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Magnetoelastic properties of tlysprosium aluminum garnet: Theory
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Expressions are derived for the 6rst- and second-order magnetoelastic-energy terms for the
Ising-like antiferromagnet dysprosium aluminum garnet. The first-order terms are used to inter-

pret the Geld dependence of the magnetostriction, and the second-order terms for a similar

analysis of recent measurements of magnetoacoustic e8'ects. The agreement is generally satisfacto-

ry. The theory also predicts some unusual piezomagnetic efkcts, one of which may explain the

anomalous neutron scattering near the phase boundary in fields parallel to [001] and [110]. The
results of this work suggest that magnetoelastic effects may be important for the detailed under-

standing of large classes of magnetic materials, characterized by an antiferromagnetic structure
which does not enlarge the unit cell.

I. INTRGDUCTION

Dysprosium aluminum garnet (DyA1G) is an Ising-like
antiferromagnet, whose magnetic, thermal, and optical
properties have been studied extensively. ' In most of
these studies, the magnetoelastic efFects were ignored,
largely because DyAIG is extremely stifF [Debye
SD =500 K (Ref. 1)j and the magnetic interactions are
relatively weak, corresponding to a Neel temperature
TN=2. 5 K. Only in connection with some mangeto-
optical experiments, in which a surprising birefringence
was observed, were the effects of magnetoelastic distor-
tions invoked to explain the initially unexpected effects.
Subsequent measuremegts of magnetostriction '

confirmed the importance of magnetoelastic distortions
and a study of the efFect of applying magnetic fields in
difFerent directions was found to be generally in agree-
ment with qualitative predictions based on symmetry
considerations. 7

In this paper we develop a more detailed theory, also
based on symmetry considerations, which will be useful
for explaining both the low- and high-field magnetoelas-
tic effects which are observed. The theory will be
asymptotically exact at high 6elds and at low tempera-
tures, but it should provide a good qualitative model for
all 6elds and temperatures.

By extending the theory to include terms to second or-
der in the various strain components, we can make simi-
lar predictions of various magnetoacoustic effects. Re-
cent experiments on DyA1G showed a number of strik-
ing variations of sound velocity with magnetic field,
which had no ready explanation, although singularities
in the curves clearly corresponded to magnetic phase
transitions, well known from previous studies. Our
theory mill explain the general features observed and
provide an overall structure for analyzing more extensive
magnetoacoustic studies which are nom in progress.

The theory also provides some insight into more con-
ventional magnetic properties which may be affected by

magnetoelastic efFects. For example, the theory shows
that a shear strain will lead to a magnetic moment in
zero field when the material is in the antiferromagnetic
state. This unusual form of piezomagnetism may explain
some of the anomalous low-field behavior which has
been observed in polycrystalline samples. "'

It seems clear that magnetoelastic efFects can be im-

portant for the detailed understanding not only of
DyA1G but also of other materia1s, especially those in
which the magnetic order parameter corresponds to zero
wave vector. In all such systems, couplings between the
strain, the magnetic order, and the bulk magnetization
may be allowed by symmetry, and corresponding magne-
toelastic efFects may occur. %e shall not address these
more general considerations in any detail, but it should
become clear that the effects we discuss for the case of
DyA1G are by no means restricted to this relatively
complex case.

In Sec. II we shall present the general theory, which
involves listing the terms in the magnetoelastic energy
allowed by symmetry and deducing the corresponding
magnetostrictive and magnetoacoustic changes produced
by fields applied in various directions. In Sec. III we
shall then apply some of these results, first to explain
some of the magnetostrictive efFects observed by Dillon
et al. ' ' and then to the recently observed magne-
toacoustic efFects. In Sec. III we shall also make esti-
mates of piezomagnetic effects which may occur in this
material. Various microscopic mechanisms for a11 of the
magnetoelastic terms are discussed in Sec. IV. In Sec. V
me give a brief discussion of the relevance of these effects
for other experiments and other materials.

II. THEORY

A. Magnetic order parameters

Dysprosium aluminum garnet has a relatively complex
structure with 12 spins per unit cell. ' ' Corresponding-
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ly, there are 36 di6'erent order parameters which may be
involved in the description of an arbitrary state of mag-
netic order indexed within the crystallographic unit cell.
These order parameters have been classified according to
their symmetry properties by Mukamel and Blume'
(MB), whose notation we shall generally follow here.

Fortunately, the Ising-like behavior of the By + spins
in DyA1G reduces significantly the number of order pa-
rameters needed to describe any magnetic state of this
system to a high degree of approximation. There are
six. Following the notation of MB, we write

B. Elastic strain

e„„+e +e„(A,),
exx —

&yy ~ 2ezz e'xx ~yy

exy eyz ezx (T2)

(2a)

(2c)

There are six independent components of the elastic
strain ez where p, q =x,y, z and e =e . In a cubic
material these may be grouped according to their trans-
formation properties,

2M'„=+ S"„; N„(p=x,y, z),

21= g aS&~, N„/3 (p=x,y, z),
p, ia

y 2
———g aS» N /2+ g aS;, N, /2,

y 2 ——g aS„"; N, /2 —g aS;, N, /2,

where we have introduced normalizing factors

(la)

(lb)

(lc)

As in the case of the magnetic order parameters, we
shaH sometimes find it convenient to express our results
not in terms of these linear combinations, but in terms of
the individual e . However, the symmetrized groupings
are most useful for finding the appropriate invariants.

There are three invariants involving products of two
of the e, corresponding to the usual elastic energy of a
cubic crystal, '

2 2 2
Ezi = -2ci i (&xx +&yy +&zz )+Ciz(&xx &yy+ &yy &zz+ &zzexx )

ia

2)„=gaSI„'; N„, (le)

so that

(lh)

The advantage of using the q„has been illustrated by
Domann and %'olf' in connection with a model calcula-
tion of the effect of a magnetic field on the antiferromag-
netic state. For symmetry directions for which q
it is sometimes convenient to use the single symbol q„~.

to ensure that aH of the order parameters tend to 1 when
the spins are fully aligned in appropriate directions.

The first three order parameters are simply com-
ponents of the uniform magnetization. We shall find it
convenient to abbreviate these by writing M&, since
there is here no ambiguity with the other (non-Ising) or-
der parameters M,„and M3„. g describes the we11

known six sublattice antiferromagnetic state in zero
field, '"' and y„2 and y 2 the possible changes in the an-

tiferromagnetic state which may be induced by a mag-
netic field. ' The corresponding transformation proper-
ties are M„(T, ), 21(F12), and y 2, y 2(E), where T, , A2,
and E denote the usual irreducible representations of the
cubic point group.

%"e shall find it convenient to express our results in
terms of linear combinations of the three antiferromag-
netic order parameters and we define

To study the magnetoelastic properties, we must now
construct similar invariants involving the magnetic order
parameters and the magnetic field.

C. Magnetoelastic invariants

We first consider terms linear in the strains and quad-
ratic in the magnetic order parameters. (We can exclude
terms linear in the magnetic order parameters by time
reversal invariance. ) Following standard group theoreti-
cal methods, ' we find that there are nine invariants of
this type, and these are listed in Table I. Similarly, we
find that there are 28 invariants involving products of
two strain components and two magnetic order parame-
ters. These are listed in Table II.

In constructing these tables, it is convenient to make
use of the transformation properties of both the magnet-
ic order parameters and the elastic strains to check the
number of invariants of a given type. For each case, we
decompose the various reducible products into the corre-
sponding irreducible representations, and count the
number of occurrences of the identity representation.
Thus, for example, if we look for terms containing prod-
ucts of two M's, we must decompose
(Ti XTi), = Ai+E+T2, where the subscript s denotes
a symmetric product. Since the components of e trans-
form likewise as 3, +E+T2, we see immediately that
there will be just three invariants which are linear in the
e's and quadratic in the M's, as shown explicitly in Table
I. Similarly, for terms quadratic in the e's, we must
decompose

[(A i+E+ T2)X(A i+E+T2)],
=33)+3E+T)+3T2 .

