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The problem of the two-level system I,TLS) interacting with a free-electron gas is considered. In
a previous work Yu and Anderson treated that problem by taking into account the screening by
the conduction electrons described by an arbitrarily large phase shift. The present paper is devot-
ed to a generalization of their result by including weak electron-assisted TLS transition processes.
Generalizing the Yuval-Anderson technique, the partition function is derived, which has the form
of the partition function of a one-dimensional Coulomb gas with logarithmic interactions. The
charges introduced depend on the phase shifts and on the electron spin and orbital quantum num-

bers corresponding to the incoming and outgoing electrons in the related electron-TLS scattering
processes. Additionally charged dipoles are introduced to describe those processes in which the
scattered electrons do not change their quantum number. Special care is paid to the formal diver-

gencies occurring in these processes if the long-time asymptotic expressions are used for the
conduction-electron Green s functions. In this way, going beyond the charge-charge interaction,
charge-dipole and dipole-dipole interactions are introduced. The next paper deals with the deriva-
tion of the scaling equations, which are derived by eliminating the short-time behavior.

I. INTRQDUCTION

In recent years two-level systems (TLS's) interacting
with a fermionic heat bath have attracted considerable
interest. This model was 6rst applied to local excitations
in the atomic motion of amorphous metals. ' In these
problems the transitions between thc two levels are due
to tunneling, thus they are very weak. Kondo proposed
that such a model may show a strong similarity to the
localized spin problem in metals known as the Kondo
efFect. ' Anderson and Yu argued that such s model in-
cluding the formation of the double-potential well for
the atom representing the TLS's might contribute to the
understanding of the behavior of the 315 compounds.
TLS's interacting with a heat bath also serves as a model
system for quantum dissipation, which has been studied
in great detail since the pioneering work by Csldeira and
Leggett. ' In these studies the dissipative heat bath is
characterized by Bose degrees of freedom. The question
hss been raised as to what extent the fermionic and bo-
sonic heat baths behave in a similar manner. The
problem under study is essentially a version of
Anderson*s orthogonality catastrophe. In the present
problem a particle with difFcrent positions is screened by
a degenerate electron gas which has electron-hole excita-
tions with very small energies. According to Anderson
the screening clouds formed around the particle with
difFerent positions are orthogonal to each other. Thus,
the hopping motion of a particle must be strongly
influenced by the overlap matrix element of the related
screening clouds. Problems of that kind have been well

known since Kagan and Klinger studied the polaron
problem in that context. " Kagsn and Prokof'ev' have
also studied the quantum diffusion of a particle coupled
to difFerent heat baths. The case of the ferrnionic heat
bath was attacked also by Kondo, and since that time
extensive study has been performed in that direction. '

Possible applications are H or 0 or muon difFusion in
metals, heavy ions in He3 liquid, and maybe the dynarn-
ics of heavy fermions in metals. In those theories and
overlap matrix elements of the screening clouds around
particles with difFerent positions play an important role
in modifying the difFusion. The present study is concen-
trated on the problem of how electron-assisted transi-
tions between the two positions of a TLS may change
the dynamics of the TLS in an essential way. In that
case a Kondo-like resonance or bound state may be
formed by the particle and the heat bath, contrary to the
case where the role of the electrons is only screen-
ing. ' ' That problem has been extensively studied in
the framework of perturbation theory using the multipli-
cative renorrnalization-group technique. ' It has been
always assumed that not only the assisted tunneling
transitions are weak, but the screening is weak also. Re-
cently, that problem has been attacked by the present
authors with arbitrarily strong ' screening. The subject
of the present paper is to give an extensive description of
the method and the results summarized in s previous
Letter.

The Hsrniltonian of the electron TLS interaction can
be given in general form ' as

+1 g X Vkk'aksak's~ (1.1)
i =X.V. Z kk'S
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where ck is the energy of the electron with momentum k

in the intermediate state and n+ is the Fermi distribution
function. The summation over the momentum leads to a
logarithmic function of the energy co.

Considering the momentum dependence of the cou-
plings Vkz. two cases must be distinguished.

A. Commutative case

When the commutator in the expression (1.2) vanishes
then the coupling V~ is not generated. The behavior of
this model is similar to the special case where only V' is
different from zero. The phenomenon is a time-
dependent screening, thus it means repeated changes in a
localized potential acting on the electrons, like a repeat-
ed x-ray absorption problem studied by Nozieres and de
Dominicis. ' Scaling equations for the system were de-
rived by applying the method of Yuval and Anderson
or the multiplicative renormalization-group technique, '

where the short-time behavior or the electrons with large
energies are eliminated, respectively. The similarity to
the x-ray problem is that the coupling strength

X ZV = V" + V' is not renormalized. That feature is
shown also in the extended case where the electrons are
coupled to a particle moving on an infinite lattice of ar-
bitrary dimension.

8. Noncommutative case

In this case both the screening by the electrons and
the assisted tunneling processes are considered and the

where the TLS is described in terms of Pauli operators
a''(i =x,y, z) and o'=+1 represents the two positions of
the tunneling atom or the two values of a collective
coordinate corresponding to the two quasiequilibrium
configurations of the atomic groups. The conduction-
electron plane-wave states with momentum k and spin s
are created by the operator ai . The interaction V&k.

gives the dependence of the electron scattering ampli-
tude on the position of the TLS, which describes the
screening of the TLS. The VkA, term represents the pro-
cess in which the TLS changes its position due to the
scattering of an electron. This term is due to the fiuc-
tuations in the density of the electrons which result in a
ffuctuating barrier for the tunneling states, thus the tun-

neling matrix element depends on the variables of the
electrons. Such processes are called electron-assisted or
incoherent tunneling, and their amplitude is proportion-
al to the tunneling matrix element; therefore,

i

V"
i
« i

V'
i
. ' That process adds to the spontaneous

coherent tunneling. In the physical Hamiltonian VQ,
can be taken as V~=0. ' In the case of the tunneling of
a single atom V' was estimated by Kondo and Black
eI; al. ,

' while V" was evaluated by Vladar and
Zawadowski. ' In the perturbation theory V~ is gen-

erated to second order and its amplitude at energy m is

proportional to V"V'

perturbation theory generates logarithmic corrections
like in the spin-Kondo problem. An Abrikosov-Suhl res-
onance is formed at the Fermi energy in the scattering
amplitude, and the temperature range below which the
resonance occurs is characterized by the Kondo temper-
ature Tz. Assuming that the couplings are important
only in two spherical wave channels they can be given in

terms of two dimensionless constants U" and U'; further-
more, the Kondo temperature Tz is a singular function
of the coupling U' as

1/4u

D („x„z)ig2
K Z

where D is the energy cutoff'. The factor (U "U')' is the
correction due to the second-order scaling to the result
obtained in the framework of the multiplicative-
renormalization-group method, where the two most
relevant angular-momentum channels can be determined
also. Further details can be found in Ref. 16. The
second-order renormalization-group equations are de-
rived in the limit U",u'gal. In the Kondo problem the
first-order renormalization-group equations were derived

by Anderson and Yuval and Hamann for the very aniso-
tropic case

~

J"~, ~

J~~ &&1 and ~J'~ & I.zo'22 The
present work is devoted to the case, where the screening
is described by an arbitrary phase shift 5 and the assisted
tunneling is given by a small parameter u".

