation the crystals do not have temperature-dependent
properties. Following Cochran'® and Cowley*? we make
some of the crystal parameters a, and c,, the short-

TABLE IX. Observed and computed zone-center phonon
frequencies in PbTiO; near the transition temperature.

Observed Computed
Mode frequency frequency
symmetry (em™) (ecm™1)
E(TO) 54 52
E(TO) 178 207
E(TO) 490 535
E(TO) 289 269
E(LO) 118 135
E(LO) 445 467
E(LO) 665 719
E(LO) 289 261
A4,(TO) 62 77
A4,(TO) 289 277
A,(TO) 545 529
A4,(LO) 163 156
A4,(LO) 445 494
A4,(LO) 725 715

B, 289 285
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range force constants, and the ionic charges are temper-
ature dependent. Near the transition temperature the
lattice parameters are>* a =3.942 A and c=4.011 A in
PbTiO;. Measurements of temperature-dependent pho-
non frequencies for the PbTiO; crystal were made by
Burns and Scott.®

We have carried out a least-squares analysis of the
phonon frequencies for temperatures near T,. In the
model considered the parameters n,, n,, and n; were as-
sumed to be temperature independent. A comparison
between the experimental and calculated phonon fre-
quencies for T=T, is shown in Table IX. We note that,
in general, the frequencies of the dipolar modes changed
with the temperature. The frequency of the E,(TO,)
mode changed from 97 to 52 cm ™!, and the frequency of
the 4,(TO,) mode changed from 119 to 77 cm™'. In
the cubic phase, above the transition temperature the
frequencies of these modes are identical to the form of
the triply degenerate F;, mode. The eigenvectors of the
A,(TO,) mode show that this mode can be considered
responsible for the tetragonal-cubic phase transition in
PbTiO;. From a close observation of the parameters of
the model listed in Table III, we notice that the varia-
tion of the parameters with temperature is small. We
may, therefore, conclude that the influence of anharmon-
ic forces on the normal modes of vibrations of this crys-
tal is small. This is similar to what is observed by Cow-
ley*? in SrTiO;.

VII. CONCLUSIONS

The rigid model was applied to the ferroelectric crys-
tals of PbTiO; and BaTiO;, in the tetragonal phase.
Reasonably good agreement between the calculated and
experimentally observed phonon frequencies were ob-
tained. The greater differences between the experimental
and calculated frequencies occurred in the polar modes.
Improvements in the calculations can be obtained by
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considering the ionic polarizabilities in the model. We
have, however, not attempted to do so because of, in
particular, a large number of parameters involved in
such considerations. Such calculations often result in
some parameters that may not have any physical
significance. As an example we can mention the SrTiO;
crystal.*>> The shell charges obtained for this crystal
have no physical meaning. Similar situations may arise
in crystals of PbTiO; and BaTiO; using the shell model.
Phonon dispersion curves were obtained and the results
are in good agreement with the available experimental
data. The oblique phonon dispersion curves were ob-
tained for both crystals.

In the computation of elastic and piezoelectric con-
stants it was observed that some discrepancies exist be-
tween experimental and calculated values. These obser-
vations may be due to the fact that the experimental
constants were obtained in polycrystalline samples. The
literature search for several other materials shows that
there is, in general, a large difference in elastic and
piezoelectric constants of single-crystal samples and
those of polycrystalline samples. A least-squares fit of
the phonon frequencies for temperatures near the phase
transition shows that the anharmonic forces present in
the PbTiO; crystal are small.

Finally, we comment on the normal modes shown in
Figs. 2 and 4. The graphical representation of the low-
frequency E (TO,) mode shown in Fig. 2 for PbTiO; is
identical to that proposed by Last*® for BaTiO;. It,
however, differs from the E(TO,;) mode of BaTiO,
shown in Fig. 4, which is identical to that proposed by
Slater*’ for the soft mode in BaTiO,.

ACKNOWLEDGEMENTS

The research grants from Fundagao de Amparo e
Pesquisa do Estado de Sao Paulo and National Science
Foundation are gratefully acknowledged.

*On leave from Universidade Estadual de Campinas, Caixa
Postal 1170, 13 100 Campinas, Sao Paulo, Brazil.

IF. Jona and G. Shirane, Ferroelectric Crystals (MacMillan,
New York, 1962).

2R. Migoni, H. Bilz, and D. Bauerle, Phys. Rev. Lett. 37, 1155
(1976).

3G. Burns and F. H. Dacol, Phys. Rev. B 18, 5750 (1978).

4A. Scalabrin, A. S. Chaves, D. S. Shim, and S. P. S. Porto,
Phys. Status Solidi B 79, 731 (1977).

5A. S. Chaves, R. S. Katiyar, and S. P. S. Porto, Phys. Rev. B
10, 3522 (1974).

6A. Scalabrin, S. P. S. Porto, H. Vargas, C. A. S. Lima, and L.
C. M. Miranda, Solid State Commun. 24, 291 (1977).

7C. A. S. Lima, A. Scalabrin, L. C. M. Miranda, H. Vargas,
and S. P. S. Porto, Phys. Status Solidi 86, 373 (1978).