Combining this with the decomposition of two M's, we
see that there will be 3+3+3 =9 invariants quadratic in
the e s and quadratic in the M's, again as shown explicit-
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TABLE I. Terms quadratic in the order parameters and linear in elastic strain.

A]g (e„„+e»+e„)
2( Ix+ Iy+ Iz Iy Iz Izgx gx ly)( xx+ yy+ zz)

W, (Mx2+ My2+Mz2)(exx +eyy+ezz )

A ~»)[(2q„—y) —»), )e„„+{2»)y—»), —») )ay»+(2»), —»b —
»)y )e„]

26[(2q„—»)»2 )7,
'—)e„+(2»)y —»), —»)„)ay»+(2»), —g„—y)y)e„]

Aq(MyM, ey, +M,M„e,„+M„Mye„y )

»t 8[M„{2/„—»)„—g, )e, +M (2r/ —»), —YJ„)e,„+M,{2$, q„——»)„)6 ]
A 9(M„ey, +My', „+M,e„y )

ly in Table II.
%'henever, as in the case of the terms quadratic in the

e's, a particular irreducible representation occurs more
than once in the decomposition, there will be a corre-
sponding arbitrariness in the definition of the invariants,
since any linear combination wi11 also be an invariant.

In constructing Table II, we have tried to choose forms
which will be as compact as possible, although this has
sometimes resulted in expressions which do not re6ect
directly the invariants in the magnetic and elastic vari-
ables individua11y. We have also chosen to use the three

g„, even though they do not transform as a single irre-

TABLE II. Terms quadratic in the order parameters and quadratic in elastic strain.

B[ g (e,„+e' +e' )

B2( Q +Qy +7/ 7)y Q 'Q Q Q "Qy )(6 +6'yy +6Z )
2 2 2 2 2 2

83(M2+M'+M, 2)(e2„+e' +e,', )

2Bc'9 (&yy&zz+&zz&xx +&xx&yy )

2 2 25(gx+Qy+9z gy Iz 929X Ix Vy)(+yy zz+ zz xx+ xx~yy)

B~(Mx+My'+Mz')«yy&zz+ &zz&xx +&XX &yy )

87 g ( Eyz +Gzx +6xy

2 2 2 2 2 2B8(9x + 9y+ 9Z Iy gz gz gx Ix Iy )(Cyz +Ezx +~xy )

89(MX+My+M, )(ey, +e +e„y )

B~ori[(2»)»)y y) )e2 +(2qy g g )ay~»+(2»)»)»)y )e2 ]
8„[(2»),—»)y —»), )e„„+(2»)y —»), —y), )eyy + (2»), —i)„—gy )e„]
B]2(M„e„'„+My@2 +M, e' )

8139[(21)x ly 9z )~»»buzz+{ 9» 9z 9x )~ ~ z+z{x2x9z 9x Qy )&xx »»]

814[(2 lx '9» '% )+»»buzz+(2»)y '9z 'Qx )~zz&xx +(29z x '9y )~xx~yy ]
2 2 2B]5(MX&yy&~+My &zz&xx +Mz &xx &

8 „9[(27)„—'9y —0, )ey, + (29» 9, —9„)e,'„+{29—, 0„—'»)y }e„'y]—
,8[(»2„»)»)„—»), )ey, +(2»)y——g, —»g )e,„+(2g,—y)„—y)y)e„y]

8»(MyM, ey, +M,M„e +MXM e„)(e„+e +e )

B20(MyMZ&xx &yz+MzMx t-'yy&~ +MxMy&~&xy )

82& q(M„e„,+M e,„+M,e„„)(e,„+e +e )

822'(M e„„e,+M e e,„+M,e„e„)
8»[M„(2»)„—»)» —»), )ey, +My (2»)» —»), —g, )e,„+M,(2»), —»)„—»)y )e„y ](e„+@»»+e„)
Bz,[M„(2»I„»)»—g, )e„ey, +M»(—2gy »), —»)„)e»»e +—M, (2»), —y)„—y)y )e e„y ]
82g[M (qy») )(eyy e )ey +My(»1 y) )(» e )e +M (»)»)y)(e ay»)e y]

826(MyM e ye +M M ey e y +M Mye e )

~27'(M e„ye,„+My', e„y+M,e, g, )

828 [M„(2»)„y)» »), )e„ye„+—M„(—2»I, y), »b )~„~„—, +M—, (2»), »)„—
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TABLE III. Terms linear in the order parameters, linear in Aeld, and linear inelastic strain.

ag(M„H, +My Hy+M, H, )(e +eyy+e„}
a4(M, H e„„+MyH„ey +M, H, e )

a, [-,' (M, H, +M,H, )e„+,' (M,—H„+M„H, )e,„+,' (M„—H,+M, H„)e„,]
a, [H„(2g, —g» q,—)e», +H»(2g» q,——g„)e,„+H,(2g, —g„—g» )e„» )
a 9 9(Hx ~yz +Hy ~zx +Hz ~Ay )

ducible representation. If one uses instead the proper
cubic variables g, y 2, and y 2, as defined in Ref. 16, one

x '
3'

tends to lose the evident symmetry under the cyclic per-
mutation of x, y, and z, corresponding to the threefold
symmetry operation, and the simplifications which can
arise when q„=q =g, . Of course, the number of in-
dependent invariants is not affected by these choices, and
we must always end up with a nine linear and 28 quadra-
tic terms in the 6's, as indicated by the general con-
siderations discussed above.

If we were using the standard Landau theory ap-
proach, in which all of the order parameters are con-
sidered to be small, the terms shown in Tables I and II
would give the complete expression needed to discuss
magnetoelastic e8'ects. In fact, the order parameters are
generally not small and they vary widely with field and
temperature, as illustrated explicitly by the model calcu-
lation of Domann and Wolf. ' One must inquire, there-
fore, under what conditions the terms in Tables I and II
may provide a useful first approximation for the magne-
toelastic energy, or if one may need additional terms.

If one considers the possi. ble physical origins for mag-
netoelastic efrects in a system such as DyA16, it is clear
that one major contribution will come from the strain
dependence of the microscopic spin-spin interaction. In
a mean-field approximation, the spin-spin interaction can
be expressed in terms of products of just pairs of order
parameters, one representing the mean 6eld which acts
on the other. In this approximation, the terms given in

Tables I and II are therefore complete and no higher
powers of the magnetic order parameters need to be con-
sidered.

However, there is a second mechanism which is not
covered by this approximation and which will lead to
some important terms which are not usually considered.
This mechanism involves the strain dependence of the
crystal field which acts on the Dy + ions. The result of
this strain dependence can be thought of as a variation
of the magnetic g values. The importance of this mecha-
nism for DyAlG was noted by Dillon et al. but no ex-

plicit calculations were reported. We will discuss this
mechanism in more detail in Sec. IV, but for now we

simply note that it will introduce additional terms which
are linear in the magnetic field and linear in one of the
six order parameters.