Considering the large-phase-shift case, no method is
known by the present authors which could provide a
generalization of the multiplicative-renormalization-
group technique. The only method which works for
large 5 is the functional integral method proposed by
Anderson, Yuval, and Hamann. This method provides
a scaling equation for large 5, which reproduces the
first-order scaling in the weak-couping limit of the Kon-
do problem (

~

J"~, ~
J~I,

~

J'~ &&1). In this method
path integrals with imaginary time ~ are used and the
partition function Z is calculated.

The method is applied in two steps.
(i) The z component of the quasispin of the TLS is tak-

en as a classical variable o(r) and a typical path is de-
picted in Fig. 1. For this problem the electronic
response due to the interaction V' is calculated using
Muskhelishvili s method for the long-time limit of the
electron Green's function in a manner similar to the one
developed by Nozieres and de Dominicis. '

(ii) The eff'ect of the assisted tunneling coupling V" is
treated in perturbation theory. By applying the method
developed by Yuval and Anderson the contribution to
the diagrams are given as products of determinants built
from electron Green's functions with the same quantum
numbers (spin and orbital momentum). In the Kondo
problem the method is simpler to apply as the spin-Rip
of the localized spin is always associated with the oppo-
site Aip of the electron spin. This correlation has the
consequence that the determinants for up- and down-
spin electrons are of the same size. Such correlation be-
tween the quasispin of the TLS's and the orbital quan-
tum numbers of the electrons does not exist. ' ' In the
case of two angular momentum channels such correla-
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FIG. 1. A typical TLS path on the imaginary time axis is

depicted ~ith times of the transitions ~&,~&, . . . , ~&. The value

of the TLS transition index S;=+1 is also indicated at the
transitions.

tion would mean V"= V~ in contrast to the assumption
V~ =0. Applying the multiplicative renormalization
group' or the Anderson-Yuval-Hamann method it was
shown that the very first part of the scaling region the
coupling V~ is so extensively generated that in the main
part of the scaling region V"- V~. Zawadowski and
Zimanyi derived the scaling equations by taking advan-
tage of that observation. In the Anderson- Yuval-
Hamann technique the short-time behavior is eliminated
from the partition function by replacing the contribution
of the pairs of the interaction processes with short-time
difference by modified parameters of the theory. In the
Kondo problem only spin-Hip processes are eliminated
which involve both the localized spin and the conduc-
tion electrons. A similar calculation was performed for
the TLS problem by eliminating pairs of assisted tunnel-
ings. In an early work by Black et al. ' the pairs of
spontaneous tunnelings are eliminated in the framework
of the commutative model. Later the present authors
were successful in generalizing the Anderson- Yuval-
Hamann technique to the case where the assisted and
spontaneous tunnelings are treated on equal footing.
The couplings are treated as matrixes in the angular
momentum and spin variables of the electrons. The
difficulty in this method is that in a given order of the
perturbation theory the summation over all possible dia-
grams cannot be given by a determinant in a closed
form. Therefore, in a given order of the perturbation
theory for each vertex matrix the different matrix ele-
ments are considered separately. For such a vertex
configuration the contribution of the electrons can be ex-
pressed as a product of determinants of the Green"s
functions with the same quantum numbers. The summa-
tions over the different con6gurations are not performed.
Thus, the scaling must be derived for each configuration
separately; furthermore, the assisted and spontaneous
tunneling must be treated simultaneously without mak-
ing the assumption V"= V~.

The present work is divided into two parts. In the
first part the partition function is given in terms of
charges associated with the particular matrix elements of
the interaction. The interaction between changes de-
pends logarithmically on the time difFerence

~
r, r~ of-

the corresponding interaction points (ln
~

~; r~ ~
). The-

treatment of the Hartree-Fock diagrams results in fur-
ther diSculties. Namely, if an interaction matrix ele-
ments is diagonal, then a Green's function may connect
the same time point, and therefore the long-time approx-

imation' cannot be applied for the Green's function. As
the in- and out-going electron lines are associated with
separate charges, in this case the corresponding interac-
tion therefore cannot be treated as a logarithmic one.
Both of these two charges, however, interact with anoth-
er charge and these interactions can be treated as a di-
pole interaction, because for a diagonal interaction ma-
trix element the in- and out-going electron lines with the
same quantum number are associated with opposite
charges. In this way the charge-charge interaction
dipole-charge and dipole-dipole interactions occur. As
the charge-charge interaction is logarithmic the latter
ones are proportional to the inverse time difference and
its square, respectively. A very elaborate study shows,
however that the introduction of these interactions can-
not be done in a formal way as some specific terms must
be omitted in the expansion of the partition function ex-
pressed in terms of the charges and dipoles.

In the following paper the scaling equations are de-
rived and solved, thus the related part of the introduc-
tion can be found there.

The paper is organized as follows. In Sec. II the
Hamiltonian is given. Section III is devoted to the con-
struction of the partition function and this consists of
several parts. In Sec. III A the schema of the calculation
is outlined. The results for the partition function Z,
without assisted tunneling are summarized in Sec. III 8.
The contribution of the assisted tunnelings Z2 is evalu-
ated in detail in Sec. III C, The concept of the charges
and dipoles are given at the very end of that section. A
very brief summary is provided in Sec. V. The Appen-
dix contains some detailed calculations related to the
derivation of the dipole-dipole interaction.

II. THE HAMII, TOMAN

which will be explained in detai1. The free-electron gas
is described by

(2.2)
k, s

where ai„and ai are the creation and annihilation
operators for the electrons with momentum vector k and
spin s, and c.k is the band energy. A simplified electron
band structure mill be used which is spherical symmetric
and in which the density of states p(e) for one spin value
is constant, thus

p for —D ~c ~D,
p(e) =

0 otherwise, (2.3)

where a cutoff energy D is apphed for the band energy c.,
which is of the order of the Perm. i energy EF.