8J. A. Sanjurjo, R. S. Katiyar, and S. P. S. Porto, Phys. Rev. B
22, 2396 (1980).

9A. Pinczuk, E. Burstein, and S. Ushioda, Solid State Commun.
7, 139 (1969).

10W. Cochran, Adv. Phys. 9, 387 (1960).

TP, W. Anderson, Izv. Akad. Nauk SSSR, Ser. Fiz. 1603
(1960).

12G. Shirane, S. Hoshino, and K. Suzuki, Phys. Rev. 80, 1105
(1950).

I3R. J. Nelmes and W. F. Kuhs, Solid State Commun. 54, 721
(1985).

145 P. Remeika and A. M. Glass, Mater. Res. Bull. 5, 37
(1970).

15). Kobayashi and R. Ueda, Phys. Rev. Lett. 99, 1900 (1955).

16], Kobayashi, S. Okamoto, and R. Ueda, Phys. Rev. Lett.
103, 830 (1956).

173, Kobayashi, Y. Uesu, and Y. Sakemi, Phys. Rev. B 28, 3866
(1983).

I8N. E. Tornberg and C. H. Perry, J. Chem. Phys. 53, 2946
(1970).

19G. Burns and B. A. Scott, Phys. Rev. Lett. 25, 167 (1970).

20R. A. Frey, in Advances in Raman Spectroscopy, edited by J.
P. Mathieu (Heyden, London, 1973), Vol. 1.

21G. Burns and B. A. Scott, Phys. Rev. B 7, 3088 (1973).

22R. A. Frey and E. Silberman, Helv. Phys. Acta 49, 1 (1976).



37 LATTICE DYNAMICS OF CRYSTALS WITH TETRAGONAL . .. 2085

23C. H. Perry, B. N. Khana, and G. Rupprecht, Phys. Rev.
135, A408 (1964).

24G. Shirane, J. D. Axe, J. Harada, and J. P. Remeika, Phys.
Rev. B 2, 155 (1970).

25D. Heiman and S. Ushioda, Phys. Rev. B 9, 3616 (1978).

26G. Burns, Phys. Rev. Lett. 37, 229 (1976).

275, A. Sanjurjo, E. Lopez-Cruz, and G. Burns, Phys. Rev. B
28, 7260 (1983).

28T, Nakamura, M. Takashige, H. Tereauchi, Y. Muira, and
W. N. Lawless, Jpn. J. Appl. Phys. 23, 1265 (1984).

298, Ikegami, I. Ueda, and T. Nagata, J. Acoust. Soc. Am. 50,
1060 (1971).

30N, Ichinose and T. Takahashi, Jpn. J. Appl. Phys. 11, 1224
(1972).

311, Ueda and S. Ikegami, Jpn. J. Appl. Phys. 7, 236 (1968).

32y, G. Bhide, K. G. Deskmukh, and M. S. Hedge, Physica 28,
871 (1962).

33G. Shirane, R. Pepinsky, and B. C. Fraser, Acta Crystallogr.
9, 131 (1956).

34H. D. Megaw, Proc. Phys. Soc. London 58, 10 (1946).

35]. Harada, T. Pedersen, and Z. Barnea, Acata Crystallogr.
Sect. A 26, 336 (1970).

36R. G. Rhodes, Acta Crystallogr. 4, 105 (1951).

37H. Montgomery, Proc. R. Soc. London, Ser. A 309, 521
(1969).

38M. Born and K. Huang, Dynamical Theory of Crystal Lat-
tices, International Series of Monographs on Physics (Oxford
University Press, New York, 1966).

39A. D. Woods, W. Cochran, and B. N. Brockhouse, Phys.
Rev. New York, 119, 980 (1960).

40R. A. Cowley, W. Cochran, B. N. Brockhouse, and A. D.
Woods, Phys. Rev. 131, 1030 (1963).

41y. Schroder, Solid State Commun. 4, 347 (1966).

42R. A. Cowley, Phys. Rev. 134, A981 (1964).

43R. A. Cowley, Acta Crystallogr. 15, 687 (1962).

44R. S. Katiyar, J. Phys. C 3, 1087 (1970).

45L. Pauling, The Nature of the Chemical Bond (Cornell Uni-
versity Press, Ithaca, 1960).

46 T. Last, Phys. Rev. 105, 1740 (1957).

47J. C. Slater, Phys. Rev. 78, 748 (1950).

48R Loudon, Adv. Phys. 13, 423 (1964).

49L. Merten, Z. Naturforsch, 15a, 47 (1962).

50A. R. Hudson and D. L. White, J. Appl. Phys. 33, 40 (1962).

51J. F. Nye, Physical Properties of Crystals (Oxford University
Press, New York, 1964).

52D. Berlincourt and H. Jaffe, Phys. Rev. 111, 143 (1958).

53A. F. Devonshire, Philos. Mag. Suppl. 3, 85 (1954).

4G. Shirane and S. J. Hoshino, J. Phys. Soc. Jpn. 6, 265
(1951).

SSW. G. Stirling, J. Phys. C 5, 2711 (1972).