We can readily find the corresponding terms in the
magnetoelastic energy from the terms we have already
derived in Tables I and II, by simply replacing one com-
ponent of M by the corresponding component of the ap-

plied field H. This is evident from the fact that the com-
ponents of both M and 8 transform as T, . The result-

ing terms are listed in Tables III and IV.
We see, therefore, that the magnetoelastic energy for

DyA1G contains no less than 58 independent invariants,
even in this simple approximation. This is a formidable
number, but we shall see in the next section that many
terms will be zero for fields applied along symmetry
directions, and in the limiting cases of high and low

TABLE IV. Terms linear in the order parameters, linear in field, and quadratic in elastic strain.

b3(M„H„+MyHy+M, Hz )(e„~+@ay + ezz )

b6(M H +MyHy +M H )(eyye +e e +e eyy )

b9(M H +MyHy +M H )(ey +e +e y )

b]2(M' H e +M H e +M H, e

b]5(M H 'eyy'e +MyHye e +M H 'e eyy )

b,2[ —,'(M»H, +M,H, )e», + —,'(M, H„+M„H, )e + ,'(M„H»+M»H„}e—„»](e„„+e»»+e„)

b~o[ (M»H +M H»)e e» + 2(M H +M H }e»»e + ~(M H»+M»H )e e»]
bq[(H„ey, +Hye, „+H,e )(e„+e +e„)
b22g(H e ey +Hyeyye +H e

23 l X ( }X }» % )~»Z +H» (2 }»»}g»}g)+zg +Hg(2»}g 7}~ g» )E~» ](Ez~ + E»» + 'Egg )'
b24 [H.(2g. —g, —g, )~..e„+H, (2g, —g, —g, )e„e,„+H,(2g, —g„—g, }g„e„,]
b25[&~(n» 7}z)(&»» & )&» +H»(g g )(«)e +H (g g»)(e e»»}e»]
b26[-,'(M, H, +M, H, )~»~,„+2(M, H„+M,H, )e„e»+ ,'(M„H, +M, H. )c e„-]

b27(H~ &xy&zx +Hy &yz&xy +Hz&zx &yz )

b»[H„(2g„—g, —g, )e„,e +H, (2q„q, g„)e„,~„,+H,—(2',——~„&,)~,„&„,]
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fields. In some cases, only one or two terms are, in fact,
1 equired.

More important is the consideration of the validity of
the approximation which we have used. As stated
above, it is effectively a mean-field based approximation
and, as such, it is clearly not very good near phase tran-
sitions. However, for high fields or for low tempera-
tures, such as approximation becomes asymptotically ex-
act, since the excitations in an Ising-like system such as
DyA1G are simple spin Nips and not spin waves. In oth-
er regions, we can only expect the theory to be semi-
quantitative.

%'e should also note that we have neglected a large
number of additional terms, which are allowed by sym-
metry, when we hmit the order parameters to the six
corresponding to the Ising approximation. In fact,
DyAIG is not exactly an Ising model, and 12 additional
order parameters may be nonzero. ' These can, of
course, also couple both to the other order parameters
and to the field through the strain. We shall not discuss
these terms here as their effect would appear to be small
for the particular observations which we shall be consid-
ering, but it is important to keep in mind that such
terms do exist and that they may be important in some
circumstances.

D. Magnetostractxon

Combining the linear magnetoelastic terms (Table I
and III) with the purely elastic energy [Eq. (3)] and
differentiating in turn with respect to the various strain
components, we can find the magnetoelastic strain for
any given field and set of magnetic order parameters.
We shall consider two specific examples in Sec. III A.
The individual strain components must then be related
to the actual changes of length (hl ) measured in a mag-
netostriction experiment. In Table V, we list a number
of these relationships for magnetostriction measured
along the principal directions in a cubic crystal. This
table is derived simply from the definitions of the strain
components but it is useful for considering different
cases.

K. Magnetoacoustic effects

We can identify the various components of the magne-
toelastic tensor, AC,~k&, by picking out all of the
coeScients of a given product e;J ek&. Thus, for example,
the coe%cient of e„ is seen to be

TABLE V. Magnetostriction along the principal directions.

Hing[111]

al
l [~]~] Cl 1 + 2C12

b, /

, [110]

P +
C]]+2C]2

P =A]g +(A3+ —, A4)M +(a3+ —04)MH,

Definitions

Q =—27M + A9gM+ a,MH+ a,-r)H.] 1

3 v'3 3 v'3

Hf[[001]

Al

jl]0]

hl

[l]0]

(Cll+C12)Q 2cl2~
(Ci] —C~2)(Cii+2C[~ )

Ciip —CizQ S
«i] —C]z)(CII+2C]2) C44

Cii~ —Ci~Q S
(C„—C„)(C„+2C„) C„

Definitions

P = A, q2+ A q 5g + A 3M + A, qAq+ A 6( g-'„y —q, ) +a 3MH,

Q = A, g'+ A~by'+( A, + A, )M' —2A, phd) —2A, gb, —2A6(q', —g,')

+ (a3+a4)MH,
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TA&LE &. {Continued)

H(([110]

Ci i
i' —Ci2Q s

[1 (}) {Cl 1 C12 ){C11 +2C12 ) C44

61

[TlO)

C»P —C,zQ S+{Cl 1
—C12)«i I +2C12)

Al (Cl l + C12 )Q 2C12~

[Ool) {Cll C12){cll+2C12)hl, 2P+Q 2 S
[T„)

' Cl 1+2C12

Definitions

l+ + +2~9 +{+3+ Q4)~ + P 5++A+ +6{+2 P2)+{g3+ 1 g4)~H

Q = A )g + Aibq + A3hf 2A5gh—g —236(g2y —gi)+a3MH,

S = —'A&M + —'a&MH.

AC»»» Big +Bi(ri +riy+ri» g»gy riyri i) ri )+Bi(M +M +M )+Biota)(2' g re�)

Bii(2ri» q riy)+Bi2M +bi(M»H»+MyHy+M»H»)+biiM H» (4)

with similar expressions for the other components. For
a given magnetic state, specified in terms of the M's and
g's and the 5eld, we can thus find the AC's in terms of
the coefBcients B„and b„. %e shall find it convenient to
use the standard notation for elastic tensors' in which
xx =1, yy =2, zz =3, yz =4, zan =5, and xy =6, so that
AC„„=BC33. The results for the relevant AC's are
shown in Table VI.

The hC's are closely related to changes in velocity AU

of acoustic waves propagating through the material,
which are generally used to study magnetoelastic effects.
%e can use standard expressions relating dtC to AU,

2

but there two special problems to which we must pay at-
tention.

One is the fact that the symmetry in the magnetic
state may be lower than one might perhaps expect, so
that the identification of the normal modes may not al-
ways be obvious. For example, for a 6eld applied along
[001] one might have expected the symmetry to be
tetragonal, starting from cubic in zero 6eld, so that the
velocity of transverse waves propagating along [001]
should be independent of polarization. This is true in
the paramagnetic state, but not, in fact, when g&0. %e
can see this by noting the two nonzero magnetostrictive
terms of the form A&e„riM, and a9e„„riH, (see Tables I
and III), which show that a field along [001] will pro-
duce a distortion along [110],which is positive or nega-
tive according to the sign of the antiferromagnetic order
parameter q. The resulting symmetry is thus orthorhom-
bic, with principal axes along [110]and [110]and [001],
and these will also be the axes for the normal modes.

The corresponding term in the magnetoelastic tensor is

AC45, which would be absent if the symmetry were
tetragonal. Similarly, for H~~[110] the symmetry is only
monoclinic, with [110]as the unique axis. For H~~[111]
the symmetry is trigonal, as one might expect naively.

The lower symmetry results in the fact that the crystal
can be acoustically birefringent, a finding which is at first
surprising for a material which is basically cubic. Of
course the birefringence is small, but so is the entire
magnetoelastic effect.

In practice, the change of symmetry demands a
change of axes of the magnetoelastic energy expression
from the original cubic axes used in Tables II and IV.
For the particular cases which we shall consider, the
changes are quite simple. For H~)[001] and H~([110], a
rotation of m/4 about the appropriate symmetry axis is
required. For H~~[111], a rotation of m. /4 about the
[001] axis followed by a rotation of cos '(1/v'3) about
the original [110] axis makes the z axis coincide with
[111]. A convenient method for transforming the elastic
constants is given in Chap 3 of Ref. 20.

The second problem, which is unusual, is the fact that
magnetostrictive effects will change p, the density of the
material, so that the velocity, which is given by &C/p,
will be affected not only by hC but also by 4p. Thus

1 AC 1 hp
2 C 2 p

where hp jp is related to the volume expansion
V=A V/V by
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This effect is, presumably, present in all magnetoelastic
experiments using acoustic velocity measurements, but it
is generally neglected since V is usually small relative to
the change in velocity. ' However, when, as in our case,
hC/C itself is small, the effect may not be negligible.