The operators acting on the two states of the TLS's
are given in form of Pauli operator as o. , or~, o'. The
first part. H, of the TLS-electron interaction describes
the screening of the TLS by the electrons, and has a di-

The Hamiltonian 0 to be treated consists of three
terms,

(2.1)
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agonal form in the TLS variables as

zl zHi X Vkk'o aksak's
k, k', s

(2.4)

6

H2= g H2 (2.5)

where Vkk. is the coupling.
All of the remaining terms are incorporated in 82,

which has six contributions

~here the spherical quantum numbers are denoted by I
and m and yI is the spherical harfnonic function. Fol-
lowing the previous works it is more convenient to use
such linear combinations of the spherical ~aves for
which Vzl is diagonal. In the following new indices m,
which represent both the spherical indices in the new
representation and the spin indices, will be introduced.
In this representation the Hamiltonians given by Eqs.
(2.4), (2.9), (2.10), and (2.11) have simpler forms:

The terms with u = 1,2,3 stand for the intrinsic dynamics
of the TI.S, which are

H, = g V",o'ata
m, P72

(2.13)

H~l ——6 0+,
Hz2 ——6+a.

H&3
——6'o',

(2.6)

(2,8}

H2& ——g V o a a+

m, m'

H25 ——g V o a a

(2.14)

(2.15)

where o = ,'(o"+—io. ), and b, ' gives the energy splitting
of the TLS and 6 =b, + is responsible for the spontane-
ous transitions (tunneling) between the two states.

82& and 825 correspond to the electron-induced tran-
sitions (electron assisted tunnehng} between the two
states of the TLS and they have the forms

and

m, m'

H,6= g V" o'ata
m, m

(2.16)

Hqq
——g V~ o a~aq,+

k, k', s

r~+
H25 ~ " kk'+ ~ ks~k's

k, k', s

(2.9)

(2.10)

where Vzl
~ is a diagonal matrix, and according to the

previous studies ' V", V, and V+ do not commute in
a realistic model. The definite form of V', V", and V~

can be given in a model where a pointlike tunneling
atom is described by the TLS l6, ls rhe notations of Ref
16 and of this work are related as V = V"+i V~,
V". = V', and b, —=(b,"+id,r)/2, and the present 6' is
half of 6'in Ref. 16.

Here Vi+i, . —( Vi, i,
)' is the coupling.

Finally, in order to treat that part of the interaction of
the form Hl, which is generated by the application of
the renormalization group, H26 is introduced as

III. CONSTRUCTION OF THE
PARTITION FUNCTION

z tHz6= g Vfi o'ai. ai
k, k', s

A. Outline of the calculation

a"„=(2m')-'"Jd'k Y; „ai (2.12)

with the value V' =0 before the application of the re-
normalization group.

Furthermore, the Hamiltonian may contain a poten-
tial scattering of the electrons by the TLS, which does
not depend on the TLS variables. This term is not intro-
duced since it can simply be taken into account as a re-
normalization of the electron wave functions in their
spherical forms.

The interaction couplings Vkk, Vkk, and Vkk can be
simpli6ed by assuming that they depend only on the
directions of the wave vectors but not on their lengths.
As in the previous works3' * ' the spherical representa-
tion will be used for the electrons where the annihilation
operator ah, is defined as

The present paper is devoted to the calculation of the
grand canonical partition function Z for the Hamiltoni-
an given in Sec. II by applying the path-integral method
with imaginary time variables denoted by ~. A given
classical path will be considered for the z component of
the TLS spin o (r), where the path is steplike and
o(r)=+1 between the steps. The steps will be called
hops (see Fig. 1) and they are kinks or antikinks depend-
ing on whether a decreases or increases. The paths are
considered in the interval 0& r &p where p is the inverse
temperature and the boundary conditions are
o(0)=sr(p)=+1. The average over the paths will be
taken in the last step of the calculation. In the first part
of the present work the partition function Z I cr(r) ) is
evaluated as a functional of the time-dependent external
field represented by cr(r)

The method formulated is described as follows. Con-
sidering Ho as the unperturbed Hamiliooian of the sys-

tem, the perturbative series of Z is
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Z=ZO y ( 1) y J d7/ ~ . I dr, . f dri&H (7iv). H (T } H,
,
( i))0,

'N=o
(3.1)

where Ia}= Iai, . . . , a;, . . . , aiv } and a; =1,21, . . . , 26 is a configuration of the indices corresponding to specific

terms of the Hamiltonian. Zo is the partition function of the electron gas represented by Ho. The operators H (r)
are given in the interaction representation with the unperturbed Hamiltonian Ho, and the average & )0 is taken with

the unperturbed density matrix. This average is restricted to the states which are eigenstates of the TI.S operator a.,
with, e.g., cr, =1. This restriction provides the boundary condition for the paths in the path integral. Considering the

integrand on the right-hand side of Eq. (3.1) and taking a given configuration Io, },the operators cr can be substituted

by their e values, which are determined by the time variables ~; of the tunneling processes associated with H», Hz2,

Hi4, and Hz5. These c values o(~}determine the path depicted in Fig. 1. Considering a given path H, (r) is a func-

tional of cr(r) and

Ho+Hi�(s)

can be taken as the unperturbed Hamiltonian, then

00 ] ~2

Zo y { I } y I dr% I d+i I d+izl &H2a (+iv ) H20. (+i ) Hia (+i) ) i i

N =0 Iaj 0 0
(3.2)

F(r)=S, '(~)e ' F{r)e ' Si(~) (3.3)

with

Si(r) = T,exp —J Hi(r'}dt'
0

where T, is the time-ordering operator. The thermal
a~erage & ), and Z, are defined as

&F(r)),=Tr[e 'S, (P)F(r)]/Tr[e 'S, (P}] (3.4}

and

where Ia}=Ia„.. . , aN} with a;=1,2, . . . , 6 and the
interaction representation is defined for an arbitrary
operator I' as

8. Calculation of Z& and the
one-particle Green's function

The present calculation closely follows the method
developed by Hsmann and applied for the Hamiltonian
H& by Yu and Anderson; therefore, only the main steps
of the calculations will be repeated. The method is
based on the observation that the partition function can
be expressed by the one-particle Green's function.

The electrons move in the time-dependent classical
field representing the TLS, and the corresponding Dyson
equation can be solved by Muskhelishvili's method for
the one-particle Green's function. This solution is de-
scribed below.

Considering the 0 variable in the Hamiltonian H,
given by Eq. (2.4) as a classical variable, it is convenient
to introduce the classical external field V (r) by the
definition

z, = &s,(p)). V (r)=ir(r)V" (3.7)

The expectation value in Eq. (3.2) will be denoted by Zi
for s given path.

The main steps of the calculation are as follows.
(i) Z, is calculated by using the long-time limit of the

electron Green's function in the presence of the external
field o (r) The interact. ion is H, given by Eq. (2.4).

(ii) Zz is determined by applying perturbation theoryIH2.
(iii) The summation over all of the paths is a function-

al integral

Z& ——T exp — ~V v a wa
13

0
(3.8)

The definition of the one-particle Green s function is

G "( , 'r)=r—&T,[ii (~)~i (~')])i, (3.9)

where the representation in which V" is diagonal is
used. The electrons move in this time-dependent exter-
nal field. Using the definition (3.5), the function Z, has
the form

Z =Zo fD [cr(i)]zizi =Zozi, (3.6}

which satisfies the Dyson equation

G' (r, r')=G (r ')+rg I d—r" G (r r")V (r")—
where ZI ——fD[o{r)]zizz. This functional integral
cannot be evaluated explicitly; therefore, we apply the
renormslization group to derive scaling equations. This
procedure is equivalent. to the summation of the dia-
grams with logarithmic accuracy in the weak-coupling
case V"p &~ 1, but represents a generalization of the pre-
vious results' for arbitrarily strong V".

X 6'g(r", r'), (3.10)

where g is introduced by Hamann only for technical
purposes. After replacing V (r) by gV (r} in Eq. (3.8),
the quantity Bz, /Bg is just an integral of the Green's
function G'g. Integrating the expression Bz, /Bg with
respect to g, Hamann obtained the following expression
for Zi .'
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Z, =exp —f dg f dr+ [gV (r)G's(r, r+)]
0 0

(3.11)

where ~—=v+5 and 6~ + 0.
The unperturbed Green's function is given by consid-

ering Eqs. (2.12) and (3.9) as
r

The Dyson equation (3.10) can be solved by the
method of Muskhelishvili applied first by Nozieres and
de Dominicis' for a similar problem. The asymptotic
solution of Yu and Anderson for

~

r —~'
~

&~7.0 can be
written in a symmetric form

1g, P X (r')
G'~(r, r')= —p, cos[5 (r)]cos[5 (r')]

7' —'r X (~)

G (r)=p f e " —, —e(r) de,e~' —1
(3.12) +pm sin[5 (r)]cos[5 (r)]5(r—r'), (3.14)

p/r—for ra&
~
s~ &P,

G(0)(r)
+piro for 0 & +r & ro, (3.13)

where ra=1/D is a short-time cutofF. This approxima-
tion provides the correct results both in the
and ro &

~

r
~

&P hmits that are the relevant regions in
the present calculation.

where 8 is ihe Heaviside function. This formula is just
a consequence of the simpli6ed band structure intro-
duced in Sec. II. This Green's function can be approxi-
mated as

where

5 (r)= —arctan[gnpV (r)] (3.15)

with g=1 the time-dependent phase shift corresponding
to the TLS position-dependent part of the scattering and

p 5 (r")
X (r)=exp —P f „dr"

7T 0 7' —'T
(3.16)

where P stands for the principal value. Using the identi-
ty (3.11), Yu and Anderson obtained the final result

1 Z11Z12Z13

=exp g f ln[l+yi (r)]+—5 (r)
0 Tp

I
g=1

dr dr' ln(jr —r'~ )
P, 1 dy (r') d y 1+y' (r)

0 0 «y' (r) —y' (r') 1+y'. (r')
(3.17}

y =mp V" (3.18)
Z2=exp g2 +Sr, +—'P

fTVp
(3.22)

y (r) =o (r)y (3.19)

and Z», Z, 2, and Z» are defined in the following.
The first logarithmic term in Eq. (3.17) is independent

of the path, and this contributes to the partition function
by

—1

Z„=g (1+y' ) (3.20)

S; = —,
' [o (~; 0) o(r; +0)], — — (3.21)

which is + 1 ( —1) for kinks (antikinks). Using this in-
dex the remaining path of Z; can be easily evaluated,
and for a path with N hops the results are

which gives an uninteresting additive constant to the
thermodynamic potential. The remaining product
Z12Z13 depends on the path which is labeled in Fig. 1,
where r; with odd (even) index corresponds to a kink
(antikink). An index S; for the hops is introduced as

25
Z ii =exp Q S,S ln

70

where the phase shift 5 is the amplitude of 5 (r)
defined by Eq. (3.15) for g= 1, thus

5 = —arctany (3.24)

z,. +1—~,-))rp, i =1,2, . . . {3.25)

[see formulas (4.15)—(4.18} in Ref. 23]. In the opposite

where the notation (3.18) is used. The second part in the
exponent of the expression (3.22) of Z, 2 is a constant,
thus that gives only an additive constant to the thermo-
dynamic potential, and therefore will be dropped. Z13
has been calculated by Hamann using the long-time
asymptotic expression (3.14) for the Green's function,
thus Eq. {3.23} is valid only if the distances between the
hops are large enough
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case t,. + &

—t,. ~ t0 the logarithmic singularity in Eq.
(3.23} must be replaced by a smooth function„just as has
been done in the case of 6' ' given by Eq. (3.13).

In the calculation of Z the explicIt form of the
Green's function (3.14) with g= 1 will be needed, which
can be expressed by the hop indices defined by Eq. (3.21)

G ' ( ~, ~' )=—,cos25

(3.26}

6' (~,~')= cos25 +2p cos 5
S,

I
t—t. (3.27)

for roar —r'go —and
I

& —&
I &&ro As 5 (~)

changes sign when ~ passes through a hop, cos[5 (r)] is
well defined for r taken at a hop, but sin[5 (~)] is not,
that changes its sign around the hop. The latter one has
a zero average around the hop, thus the second term in

the expression (3.14) for 6 ' is just omitted.
Finally, it is interesting to note that the results given

here can be generalized for an arbitrary spherical wave
representation in which V" is not diagonal. As all the
quantities used, such as 5(r), y, and 5, are expressed by
V", if V" is a matrix then all of our results hold in ma-

which is valid if
I ~; —r

I &&~0, I ~; ~'
I &&rp

As in the later apphcations the variables
t and t' will be the times of hoppings; therefore, the lim-
it

I
~ r

I
&—ro will be required also. In that limit the

exponent in Eq. (3.26) is expanded in the variable ~
The zero-order term is singular as (~—~') ', which must
be smoothed as in Eq. (3.13). Keeping only the zero-
and first-order terms, the Green's function has the limit-

ing form

trix form because the corresponding matrices commute
with each other.