%'e shall defer discussion of the correction until we
examine specific examples. Here we shall concentrate on

deriving the appropriate expressions for b, u/u in terms
of the AC's for some of the propagation modes which
may be useful for studying the magnetoelastic e6'ects.
%e can make use of the slowness curves listed in Appen-
dix 38 of Ref. 20.„and in Table VI we summarize the
expressions which give AU/U for various modes in the
absence of the magnetostrictive corrections. Together
with Tables II and IV one can now find b,u/u as a func-
tion of the M's and g's and the applied field. %'e shall

illustrate the procedure in Sec. III B.

Conditions

kll[111], ell[111]

kll[111], ~i[111]

TABLE VI. Magnetoelastic contributions to velocity changes.

Hll [111]
Contributions

1 hC) ) +25C)2+45C)4+ SAC) 5+46C44+ Sb C45

U 2 C)1+2C]2+4C44

U 1 ~C]1 ~C]2 + ~C44 ~C45 —25C)4+ 26C)s

U 2 C» —C)2+ C44

Definitions

2~C)] —2~C22- 2~C33-8)9 +(8~+ 3812)M +(b3+ 3b)2)MH

2 ~C44 =
2 ~C55 = —,

' ~C66 =87''+(89+ —,'8]8)M'+(bg+ —,'b)8 )MH

C]2 —~C]3 =~C23-84% +(86+ 3815)M'+(b6+ 3b]5 )MH

1
1

1
~C]4 ~C25 ~C36 (819+820)M + —(82] +822 }Mg+ (b]9 +b20 )MH + —(b2] +b22 ) QH3 v'3 3

C) 5
——AC]6 ——AC24 ——AC26 ——KC34 =AC3

1 1
38)9M+ —82)Mg+ —,'b)9MH+ —b2)gHv'3 3

~C45 =~C46 =~C56
1 1= 3826M + —827M'+ 3 b26MH + —b27gHv'3 3 v'3

Conditions

Hll [001]
Contributions

k ll[001], all [001]

i ll[001], all[110]

k ll [001], all[110]

k ll[11o], &ll [110]

kll[110], ell[110]

kll[»0] all[110]

Au ~C23

U 2C]1
au ~C44+ ~C45

U 2C44

AC44 —EC45

U 2C44

AU 1 ~C]) +~C]2+4~C]6+2~C66
C]1 +C]2 +2C44

AC» +hC) 2
—45C)6+ 26C66

U 2 Cl 1 +C]2 +2C44

au 1 ~C» —~C]2
U 2 C)) —C)2

Definst]ons
—'hC)) ———'AC22 ——8)q +82(hg) +83M +B)oghq+B»{q y

—g, )+b3MH

2 AC33 ——8]g +82(hq) +(83+8,2)M —28)oghg —28„(q„—g, )+(b3+b)2 }MH

25C„—25C, —8 q +8,(hg) +8 M +8, ghg+8, (q y
—g, )+b MH

25C66 ——B~q +88(hg) +(89+8)8 )M —28]6ghg —28]7(g y
—g, )+(bg+b)8 )MH

AC]2 =84 ' +85(kq) + (86+815 )M 28)3qkr/ 2814{pzy Qz }+(b6+ b)5 )MH

AC)6 ——AC26 ——82) MAq —2823M Ag+ b2) gH —2b23hqH

AC45 ——827M' —2828Mhq+ b27 gH —2b28 AqH
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Conditions

TABLE VI. ( Continued )

H(([110]
Contributions

k ii[110], @ii[110]

k ))[110],e)([110]

kll[001] &ll[1T0]

EU, AC» +AC, 2
—46C]6+25C

U C» +C12+2C44

aU, ~C» —~C]2
C» C12

au, ~C44 —~C45

U AC44

Dc6nitions

2 ~CI] 2 ~C22 Bl I +82(~9) +(83+ 2812)~ +8109~9+8»(gxy gz }+{b3+2b12 }~H
AC44 C55 87' +88(hg) +{89+ —818 )hf +8]6gbq+8]7{g —g )+(b9 + b 18 )HAH

-AC66 —87' +8,(ag) +89M —2816qhg —28„(qz, —gz )+b9MH,

dlC12 ——84$ +85{2k/) +86M —28]3ghg —2814(gz —gz }+b6MH,
AC]6 ——8 C26 ——2819M + 2b19MH

AC45 ——-'826M + —'b2qMH

III. APPLICATIONS

In this section we shall apply the general theory
developed above to a number of specific cases in which
unusual magnetoelastic behavior has been observed.
These examples will illustrate some of the many predic-
tions which can be made. .

A. Magnetostriction

1. Field parallel to [111/

The experimental results obtained by Dillon et al. for
this case are reproduced in Fig. 1. A number of striking
features are immediately apparent.

(a) For low fields, the axial magnetostriction is linear
in field, changing sign at H =0. The corresponding
volume magnetostriction is very small and similar for
positive and negative fields.

(b} For high fields, the axial magnetostriction is

again approximately linear in field, with a slope that is

independent of the sign of H and essentially independent

of temperature. The corresponding volume magneto-

striction, on the other hand, varies with temperature,
tending to a constant value, which is independent of
field.

To interpret these features, we first use the terms in
Tables I and III together with Eq. (3) to find the magne-
tostrictive strains, by minimizing with respect to each of
the e in turn. We find

—3 ill —( 3 q+ A~/3)M —(aq+aq/3)MH

C11 +2C12
(7)

=E
Zg gZ ZX

—37M' &3A9rlM 2a—7MH —&3a—9rlH

3C44

where M and H are the magnetization and field along
[11 1].

Using Table V, we can then find expressions for the
axial distortion E as defined in Ref. 6.

We see that E has the form

E =f i M +f2 qM +f3 AH +f4MH,

while V has the form

ZP

and for the volume distortion V,

V =f5' +f6M +f7MH,
where f„fz. . . etc., are parameters containing the A„,
Q~, and C,J.

For low fields and low temperatures, these reduce to

=(&„„+eyy+& )H —(&„„+err+& )H o .

E=f3gH,

V=fsn'

(10')
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FIG. 1. (a) Volume magnetostriction, V, and (b} axial distor-

tion, F., for DyAIG as a function of magnetic Aeld applied

parallel to [1111for various temperatures. After Ref. 6.

while for high fields and low temperatures, we find

E=f,M +f4MH,

V=f6M +fzMH

(10")

From Eq. (10') we see immediately the origin of the
finite slope at low fields which is observed for E, and
from Eq. (11') we see the lack of dependence on field ob-
served at low fields for V. Equation (11') also shows that
V should be dependent on temperature, varying with g
from zero at the Neel temperature to a constant value as
T~O K. This change was assumed to be negligible by
Dillon et a/. when they constructed Fig. 1, based on ear-
lier thermal expansion measurements. In the absence
of additional data, we can only conclude either that f5 is

very small, or that the expansion measurements may
somehow have underestimated the effect. We shall dis-
cuss this further below.

From the observed lack of 6eld dependence of V at
low temperatures we must conclude that fz is small,
while the lack of field dependence at 4.2 K show that f,
is smaB also. On the other hand, the large field depen-
dence of E at high fields show that f4 is large. The term

E = (38x 10 ')H

for low fields and low temperatures, and

E= —(20X lo-') iH i

(12)

(13)

for high fields. The corresponding discontinuity in V is
estimated to be

AV=20~10 '. (14)

We also need values for the elastic constants for
DyAlG. These have recently been estimated by Huan
using pulse echo measurements. He finds

C] ) ——3.47 ~ 10" J m

C]2 ——1.00&10" Jm

C44 ——1.11~ 10" J m

f4MH is also consistent with the similar behavior of E
in positive and negative fields and it also explains the
lack of temperature dependence of the high-field slopes,
since M will be essentially saturated at all of the temper-
atures studied for fields —10 kOe (1 T).