Z2 ——(H2 (2'N) H2 (r )) (3.28)

In each interaction point H2(r) those terms of
H2 +,H2~ ——must be considered which are topologi-
cally allowed for a given path, thus the terms propor-
tional to o+, 0, and 0' must be taken at antikinks, at
kinks, and between hops, respectively. The expansion
for ZI can be written as

C. Perturbative expansion of Zz

A complete perturbative expansion is constructed for
Zz by generalizing the method of Yuval and Anderson
developed for the Kondo problem. In the latter case,
considering the spin-fhp interaction as perturbation the
spin-up and spin-down unperturbed electron Green's
functions form two separate but identical determinants.
In the present problem the index m covers orbital and
spin indices, thus m has at least four different values and
the numbers of the Green's function with diff'erent in-
dices may be diferent in the same term of the expansion.
The Green's functions with the same indices p =m also
form, however, determinants denoted by det„. The per-
turbative series for ZI is constructed using the perturbed
Green's functions calculated before. Special care is
necessary in the case of Hartree-Fock (HF) diagrams,
where for the closed electron loops the asymptotic solu-
tion of the Green's function cannot be used; therefore,
those must be considered in a separate manner. Finally,
there is an additional difficulty as the summation over
the indices m cannot be performed explicitly, contrary to
the Kondo problem, where the spin indices are treated
automatically. Thus, the summations over indices m are
only indicated in front of the different terms.

According to Eqs. (3.2) and (3.6) the function Z2 for a
given path o (r) is

ZI 2 ( 1) y f d~N f d~i f drlZI[a(+}](H2a~(riv}H2a~ /(+N —1} H2a/(rl) ) I

N =0 IaI

(3.29)

where Ia I =a„a2, . . . , aiv stand for a given configuration of the a =1 . . . , 6 indices in the product of Hamiltonians

H2. The integrals and the summation over the configurations Ia] also play the role of the summation over all the
paths a(~). The Hamiltonians H2 are given in the interaction representation [see Eq. (3.3)]. After using the expres-
sion for H2, given by Eqs. (2.6)—(2.11) the spontaneous and electron assisted processes can be written separately in

Eq. (3.29), and then ZI has the following form:

X f d~„. f d~, . f dr, Z, [o(~)] T, g "V '„i2t (v, )a„(~,,
0 0 0 a=1

(3.30)
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where the superscripts (a;)=+z correspond to the su-

perscripts in H2's given by Eqs. (2. 15), (2.14), and (2.16).
In the products ff, ,

"
( g;v, "') for a given

configuration [a; I the index i runs over only those
values which are associated with assisted (spontaneous)
processes. The summation over the index pairs (m;, n; )

of the assisted processes is indicated as the summation
over the configuration [m;n ). In the calculation of the
expectation value all possible pairings must be taken. In
the following a single term is considered which corre-
sponds to a given m;n configuration. Following Yu-
val and Anderson, the Green's functions with the same
index p can be written in the form of a determinant

II g /z')

det„[G„'(r, , r, )]„, (3.31)

where only those rows and columns of the determinant
are kept for which m =n; =p. The dimension of the
determinant is p„Xp„. Using this notation the follow-

ing identity is obtained:

=R ff R„det„[G„'(r,, r, )]J, (3.32)

where the Wick's theorem is applied for a rearranged se-

quence of the annihilation and creation operators labeled

by i and j respectively; furthermore, R =( —1) and

R„=(—1) )' are combinational factors related to the
rearranged sequence. P is the number of the necessary
neighbor exchanges of operators only with diferent
m;=p and n; =p' indices to obtain such a sequence
where the indices p form a nondecreasing set, thus the
operators are grouped with respect to their indices p.
P„denotes the number of the necessary further neighbor
exchanges of a creation operator and of an annihilation
operator with the same indices p to arrive at the se-
quence alternating in the creation and annihilation
operators (starting with an creation operator on the left),
but keeping the original time ordering among the
creation and annihilation operators with the same index

p, separately (r ~ r' if j &j' for two creation operators

FIG. 2. The HF electron loop diagrams are shown by solid
lines, and the dotted line is the time axis or TLS line with time
order. In the lower part the TLS path with a kink and an an-

tikink is depicted, which is associated with the HF contribu-
tions with fugacities y„+„and y„„,respectively.

and v; g~;. if i gi' for two annihilation operators with
index p).

At the evaluation of the determinant det& two cases
must be distinguished: (i) where there is no such i and j
index pair for which m; =nj and r; =rj holds simultane-
ously and (ii) where that situation occurs at least once.
The typical Hartree-Fock loop diagrams (see Fig. 2) ap-
pear only in the second case, where for the Green's func-
tions in the Hartree-Fock diagrams the short-range ex-
pression (3.27) must be used instead of the asymptotic
form (3.26).

Nondiagonal interaction

In the first case the determinant det„must be calculat-
ed using Eq. (3.26) for the Green's functions. The ex-
ponential terms occur as a multiplicative factor of the
determinant formed by the unperturbed Green's func-
tions given by Eq. (3.13) as

det„[G „(r,, r, )], =(cos5„)
/ J 7

ij

(3.33)

The determinant occurring on the right-hand side of Eq.
(3.33) is known as the Cauchy determinant, and can be
given by a simple expression ~

where i and i' (j and j') stand for the first (second) in-
dices of the determinant. Using this identity the follow-
ing result can be obtained:

I,
'3.34)

/) J
/ QJ

(3.35)
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with the notation

5 p
—5„~ if o,'=4, 5,6,

~p Pl P NP

0 if a=1,2, 3 „
(3.36)

where 5 stands for the Kronecker symbol and the matrix
T is defined for assisted and nonassisted processes as
well. At the moment, only the nondiagonal part of the
interaction is considered (n, Qm, }, but later this
definition will be generalized also for n;=m;. The ad-
vantage of this definition is that the projection on the
subspace p, and the Cauchy's expression (3.34) can be
simultaneously cast into a compact form. The appear-

P
ance of the factor R„=(—1) " is caused by taking the

absolute values of t,. —t . The proof of the sign can be
given by considering the definition of R„where the
number of neighbor exchanges of the creation and an-
nihilation operators were P„ in order to get their alter-
native sequence. This alternative sequence can be ob-
tained in two steps in a diferent way. In the first step
the annihilation operators are collected on the right, and
in the second step the alternative sequence is achieved.
The parity of the exchanges in the first step is equal with
the sign of ff, (v —~, ) in Eq. (3.34), and the parity of

(1/&)p (p —0
exchanges in the second step is ( —1) " " . Final-
ly, for the product g 'z '(~ ~,')~—0 holds. ro is in-
troduced only for convenience.

The expression of ZI can be obtained by inserting Eqs.
(3.32},(3.33), and (3.35) into (3.30), and the result

(~i (a;) ~ (~i (

li=1 k=1

J
X f d~„' ' f '+

dv, f d~Rp r Z, rr(cos5) "ff
P i,j 0

s. rp4b y~ s,.s.(zs z~)'

t0 t0
+(diagonal), (3.37)

(a )
for o. =1,2, 3

3'j= ' (~.,V '„' pcos5 cos5„ for a =4, 5, 6
l J J

(3.38)

where in the case of assisted process yj stands for a
(a-)

given matrix element V

The charge associated with the interaction points in.-

where the definition (3.36) and the identity (R„}=1 are
also used and the last bracket indicates the contribution
of second type (ii} which contains diagonal matrix ele-
ments. Furthermore, the intervals de6ned by the in-
equalities t; —t; 1gt0 are excluded, which is due to the
short-time cutoff'~0 used in, e.g., Ref. 22.