On the basis of this analysis we can conclude that,
effectively, only two or three terms dominate the magne-
tostrictive behavior for H~~[111]. The two large terms
are clearly those proportional to fi and f4, which give
nse to the strong field dependence of E. The observed
jump in V as a function of field can only be interpreted,
in terms of the present theory, if the third parameter f5

is not in fact small, since f6 and fz clearly must be
small from the behavior at 4.2 K. It would be very in-
teresting to repeat the earlier thermal expansion mea-
surements to see if there was in fact some systematic
error.

An independent indication that there is some incon-
sistency in the present experimental picture is provided
by a comparison of the high-field values of V at the
lowest and highest temperatures. For fields of 12 kOe
(1.2 T) along [111],DyAIG should be in a very similar
state at 4.2 and 1.35 K, corresponding to essentially
complete magnetic saturation. It is very diScult to see
why the volume magnetostriction should be very
diNerent under these conditions. This paradox would be
resolved if f5 was in fact large, so that the curves in the
antiferromagnetic state would be shifted down when
rl&0.

The above analysis can be used to obtain semiquanti-
tative estimates of the parameters fi, f4, and f5 from
the experimental data. These can then be related to the
corresponding magnetoelastic parameters a5, a7, and
A &, if the elastic constants are also known.

This raises the matter of units. The simplest pro-
cedure is to define each of the order parameters as a di-
mensionless quantity which reaches its maximum value
of 1 at T =0 K. The parameters A„and 8„ then have
units of energy per unit volume, Jm in SI. We can
choose the same units for the parameters a„and b„by
measuring the field in tesla.

From the experimental data in Fig. 1, we can estimate
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with an estimated accuracy of about +6%. Using Eqs.
(10) and (11) with the experimental results [Eqs.
(12)—(15)], we then find

a9 ———49&10 Jm T

a7 ——2.6)& 10 J m T

3 )
——3.7~10 Jm

The other parameters, A3, A4, A7, a3, and a4, in Eqs.
(7) and (8), are much smaller, and are not determinable
from the present data. The parameter A9 will be impor-
tant only in regions where both M and ri are large, i.e.,
below Tz but not too far below, since M is then small,
but it will be hard to separate this term from the gen-
erally larger term in a9. Qualitatively, the two give simi-

lar effects.

~xx =&yy

~)q +33M +a3MH

C), +2C)2

Ciz( A4M +a4MH )
+ «ii —Ciz)«ii+2Ciz) '

A]q + 33M +a3MH
C»+&C~2

( C i i +C i z )( A 4M +a 4MH )

(Cii —Ciz)(Cii+2Ciz)
39qM +a9gH

C44

&yz =&zx =0

(17a)

(17b)

(18a)

(18b)

2. Field parallel io [00&J

It is interesting to compare the previous results with
those for the field applied along [001]. Measurements
for this orientation have been carried out by Dillon,
Chen, and Gyorgy, '3 and in Fig. 2 we reproduce their
resul'ts foi' (Alt~ /!I ) = ( Al /l )(oui I

alld kit /lt
=(bl/l)(, oo). A number of striking difFerences are im-

mediately apparent:

(a) For low fields, there is very little field dependence,
and in particular, there is little variation Odd in field.
netic phase transition, near 0.5 T.

(c) For fields above the phase transition, there is a gra-
dual variation which tends to a small slope at high fields
for both b, l,I/l~, and b, l, /l

All of these features can be understood in the light of
our model. As in the previous case, we first find the
magnetostrictive strains by minimizing the magnetoelas-
tic energy. %'e find

=(&-)0-(&-)H=o

A i I[rl(H)] —[ri(0)] )+ AzM + 3MH

C1] +2C12

(Ci, +Ciz )( A ~M +a4MH )

(C, i
—C,z)(C„+2C,z)

(19a)

Similarly, for b, lt/lt we find

A, I [ri(H)]z —[ri(0)]zI+ A, Mz+a, MH

C) &+2C

where we have omitted terms involving
since these will only be important over a

small region of field and temperature (in the antiferro-
magnetic phase close to the phase boundary at tempera-
tures which are not too low' ). In a more complete
analysis we would have to include these terms.

Using Table V we see immediately that the magnetos-
triction El~I /l~~ is given by

Ciz( A ~M +a4MH )
+ 'P«ii —Ciz)«ii+2Ciz)

(19b)

- 100

-10
-20

I

-10

10—
r) 0 g 0

0— CQ$X~

0 Q g 0 0 i) which has the same functional form as hll /ll. Since the
effects are both quite small, it is diScult to fit the param-
eters accurately, but we can make rough estimates.

For the asymptotic high-field behavior, we estimate
from the data

0— cXG$~XD
0 0 0

0 ()
&)-10—

" =(4.0+2.0
~

H
~

)y, 10
l,

(

-20
-20

I

-10
APPLIED FIELD (it0e)

10

FIG. 2. Magnetostnction of DyAlG as a function of mag-
netic field applied parallel to [001] at T=1.35 K. (a) Strain
measured paralle1 to the field (AI/I}~00&~. (b) Strain measured
along one of the two fourfold axes perpendicular to [Oolj,
(hl/I)(, ). After Ref. 13.

hl~ =(5.0—5.2
i
H

i
)&&10-',

while at low fields there is relatively little variation.
%e can thos equate

(20b)
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31—A3

C11 +2C12

(Cii+C12)~4 =4.0@10 ',
«11—C12)«»+2C12 }

(21a)

Ai —A3 C12 ~4
+ =5.0& 10

Cii+2C12 «11—C12)«11+2C1»

Q3

C11+2C12

{21b)

(C» +C12)a~ =2.0y 10-',
(&11—C12}{C11+2C12 }

(21c)

From Eqs. (21a) and (21b) we estimate

=1.0g10
11 12

Q3 C12Q4
+ = —5.2 x10-' .

Cl 1 +2C12 {C11 C12 ){Ci I +2C12 }

(21d)

perimental results in the former case and in approximate
agreement in the latter case. The linear variation which
is observed for AI~/I~ can be explained by a small
misalignment of the strain gauge.

We shall discuss all of these effects, together with ad-
ditional magnetostriction data elsewhere. For now, we
note simply that the general theory which we have
developed provides a simple model, in terms of which
the field dependence at both low and high fields can be
fitted.

8. Magnetoacoustic e8'ects

Experimental results

When an acoustic wave is transmitted through a crys-
tal such as DyA1G, the transit time v is a6'ected by three
effects: magnetostrictive changes in the path length
Al /I, changes in the elastic constants b C /C, and
changes in the density Ap jp due to magnetostriction, as
discussed in Sec. IIE. The last can be expressed as a
corresponding change in volume V=A V/V, so that

A1 —A3
1'

C»+C12
5.0+4.0 y10-'.

C12

5I 1 hC
, V. (24}

Similarly from Eqs. (21c) and (21d} we estimate

Q4 = —7.2X10-' „
11 12

(22c)

Q3

C12

C11 +C12
5.2 —2.0 y 10

12

(22d)

Using the measured elastic constants [Eq. (15)], we can
thus find

31—A3 ——2.7)& 10 J m

A4 ——0.2X10 Jm

Q, =2. 1X 10' Jm-'T-',

Q4 ———18&10 J m T

(23a)

{23b)

(23c)

(23d)

and, using the previously found value for A1 ——3.7X10
Jm, we can deduce

(23e)A3 ——1.0&10 J m

These values are all comparable with those for A „Q7,
and a9 found previously [Eq. (16)]. It should be cau-
tioned, however, that the uncertainties in all of these pa-
rameters are really quite large and, in the absence of a
more detailed analysis, they should really be regarded as
no more than order of magnitude estimates.