In order to arrive at a more-compact form the follow-
ing notations are introduced. In similar problems
fugacities are introduced for the interactions which are
defined as

troduced in Ref. 7 was generalized in Ref. 8 as

C/'=Tf'+S;25„/m . (3.39)

For each interaction point i a set of charges
(p, = 1,2, . . . ) are defined, and in the interaction between
interaction points i and j will be expressed by Q„C/'C"
C/' looks formally like a vector charge. The necessity of
the introduction of the index p is due to the fact, that
the summation with respect to Im;n j cannot be explic-
itly performed in expression (3.37) for Zl in contrast to
the treatment of the second part of the scaling region
considered in Ref. 7. Furthermore, in an arbitrary rep-
resentation where the phase shift 5 is a nondiagonal ma-
trix, C, stands for a matrix which also can be obtained
by a rotation from the diagonal form given by Eq. (3.39).
In the latter case the interaction is expressed by
Tr(C;C ).

Using the notation given by Eqs. (3.38} and (3.39}, the
expression (3.37) for Zl can be rewritten as

r

+1 70 j2 To

X f dr& . . f d~, f d~, Z(zR $ $ C/'C("1n + (diagonal) .

(3.40)
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In the special case where g 5 =0 this expression
corresponds to a statistical physics model [Z,2 =I—; see
Eq. (3.22)]. In that model a one-dimensional Coulomb
gas with matrix charges interacts by logarithmic interac-
tion. The chemical potential of the charged particles is
P-'Iny"

and the irrelevant term P/2' will be dropped.
The case of the interactions V* and y* is more simple

as V+ ( V ) can be placed just at the kinks with S;=1
(antikinks with S;= —1), thus using the singular part of
the Green's function (3.27) the renormalization of the
fugacity y+ is obtained as

2. Contribution of the diagonal interaction
to the Hartree-I'oak terms

+ + +
yHF=y + gyp'

P

and the notation

(3.45)

The diagonal parts of the interaction contribute to the
Hartree-Fock (HF) diagrams depicted in Fig. 2. The
Green's function given by Eq. (3.27) stands for the
closed loop, which is singular in the variable ro as rp~O;
therefore, the large HF contributions will be treated sep-
arately. The HF terms with the interactions V+ and
V occur as the renorma4zation of the spontaneous
transitions 6+ and b, of the TI.S. The Vz interaction
has been treated exactly and their contribution Z& is

given by Eqs. (3.17), (3.20), (3.22), and (3.23}. It will be
shown that the term Z&2 has the same structure as the
contribution of the Hamiltonian 823 given by Eq. (2.8)
in terms of y'=6'ro; thus Z, 2 is considered as the HF
term due to the phase shift 5„.

The interaction H23 acts at any arbitrary time ~ and
contributes as

1——y'a(r) .
TQ

(3.41)

The factor —1 is due to the factor ( —1) in the pertur-
bation series. This must be integrated over the interval
(O,P) with respect to r, and the following expression is
obtained:

Z2, =exp —2y'~o ' QS, r, + —,'p (3.42)

(3.43)

where the renormalized splitting interaction is given as

5„
yHF y —X

p

(3.44)

which depends on the hops like the expression Z, z given

by Eq. (3.22). Thus Z, 2 and Z2, can be given by a single
expression

Z3 Z21Z12 exp 2yHF+0 QSi+i+ 2P

= V p cos5 cos5+ (3.46)

3. Intermediate expression for Zt

The diagonal interaction can be taken into account in
two steps.

(i) The HF corrections provide the renormalization of
the fugacities y' and y* given by Eqs. (3.45) and (3.44).

(ii) The remaining contributions of the diagonal in-
teractions are nonsingular in the variable ~Q, thus the
long-time expression of the Green's functions given by
Eq. (3.26) and the expression (3.32) given in terms of
determinants can be used. The HF terms are eliminated
by a projection operator

1 if r+r, ,
PIJ ~0 if r&r, ,

(3.48)

in the determinants det„. Using Eq. (3.30), where

Z, =Z,2Z» is given by Eqs. (3.22) and (3.23), incor-
porating Z12 in Z3 given by Eq. (3.43), and taking into
account that the HF terms are substracted from the ex-
pectation value (3.32} given by the determinants, the par-
tition function Zz can be given as

is. a modification of Eq. (3.38) for a, =4,5.
The HF diagram calculated with the nonsingular

correction to the Green's function given by (3.27) can be
considered as a fugacity correction at time, e.g., vk in
the same con6guration I m; n I with y

* instead of y„*„for
the hop k at time ~=v.k. This correction

5„
(3.47)

)M, i (&k)

to the fugacity y* will be considered in the construction
of the dipole interaction later in this section.

N (a,. ) ~ P i+I ~0 2 0zt ——g ( —1) g g IIy, „FTr IIo '
rll f dr . . f dr f d~R

%=Q IaI Im;n I
j='l i =1

st-

expp

—2yHF g
PTQ

5,
'

exp 2 g S;Sjln
TQ

7Qdet„p,), (3.49)
J E
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where y HF stands for the spontaneous fugacities renormalixed by the HF processes and for the assisted fugacities. In
this formula all of the corrections except the one given by Eq. (3.47) are incorporated. Due to the presence of the pro-
jection operator p,J the Cauchy formula (3.34) cannot be applied for the determinants det„.

The diagonal assisted fugacities with index p at the hop k contribute to the oft'-diagonal elements of the determinant
det„. For the sake of simplicity it is assumed that the diagonal interaction appears only once; furthermore, the hop at
zk is associated with the row and column of the determinant, which are labeled by k. As a formal trick the annihila-
tion and the creation operators are taken at times i.

k and i.
k +5, respectively, where 5~0.