At low fields, the variation will be more complicated,
since M and g both vary, and we should also include the
terms in g„—q, and g —q, which we have so far omit-
ted. However, the above expressions show that the con-
tributions from all of the terms will in fact be quite
small, since M ~~1, and q changes only slowly for small
fields. This agrees with the observations. The theory
also shows that there should be no term linear in 0 for
either hl~~/lI~ or Ari/l~. This is consistent with the ex-

All three e6'ects will generally depend on magnetic field.
It is sometimes possible to neglect the two magnetostric-
tive eft'ects relative to the magnetoacoustic changes ' but
in general one must consider both contributions. In the
present case, the two magnetostrictive eff'ects turn out to
be small, but not completely negligible.

Figure 3 shows the results of some recent magne-
toacoustic experiments on DyAlG, taken from Ref. 8.
Both the magnetic field and the direction of acoustic
propagation were here parallel to [001]. A number of
striking features are immediately evident.

(a) For T =2.60 K, which is above the Neel tempera-
ture ( T~ =2. 53 K), the changes in b,r le are very
dift'erent for the longitudinal (L) and transverse (T)
modes. For both modes, the initial variation is quadra-
tic in field, but the high-6eld dependence tends toward a
linear limit for the longitudinal mode and to a small, al-
most constant limit for the transverse mode.

(b) For temperatures below Tz the results are again
quite diferent. First, one may note that the signs of the
changes are diferent for the two types of modes. For
the longitudinal mode, the initial curvature has the op-
posite sign compared to that for T ~ Tz, but the high-
field limit is qualitatively similar. For the transverse
mode, the initial variation is now approximately linear in
6eld, but above a certain field there is very little varia-
tion. For both T=1.906 K and T=0.888 K, the high-
field values of h~/~ are close to those for zero field. All
of the curves for T ~ Tz show characteristic kinks,
which have previously been identified with the field-
induced phase transition, well known in DyA1G.

All of these features can be understood in terms of the
magnetoelastic model developed above. %'e first note
that the absolute magnitudes of A~/~ are comparable
with those found for magnetostriction with H~~[001]. '

To estimate the magnetoelastic change hC/C we must
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,00 i-iT. x 10
2 T

0.2+
' 0.50

at higher temperatures, since both q and M will then be
smaller. Compared to the measured changes in transit
time, which range from +30&10 to —30&10, the
eftect is thus seen to be relatively small and for the
present discussion we shall neglect it. It should be not-
ed, however, that for a detailed analysis the magnetos-
trictive corrections are not entirely negligible.«xylo~

2
T.

3. Magnetoelastic effects

If we neglect the magnetostrictive corrections, we can
analyze the measured field dependence of h~/~ in terms
of the theory for b,C/C developed in Sec. II D.

a. Longitudinal mode Fo.r propagation along [001],
we need only one second-order magnetoelastic constant,
hC», and from Table VI, we see that

2 C))
(26)

a
~qx iO

0 08 0.6 0.8 1.0

8@ (I)

therefore consider the possibility of a significant magne-
tostrictive correction to hei~.

FIG. 3. Magnetic field dependence of the change of acoustic
transit time, hv/r, for the ninth longitudinal (9L) and second
transverse (2T) echoes in DyAJG. (a) T=2.60 K & T&,' {b)
T=l.906 K gT&,' (c) T=0.888 K gT, . Arrows mark the
critical fields corresponding to the magnetic phase boundaries.
After Ref. 8.

where we again omit terms in ri„—ri, and g —g, which

will be important only at intermediate 6elds. For
H~~[001], we put M„=M =0, M, =M, and Eq. (27) can

then be written in the form

=a LM2+ b LMH +cLg2 C]i
(28)

At high fields, this tends to the asymptotic form
aL+bLH, while at low 6elds it tends to clg . The
change between high and low 6elds is thus

The dependence of hC» on the magnetic order parame-
ters and the field can be found from Eq. (4),

b C&3 B;ri'+B——&(M~+M2+Mi)+B, 2M'

+b, (M„H„+M H +M, H, )+b»M, H, ,

(27)

2. Magnetostrictive corrections 2 C 0 2
=(aL —cLg )+bLH .2

As we have seen, there are two e8'ects: b,l/I and
——,

' V. %hen, as in the present case, the field and the
acoustic propagation directions are parallel, we can
write the magnetostrictive correction terms in the form

5l
II +2

l
(I

2 l
))

(25)

—(aL —ci g )&(10 =3.3, 6.5, and 9.9,
bL~10 =6.5, 6.0, and 8.3,

(29a)

(29b)

(28a)

If we examine the results in Fig. 3, we see that the high-
field variation of b, rim does indeed appear to be linear,
and for the three temperatures T=2.6, 1.9, and 0.89 K,
we can estimate

1 hi~I hl~ = —(3—6.2iH
i
)X10 '.

2 l(( l~
(25a)

At 0 =1 T, the correction will thus be ——3.2~10
and at lower fields, it will be less. It will also be smaller

and we can use the results of Fig. 2 to estimate the mag-
nitude of the effect. For high Acids, we can use the
asymptotic expressions Eq. (20a) and (20b) which give

respectively. We see that bL is roughly independent of
temperature, as the theory predicts, but the zero-field in-
tercept varies markedly with temperature. For T =2.6
K, q=0, so that we can identify aL ———3.3&(10,while
at T=0.89 K, q=l, which gives cL ——6.6&10 . The
intermediate value for T =1.90 K then corresponds to
g =0.7, a value which is not unreasonable, since
T~ ——2. 53 K.

%'e can use this analysis to predict the upward curva-
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ture observed at T =1.90 K. If we consider A~ j~ at the
phase boundary, we see that we would expect a change
from the zero-field value of

similar to the form for AC33, but that

(~LMci —cL )i+~LHcMc) (30)

where Mc and Hc are the values at the second-order
phase boundary. From magnetization data, " we know
that at T =1.90 K, Mc =0.52, and Hc =0.55 T. Thus,
we would expect

r

= [3.3X(0.52)'+6.6X(0.7)'

—6.0 X0.55 X 0.52] X 10-'

=2.4X10-', (30a)

=cos 8 +sin 8
U U) U2

(31)

which can vary between b,u, /U, and huz/U2. In terms
of the magnetoelastic parameters,

1
( b C44+ b C4q ),

2C44

(32b)

(33)

where u=cos 8—sin 8, which can vary between +1.
From Tables II and IV, we see that

in excellent agreement with the experimental value of
1.8& 10

We thus see that the variation of b,r/r for the longitu-
dinal mode can be explained in terms of three contribu-
tions: positive contributions proportional to M and g
and a negative contribution in MH. The observed varia-
tion is the result of a delicate competition between them.
It should again be emphasized that the quantitative as-
pects of the analysis which we have given have large un-
certainties, which are diScult to estimate, and a much
more detailed discussion, with results from many more
temperatures and more quantitative estimates of M and
rl as functions of T and H, is really needed to determine
the parameters. The small magnetostriction corrections
should then also be included.

b. Transverse modes. There are two transverse modes
which, as we have seen in Sec. II E, will not be degen-
erate in the present geometry. Since the plane of polar-
ization of the transducer relative to the principal axes
[110] and [110],was not specified in Ref. 8, we cannot
tell exactly what polarization was actually measured. If
the angle of the generator or detector relative to [110] is
8, the signal will be proportional to

which can be equated to the experimental value,
+ (3. 1 X 10 )H. Hence, ad& ——+2.5 X 10, and

o,ez+5. 6&10 . To relate dz and ez to the corre-
sponding terms 828 and b28 in Tables II and IV, we
would have to know the polarization factor and on the
basis of the present experiments, all we can conclude is
that

I ~2s I

=
I
2C44d,

I
& 5 6X 1o'

I
&is

I

= I2c44&~
I

&12 4x 1o'

(35a)

(35b)

with the equality corresponding to the possibility a=1
for the experiment cited. Further experiments are need-
ed to resolve this.