Now the determinant without the projection operator p,J is considered; therefore, the Cauchy formula (3.34) can be
applied. The additional factors in that formula due to the hop k are

TQ

(&k+5)—&k

(i.„—i.
, ) g (i., —i. ) g (i.„+5—iJ) g [1J—(i„+5)]

i(gk) i{(k) j( & k) j{gk)

n ("+5-,) rI (;-")
i(~k) j(&k)

rr ("-,) rr [;-("+5)]
(

Npk 1 i(~kj j(&k)

g („+5—;)ff (,—„)
i(~k) j(~k)

NI, &Q VQ=( —1) ""
J(ak) ~J

T{)—X
i(~k) ~k

(3.50)

for small 5. The first term is singular in 5 and is the term which is projected out by p,J. The remaining terms are in-

dependent of 5. Thus the hop labeled by k with diagonal interaction and without the HF contributions results in an
additional correction factor to the same configuration Im;n ] but with a nonassisted fugacity y at time i =ik. Thus,
that correction to the fugacity can be written in a compact form

TQ Tg
+ X X&~p

i (+k) p +k +i
(3.51)

where the summation over p is performed also and the notation (3.36) is used; furthermore, index i runs over all the
hops.

Our results can be summarized in a form of Zt similar to the one given [Eq. (3.40)], where the diagonal interaction
is excluded. The diagonal interactions contribute by the HF corrections (yJH„) and by the extra factor (3.51) in Eq.

SS,. 25 /m
(3.49). The

~ iJ r,
~

' " —-type factors can be taken into account in formula (3.40) by generalizing the charge C/'

for the diagonal interaction with T/' defined by Eq. (3.36) for arbitrary interaction (T/'=0 for the diagonal term).
Thus

ZJ= X ( —')"X X II&J»
IaI Im;n I j =1

(a,. )

II c'

p To tp To S;w;
di. ,R exp —2y HF $

0 0 0 ~ 7 p

)& exp g g C/'CJ"ln
i(j p 0

+c, (3.52)

where c stands for corrections of type (3.47) and (3.51).
Both of these two corrections have been considered as

corrections to the nonassisted fugacity y
—in the same

configuration I m; n ) but in which y„—„is replaced by y*.
Considering this procedure at the hop at time v =~k, the
connection factors determined by Eqs. (3.47) and (3.51)
can be given in terms of the charge C/' defined by Eq.
(3.39) in a concise form like

3' pp 7Q1+ g "" g C/'
p PHF i(~k) k i

I

for
~
ik —i,

~

&&i.o. This correction will be interpreted
as a dipole-charge interaction in the next subsection.

4. Zt in terms of charges and diitoles

The interaction term in expression (3.52) for Zt has
the form of Coulomb interaction in a one-dimensional
Coulofnb gas with logarithmic interaction. ' The orbit-
al and spin indices of the electrons are incorporated in a
color index p. The interaction occurs as the sum of the
interactions of the same colors. Considering only the
electrons with a given color p an arbitrary hop can be
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associated with the following: no electron, a single elec-
tron which may be created or annihilated (T„=—1 or
T„=1), or a pair of electrons where one is created and
the other is annihilated with the same color. The hop
with a single-electron process is considered as a charged
hop. In the last case the assisted interaction must be di-
agonal (y„„and y» have already been considered in

Hamiltonian H, ) and the creation and annihilation
operators have been split by 5 on the time scale
(5~+0). Following the concept that the single elec-
tron is associated with charge, the pair is considered as
dipole. In general, the interaction between a dipole and
charge is given as the derivative of the charge-charge in-
teraction and the dipole-dipole interaction with the
second derivative. Thus the dipole-charge (dipole-
dipole) interaction must behave like (r, —r )

[(r; rj) —]. The non-HF part of diagonal interaction
occurring as a correction to the fugacities yHF with a
time-dependent structure fits in the concept of dipoles.
Considering the form (3.53) the dipole-charge interaction
can be defined as

for a given Ia;) configuration. It is important to note
that the splitting 5 does not enter in this definition. In
the following the interaction y„*„.will stand only for the
ofF-diagonal terms and the charge-dipole interaction will

be associated with the interaction of a renormalized
spontaneous diagonal transition with another hop. Thus
P~ is interpreted as

y+„/yH+„ for a, =2,
PP

J
yii /yHF for aj =3 . (3.55)

In this way the renormalized spontaneous fugacity yHF
occurs with the correction factor

+0
exp g g C/'Pi'

iAj p J
(3.56)

where the expression (3.54) is exponentiated as

The dipole-dipole terms arise from the interaction of
two diagonal assisted transitions with the same color.
As it is shown in the Appendix the dipole-dipole term is

g C/'Pi'
imp J I

(3.54) g g P/'Pi"
i&jp ( i

2
TQ

(3.57)

where
~
r; r~ &&—ro and the dipole moment may be

de6ned as

y „+„/y H+F for u =5,
PP

y„„/yH„ for a =4,

which can be exponentiated as the dipole-charge term
has been. This term is due to loop diagram shown in

Fig. 2.
The final result is obtained by adding to Eq. (3.52) the

corrections (3.56) and (3.57), and the result is

QO W
(

Zr= X (-I)"X X II~JHF Tr II ~ ' 0"
%=0 Iaj Im;n I j=1 i =1

P 7 ~ +I Tp 2 p Si Tg

X «„''' «; ' '' «8 exp —23'HF X
0 0 0 70

)&exp g g C/'C,"ln
Ii&j 8

+ ~ ~C{P. "+~ y. P{P~ " . (3.58)
To i+i ~ ri ri I (J p (ri —Tj)

This form can be compared with the fina1 result of the
Appendix given by Eq. (A7). This comparison shows
that ZI must be expanded with respect to PJ. and only
the terms linear in any P; for a given hop i must be kept,
thus terms proportiona1 to P, must be dropped but those
proportional to P;P~ (i&j) must be kept. Th. is is due to
the fact that, e.g., D; does not occur in the expression
(A7) for the determinant A. In this way all the denomi-
nators yHF of the dipole moments defined by Eq. (3.53)
are canceled by the former fugacity factors in Eq. (3.58).

In the present result all of the diagonal assisted terms

(y» and y„„)are incorporated in the fugacities or in the
dipole terms provided that y'„„=0, thus the Hamiltonian

H26 is absent before the application of the renormaliza-
tion group. Finally, it can be easily shown, that signs
due to the Pauh operators and to the factor R are not
changed because a pair of a creation and annihilation

I

operators with the same color is always considered and

y&„——O. In any other representation of the spherical
waves P; is also a tensor like C, with respect to the in-

dices p, and then Tr replaces the sums in Eq. (3.58).
In the present formulation the contribution of the di-

agonal fugacities contains the sum of the independent
charge-dipole part and the pair correlation between di-
poles in the form of dipole-dipole interaction. Correla-
tions of higher orders are beyond our approximation
scheme. The main guideline in the present approxima-
tion is that the fugacities are small, and therefore the
distances between hops are large