The ambiguity in sign corresponds to the uncertainty
concerning the sign of q. The absolute sign is dificult to
determine but its relative sign can be manipulated by
means of a suitable 6eld cycle. Our theory predicts,
therefore, that h~/~ should change sign when the sign
of g is reversed. Such an eftect has indeed been observed
and will be reported elsewhere. ' The theory also pre-
dicts, conversely, that there should be no change of sign
for the longitudinal mode, and this too has been
con6rmed experimentally. '

For high magnetic 6elds or for T & T~, q=0 and Eqs.
(33) and (34) predict that Eclat should vary as

—~a~ —c~n'~a=o —b+H, .

The experimental results are not inconsistent with this,
but the coeScients az, b~, and c~ are evidently all very
small ( ~ —1X10 ). It remains as a challenge for the
microscopic theory to show why az, bz, and cz should
be small, while a L, bL, and cL were large.

The only other experimental feature which is not
readily explained by the theory is the dip in the

=d+M, q+e+H, g
44

has a very different variation, depending linearly on q.
Here we have again omitted the terms in g, —q, and

gy g2 ~

From Eqs. (33) and (34b), we see immediately that
hu/U wiB generally vary linearly with field at low fields
when g&0, i.e., below Tz, but quadratically when
T ~ T~, as observed experimentally. The slope at lowest
temperatures and low fields can be interpreted in terms
of the single term aez, since I is small and g~+1 as
T~O K. From Fig. 2, we 6nd A~/~- —5.6H &10
+ae+H. At higher temperatures, we must also expect a
contribution from the term in o.d z and, estimating
c}M/BH at T =1.9 K from magnetization data" and

I q I

=0.7 from the magnetostriction analysis, we find

from the slope at T =1.906 K:

~(drM+e~H)rl=a(0 44d~+.er) X0.7H,
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transverse-mode field sweep, which is observed in the
mixed phase region at the lowest temperature, indicated
by the arrows near 0.6 and 0.85 T. For the longitudinal
mode, the behavior is as one might expect, with a linear
interpolation between the two and end points, corre-
sponding to the change in the proportion of the antifer-
romagnetic and paramagnetic phases as the field is in-
creased. For the transverse mode, the behavior is clearly
more complicated. One can speculate that this may
somehow be related to the fact that there are two trans-
verse modes whose principal axes depend on the sign of
q and on magnetostrictive strain. It seems possible that
this situation might be complicated in the mixed phase
state, in which there are microscopic domains. Further
studies are clearly needed to resolve this.

In general, however, we now have a good understand-
ing of the overall features of the magnetoacoustic effects
which have been observed. Our theory makes many ad-
ditional predictions for other field orientations and for
other directions of propagation of the acoustic waves
and it will be interesting to compare these with future
experiments.

C. Piezomagnetic eft'ects

1. Strain-induced magnetization

The induction of a magnetic moment through the ap-
plication of an elastic strain has been studied extensively
in various tetragonal and rhombohedral crystals, but it
has previously not been observed in cubic antiferromag-
nets. For the effect to occur one needs a term in the en-
ergy of the form

EME ——I( „epqM„,

where p,q,p=x,yg with EC „&0. If K is simply a con-
stant, such a term is clearly forbidden by time-reversal
symmetry. However, if K contains as a factor an anti-
ferromagnetic order parameter which is itself odd under
time reversal, such a term may be allowed. ' In many
materials, however, the antiferrornagnetic order involves
an enlargement of the unit cell, so that a term of the
form of Eq. (36) is still not allowed because M& and erq
are translationally invariant and E is not. Only in anti-
ferromagnets in which the order can be described within
the crystallographic unit cell can a term of the form of
Eq. (36) be an invariant. DyA1G is one of the materials
where this is the case.

From Table I, we see that there are indeed terms in
the energy of the form

EME ——Aqq)(e, rM, +er,M„+e,„Mr )

which will give rise to some unusual effects.
%e have already noted that the application of a field

along [001] produces an orthorhombic magnetostrictive
distortion with e &0. Such a distortion would not be
expected in a normal cubic crystal for which the [001]
axis has fourfold symmetry.

The terms in Eq. (37) can similarly lead to the inverse
effect: The application of a nonzero strain in the antifer-
romagnetic state (ri+0) will induce a magnetization, just

$'train induced a-ntiferrornagnetic order

An even more striking consequence of the piezo-
mangetic coupling may be expected near the second-
order transition in the presence of a magnetic field.
Here nonzero strains combine with the components of
the magnetization to provide an induced staggered field,
H„which acts on the antiferromagnetic order parameter

( AqerqM„)ri= H, ri . — (38)

Such an induced staggered field was previously recog-
nized by Blurne et al. ' to arise from a higher-order
coupling term of the form M„M M, ql, and the effect of
such a term has been studied extensively. ' However,
whenever any one of the components of M is zero, this
effect vanishes and there should then be no staggered
field. It has been puzzling for some time that there are,
nevertheless, induced staggered field effects even in cases
where one or two of the M's are zero, in particular for
H)~[001] and H(([110]. ' There have been attempts to
explain the observations in terms of the coupling of oth-
er order parameters and the possibility of nonlocalized
spin densities. ' However, none of these explanations
could be confirmed quantitatively and there is certainly
room for an alternative mechanism.

One might assume that the piezornagnetic effect would
once again be very small for reasonable strains, as it was
in the zero-field case. However, there is an important
difference, inasmuch as the staggered susceptibility
Bg/BH, diuerges as the second-order transition is ap-
proached. Even a small staggered field will, therefore,
produce a significant effect.

If we consider the effect at the second-order phase
boundary, and use Landau theory to estimate q as a
function of H„we note that q is proportional to 0,'
as in the usual case of a critical isotherm. The presence
of the cube root will clearly enhance the effect of even a
small staggered field, and it is not unreasonable to con-
clude that even sma11 strains could account for the small

as a magnetic field. The strain could be externally ap-
plied, or it could be an internal strain produced in the
preparation of the sample.

It is not easy to calculate the size of the effect, but we
can make a very rough estimate of the order of magni-
tude we might expect. If we make the reasonable as-
sumption that all of the terms in the energy expansion
which are not identically zero have roughly the same or-
der of magnitude, as was shown to be the case where we
were able to estimate magnitudes [Eq. (23)], we can im-
mediately conclude that the induced moment should be
roughly comparable to the corresponding strain. Strains
due to crystal imperfections are generally quite small, so
that we would not expect any large moments in zero
field.

Nevertheless, this effect does provide a mechanism for
a nonzero moment and the corresponding magnetic hys-
teresis. This may help to explain the anomalous efFects
which have been reported for small particles of DyA16
which show just such a small (M-10 ) permanent mo-
ment.
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amount of antiferromagnetic order observed just above
the nominal phase boundary. (In a more accurate theory
the factor —,

' would be replaced by 1/6, where 5-5, so
that the effect would be even more pronounced. )

The piezomagnetic coupling may also be expected to
have a significant effect near a tricritical point, where
both the staggered and the uniform susceptibilities will

diverge. It could well be that the extreme experimental
difficulties which have been experienced in high-
resolution studies of the tricritical point of DyAIG (Ref.
33) have been due, in part, to magnetoelastic eFects and
small random strains. More quantitative studies are
needed to explore these ideas further.

IV. MICROSCOPIC MECHANISMS

We have left until now the consideration of micro-
scopic mechanisms, because this is clearly quite a com-
plicated problem and it is helpful to have the guidance
of experimental results.

There are at least five mechanisms which may be im-
portant. Four of the mechanisms involve the strain
modulation of the magnetic dipole and exchange cou-
plings, each through two mechanisms: variation of the
separations between the spins, and changes in the ionic
wave functions. The latter can be thought of partily as a
change in the g values, and this gives rise to an addition-
al mechanism: a change in the direct interaction with a
magnetic field. It is clear that quantitative estimates will
be rather uncertain, since the Ave mechanisms can com-
pete, with positive and negative contributions. There
are, however, a number of features which can be recog-
nized.

where p is a factor which would be —3 for pure dipole
coupling and maybe —20 for exchange coupling. Thus,
taking p ——10 we might expect the parameter
A, =pU~ to be of order 3&10 Jcm . The experi-
mental estimate is, in fact, 3.7X10 Jm, in surprisingly
close agreement.