~
r; r~ &&~0. —

IV. CGNCLUSIQN

In paper I of these two papers an expression for the
partition function is derived for the general electron TLS
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interaction where the electron-assisted TLS transitions
are included as well. This expression is achieved by gen-
eralizing the Yuval-Anderson method worked out for
the Kondo problem. There the long-time asymptotic
solution is used for the electron Green's function and the
electronic contribution is calculated in a closed form,
thus the partition function depends only on the positions
of the spin-Aip processes on the imaginary time axis, and
the scattering diagonal in the spin variables is taken into
account by phase shift without perturbation series. The
interaction occurs in ihe partition function as a pair po-
tential of logarithmic type between two scattering
events. The relative simplicity of the Kondo case means
that in a spin-Hip scattering process the incoming and
outgoing electrons are always in diferent spin subspaces.
The complexity of the TLS problem is the consequence
of the existence of more than two orbital channels and
that an electron scattered on the TLS by a TLS quasi-
spin-Aip process may stay in the same orbital subspace.
Therefore, using the long-time approximation for the
Green's functions of the electrons, divergences occur due
to electron creation and annihilation with short-time
differences in the partition function obtained by a brute-
force generalization of Yuval and Anderson's expres-
sion. The adequate treatment of that problem results in
an expression for the electronic contribution of a partic-
ular color (angular momentum and spin) subspace which
is not a single Cauchy determinant, thus which cannot
be written as a single product. The additional terms are
derived in a careful way and the results are summarized
in Secs. IIIC3 and IIIC4. In order to correctly treat
the singularities which appear and obtain Anite final ex-
pressions, the concept of dipoles is introduced, which
enters in a natural way.

In the case of the Kondo problem the strength of the
logarithmic pair potential depends only on the phase
shifts and their sign depends on whether the spin-fiip
processes are in the same spin directions or not. In the
present case, due to the greater variety of the scattering
processes, the amplitude of the logarithmic pair poten-
tial depends not only on the type of transition of the
TLS (spin turn up or down) but also on the colors
describing the electronic orbital momentum and spin
subspaces in which the electrons are scattered in or out.
This additional dependence occurs formally as the
charges depend not only on the phase shift but also on
the transition index T", defined by (3.36).

The attempt by the authors to eliminate the color in-
dices of the electrons from the partition function was not
successful; therefore, the di8'erent color combinations
remained as the sum over the (m;n ) configuration, e.g.,
in Eqs. (3.40) and (3.68). Such a sum is not contained in
the expression of Yuval and Anderson for the Kondo
problem. This complication resulted also in the generali-
zation of the charges given by Eq. (3.39). The concept
of the dipoles mentioned above is discussed in detail in
Sec. III C4. Formally, the dipoles can be interpreted as
a creation and annihilation of an electron with a very-
short-time difference, thus the corresponding two
charges in the same color subspace form a dipole. The
partition function given by Eq. (3.58) contains charge-

dipole and dipole-dipole interactions as well, which 6t
with the logarithmic charge-charge interaction in a one-
dimensional Coulomb gas. The detai1s are given in Secs.
IIIC3 and IIIC4 and in the Appendix, and they are
also summarized in Sec. II of paper II.

Finally we have to emphasize that the results present-
ed are based on the long-time approximation, and that
the Coulomb gas must be very dilute (fugacities are
small). The phase shifts describing the screening of the
TLS by the conduction electron can be, however, arbi-
trarily large. In the long-time approximation poles of
higher orders and potentials additional to the pair poten-
tial are not required. It will be demonstrated in paper
II, however, that in the scaling equation derived in terms
of the short-time cutoff the charges and dipoles enter on
the same footing.

The results for the TLS, which have been previously
obtained by Black and GyorfTy' and by Yu and Ander-
son, are reflected by the present result as a special case
where the electron assisted TLS transitions are dropped.
The results for the Kondo problem derived by Yuval
and Anderson can be recovered also as a special case
by interchanging the spin and orbital subspaces of the
electronic system.
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APPENDIX

In Sec. III the contributions of the diagonal fugacities
to the partition function Zz are discussed. As y» is as-
sociated with a pair of creation and of annihilation
operators, therefore, the hop interacts with the charges
of the other hops by dipole forces proportional to

The subject of this appendix is to derive
the dipole-dipole interaction. In the following a term is
considered in which the diagonal fugacities occur twice.
This contribution will be determined when it occurs in
addition to the contribution of two independent diagonal
transitions. The calculation is similar to the one
presented in Sec. IIIC3, which is based on expression
(3.49). The main part of the derivation is restricted to
evaluate the determinant A =det„[pjro/(r; —

~& )] which
is not a Cauchy determinant. In order to use the value
(3.34) of the Cauchy determinant the determinant A

must be expressed by Cauchy determinants, which con-
tain singularities if ~; =~ . To avoid those singularities
the time arguments of the creation operators are shifted
by 5&0 and then the hmit 5~ + 0 is taken as in Sec.
III C 3. The 6nal result for 3 must be independent of 5.
In the present case the Cauchy determinant 3 =det„( l/

r) contains tw—o elements for which r; =rj holds.
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For the sake of simplicity those will be taken to be at di-
agonal positions and they are labeled by k and I, thus
7k+5 and 7l+5 are the time arguments of the creation
operators and 7k and 7l are the arguments of the annihi-
lation operators.

The singularities like 1/5 and 1/5 must be canceled
in the final expression for A.

The determinant A can be expressed by the Cauchy
determinant A and by its subdeterminants. A; denotes
the subdeterminant obtained by omitting the row and
column labeled by i, and A,, corresponds to that one in
which those are dropped which are labeled either by i or
j. It can be shown by simple algebra that

The determinant A can be expressed by Akl, and the
remaining factors can be easily obtained by considering
Eq. (3.34). The results can be written for small 5 as

'2
2

(rk 7—t ) —52 2

Ak Al
A =Akl

(~o/5) Ak( (ro/5) Akt

'2
3k Al Tp

+ ~kl
7l

(A5)

where in the last term the singular part of A given by
Eq. {A3) is used. The determinant A given by Eq. (Al)
can be expressed by using Eqs. (A2) and (A5), and then
one gets

A A A Sjflg

where

2
7p 7p

~ sing
= {~t + ~k )

Z ~at

(Al)

(A2)

13=-
~ kl

7Q
~k ~kl5

7p
+ ~kl

7p
Al — Akl

5

(A6)

A„„g contains the HF terms singular in 5, which have
been substracted from A to de6ne A. By using the re-
sult given by Eqs. (3.50) and (3.51), Ak and At can be
expressed as

and using Eq. (A3) again the final results are obtained

7p—+D Akt {a=k,l), (A3)

7p
+Dkal

where

7Q
D = g Tt' (a=k, l) .

i (+a) a i
(A4)

The first term is the dipole-dipole term in Eq. (3.68) and
the second term is the second-order correction in the ex-
pansion in the charge-dipole interaction, where only the
products DkDt due to difFerent dipoles (k&l) occur.
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