Similar considerations suggest that the other parame-
ters A„should all be of roughly the same order of mag-
nitude, since they all represent different aspects of the
same basic effect, the strain modulation of the magnetic
energy. Experimentally, this seems to be the case.

%'e can also make rough estimates of the 8„ in the
same way. Since the 8„'s involve second derivatives
with respect to lattice distance, we would expect the fac-
tor p in (40) to be replaced by p (p —1)/2. Thus,
B„/A„-(p —1)/2 and for p= —10, this gives a factor
of' —5.5. This is consistent with our estimates for a„,
bL, and cL which correspond to magnetoelastic parame-
ters ranging from —33 to 66&(10, an order of magni-
tude larger than the A„.

One puzzle to be resolved is the smallness of the mag-
netoelastic parameters corresponding to a~, b~, and c~.
These all involve second-order shear strains, and there is
no obvious reason why they should be much smaller
than the terms involving compressional strains. A more
detailed calculation would be of interest, but it will not
be easy to parametnze the strain dependence of the ex-
change interactions, which are quite complicated in this
system.

8. Strain dependence of Zeeman interactions

A. Modulation of dipole and exchange interactions

One efkct which can be calculated exactly is the strain
modulation of the magnetic dipole coupling through the
variation of lattice distances. We have calculated the
corresponding contributions to the A„but we shall not
give the details here, since the effects all turned out to be
small. The results may be found in Ref. 34.

A more important contribution may come from the
corresponding modulation of the exchange interaction.
For nearest neighbors this is known to be about one half
of the magnetic dipole coupling, but its dependence on
separation will be considerably more rapid than the r
dependence for magnetic dipoles.

One can obtain a rough estimate of the sum of the two
effects by a simple order of magnitude calculation. The
magnetic energy difference between the ordered (i)=1)
and disordered (r)=0) states in zero field has been
found, using heat capacity measurements, to be

U~ ———1.928 = —3.6& 10 J m

where R =8.31 J/mol, and where we use the molar
volume V~ ——43.8 cm . If the lattice is now strained,
for example by a uniform compression, the change in en-
ergy will clearly be of order

The existence of terms linear in the field, linear in the
strain, and linear in one of the order parameters can not
be explained in terms of a modulation of the spin-spin
interactions. For this we must invoke a change in the g
values resulting from a change in the crystal Geld. The
detailed calculation of such an effect will be quite com-
plicated, but we can again derive a simple order of mag-
nitude estimate.

In general, a strain e will result in a change of the
crystal field of the order of 5V, =e V, is the unper-
turbed crystal field. 5 V, will contain a number of
different terms, as allowed by the symmetry, and each of
these will result in an admixture into the ground state of
order 5V, /V, i.e., -e~ . Consequently, the g tensor of
the ground state will change by 5g -e g, where g is
the unperturbed g tensor. For DyA1G g is known to be
Ising-like with one large component parallel to a local z
axis. The change 5g, however, does not have to be
Ising-like and in particular, it can have o8'-diagonal com-
ponents relative to the unperturbed principal axes.

In the presence of a large field with components H,
H, and H, relative to the local axes, the energy of the
ground state in the unperturbed state is given by

5E =puM(e„„+e +e„)g When a strain is applied, the energy will change to
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E +5E= —
I [5g„,H, +5g,H»+(g„+5g„)H, ]'

2

+(H„5g,„+H 5g„+H,5g )'

+(H„5g„+H 5g «+H, 5g,») I'

(42)

If the 5g &
are very small, we can expand Eq. (42) to ob-

tain the leading terms

5E = — (5g„,H„+5g„,H»+5g H, ), (43)

which, since 5g &-e, provide the required coupling
mechanism betw'een the strain and the 6eld. To find the
corresponding energy density, we must sum over the
different sites in the unit cell and we must also allow for
thermal excitation when M&1. The resulting magnetoe-
lastic energy has the form

(44)

where p,q,p=x,y, or z and 6 is one of the six order pa-
rameters Eq. (1). This expression has the form of the
terms in Table III and the parameter F~„J mill be
governed by the same overall symmetry considerations.

The advantage of the microscopic derivation is, of
course, that we can now estimate the order of magnitude
of F's. Using a typical value of 5&10 JT 'm for
the magnetization (500 emu/cm ), we see that the E's
will have values which are comparable w'ith the a„de-
duced from the magnetostriction data. Of course, there
are many numerical factors of order unity which we
have omitted and which can change the final result by a
factor of 10 or more, but the order of magnitude of the
present estimate is quite satisfactory.

It is easy to see physically how a magnetic field will
couple to the shear strains in a system such as DyA1G.
%'henever the field is not paraBel to the local z axis of a
particular Dy + ion, there will be a torque which mill
distort the environment of the ion and lead to a micro-
scopic shear strain. Since the local axes point in
different directions, the strain in the presence of a field
will never be zero. This efFect is thus the result of the
large local anisotropy, combined with the noncollinear
structure of DyA1G.

The coupling to the compressional strains is similar,
but somewhat more subtle. Components parallel to one
of the local axes will simply produce changes in the crys-
tal field but no change in the point symmetry. Thus, no
off-diagonal terms in 5g are produced. However, since
two of the three local axes at each site are not parallel to
the cubic crystal axes, even a uniform compressional
strain can not coincide with the local axes at all sites,
and a reduction in point symmetry at some sites will al-
ways result.

Thus all components of strain will lead to ofF-diagonal
components in 5g and a coupling to field of the form we
have postulated.

The higher-order terms in the expansion of Eq. (42)

also provide the rnagnetoelastic energy quadratic in the
strains and linear in the field (Table IV). The order of
magnitude of the coeScients will again be comparable to
the observed values.

The strain-induced changes in the g values will also, of
course, contribute to the strain modulation of the spin-
spin interactions. The orders of magnitude will be simi-
lar to those arising from the variation of the lattice dis-
tances considered in the previous section. There is no a
pnori way of predicting whether the efFects will add or
cancel. Clearly, it would be of interest to carry out a de-
tailed calculation of all these effects, using the known
wave functions and energy levels, but this is a formid-
able task which we have not yet attempted.

V. CONCI. USION

%e have seen that magnetoelastic efFects can lead to
some unusual and interesting phenomena in DyA1G.
The analysis is complicated by the large number of
terms which are allo~ed by the garnet structure, but we
have been able to reach a number of quantitative, as well
as some qualitative conclusions. In particular, we have
been able to interpret some striking features observed in
the field and temperature dependence of both magneto-
striction and magnetoacoustic experiments.

The most interesting efFects arise from a property of
the structure which will also occur in many other anti-
ferromagnets: the fact that the order parameter is
translationally invariant and not, as is more often the
case, associated with a Anite wave vector. This simple
fact alone gives rise to the possibility of a variety of
terms in the energy coupling the antiferromagnetic order
to elastic strains, the magnetic field, the magnetization,
and to other order parameters, with a resulting richness
in behavior. Such coupling terms are clearly possible
also in other simpler antiferromagnets, provided only
that the magnetic and chemical unit cells coincide. Un-
der these conditions, we must expect magnetoelastic
efFects to afFect the usual magnetic properties in nontrivi-
al ways.

The most unexpected efFect which we have found is
the coupling between the antiferromagnetic order and
shear strains which will act as an induced staggered field
in the presence of a uniform magnetic field. Such an
efFect will, of course, destroy the actual phase transition
to the paramagnetic state, since there will always be
some small amount of antiferromagnetic order for all
strengths of magnetic Aeld.

For other magnetic systems, our findings emphasize
the possible importance of elastic efFects in general and
the possibility of significant consequences from relatively
small elastic strains. It mould seem clear that such
efFects must be considered very carefully in all high-
resolution studies, and especially near critical and mul-
ticritical points.

In any case, we must conclude that elastic effects can
not be neglected in the detailed understanding of model
magnetic materials.
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