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The equations of state as mell as the index of refraction of solid molecular hydrogen and deu-

terium are measured to 37 Gpa in a diamond-anvil cell. The experimental technique is given in

detail. The data are 5tted with an equation of state based on an effective intermolecular potential.
The resulting equation of state is compared to other experimental data, showing good agreement.
The critical pressure for the metal-insulator transition is predicted to be 2.8 Mbar, based on the
Herxfeld criterion and our equation of state.

INTRODUCTION

The high-pressure equations of state (EOS), i.e., the re-
lation between pressure, volume, and temperature of
solid molecular hydrogen and deuterium, are of great ex-
perimental and theoretical interest for several reasons.
Hydrogen and deuterium are expected to exhibit metal-
insulator transitions at high pressures of order 200-500
GPa. ' To calculate the critical pressure, knowledge of
the high-pressure EQS of solid molecular hydrogens is
essential. The larger planets, Jupiter, Saturn, and
Uranus are made up mainly of hydrogen under high
pressure. The EOS of hydrogen is therefore of special
interest for planetary sciences.

A number of techniques have been developed to reach
high pressures (P & 10 GPa) and measure the EOS of hy-
drogen and deuterium. High pressure has been generat-
ed dynamically, in shock wave experiments" or by the
method of the metallic Z pinch, and statically in a
diamond-anvil cell (DAC). In recent years the EOS has
been measured by shock wave velocity measurements,
by x-ray photography during compression in a metallic
Z-pinch experiment, by Brillouin scattering, and direct
volume measurements. ' ' %e have used a simple and
direct technique to measure the volume of a sample of
solid molecular hydrogen or deuterium in a DAC at
liquid-helium temperature by a combination of photo-
graphic and interferometric methods. These measure-
ments have been published in part in a prior article. 2 In
this article we give an analysis which includes new data,
as well as an extensive discussion of the precision of our
technique. A similar technique has been used by
Makarenko et al. to estimate the EOS of xenon.

Equations of state of solids are often expressed in
Birch-Murnaghan (BM) relations which have been
shown to be a useful form for solid hydrogen and deu-
terium for pressures lower than 2.5 GPa. This form for
an EOS is based on a power series expansion of the free
energy I' in the internal strain e, which is considered to
be hydrostatic. ' %e do not expect this form to have the
proper behavior to extrapolate to high pressures, where
the exponentially repulsive part of the intermolecular
potential will be dominant. %'e shaH fit our data and
low-pressure data with a curve whose form is based on

an effective intermolecular potential. The analytical
form of this EOS is derived and the physical relevance of
the parameters is discussed. In order to compare our
EOS to other experimental data, some of which are for
room temperature, we use the Mie-Gruneisen model to
calculate the temperature-dependent part of the pres-
sure„using the Debye temperatures ea given in Ref. 7.
The EOS of solid hydrogen and deuterium at 0, 77, and
300 K are given in Tables III and IV.

The first part of this article describes the experimental
technique. In the second part we shall estimate the er-
rors in the data. Since this has not yet been done in the
literature, we shall give a rather detailed analysis. In the
third part we shall discuss the analytical form of the
EOS. This is followed by a discussion of the results and
a comparison to other data. The last part of this article
discusses the polarizability as a function of pressure and
an estimate for the metal-insulator transition pressure is
given.

KXPKRIMENTAI. TECHNIQUE

Our DAC was placed inside a liquid-helium cryostat
with an optical tail. This assembly was designed to per-
mit 611ing of cryogenic fluids. The DAC, the cryostat,
and the method used to load cryogenic Quids are de-
scribed elsewhere. " The gaskets used in these experi-
ments were made of T301 stainless steel. Samples were
confined in a cylindrical channel in these gaskets as
shown in Fig. 1 in cross section. One or more ruby
grains of dimensions smaller than 5 pm were placed in-
side the sample hole to make in situ pressure measure-
ments, using the calibrated pressure dependence of the
ruby 8 line in fluorescence. ' The total volume of the
ruby grains is less than 0.1% of the sample volume.

The volume V of the sample for a right cylindrical
geometry is

where A is the area of the sample hole and d the dis-
tance between the diamonds. A was measured by the
microphotographic method shown in Fig. 2. The sample
was illuminated from both sides; the sample hole and
gasket were magnified and imaged outside of the cryo-
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FIG. 1. Cross-sectional view of sample and gasket.

stat by a set of lenses consisting of an 8 cm focal-length
(FL) lens in front of the cryostat and a 45 cm FL lens.
This image was further magnified by a microscope objec-
tive which projected it on the focal plane of a Polaroid
film holder. From the photograph the projected area of
the sample hole was measured using a planimeter. The
area of the diamond culet, defined by the diamond-bevel
lines, was also measured and used as a gauge, minimiz-
ing possible errors due to changes in magni6cation.

The distance d between the diamonds was measured
by optical interference. The sample was illuminated
with a parallel beam of white light; the transmitted light
was collected and focused on the entrance slit of a spec-
trometer as shown in Fig. 3. The diamond surfaces were
aligned parallel as explained in Ref. 11 and thus formed
a Fabry-Perot etalon. The reflectivity R of the

hydrogen-diamond surfaces is'

2 2
( +diamond ~

H2 ) ( +aiamona +n
H&

)

where n&;, ,„d is the index of refraction of diamond and
nH is the index of refraction of hydrogen. Because of
the high index of refraction of diamond (2.41 for visible
hght) the reflectance 8 is high (0.16 for n H

——1, 0.04 for

nH ——1.6). For incident light Io, the transmitted light

intensity, as a function of wavelength A, , thickness d, and
index of refraction n„(R ef. 13) is (assuming no absorp-

2

tion)

I„,„,=Io/[1+F sin (5/2)],
where I' =48 /(1 —8 ),

5=en�

„d cos(8)/A, , and 8 is the

angle the light makes with the diamond culets inside the
diamond cell. I„,„, has maxima at the wave numbers (in
cm-')

cr =1/X=m/(2n„d cos8),

where m is the order of the maximum. The distance be-
tween the maxima in the interference pattern is (assum-
ing no dispersion of n „)

60 =(2nH d cos8) '=(2nH d) ' for 8=0 ."2 "2

The optical path length (nH d) can thus be calculated"2
from the interference pattern. An experimental interfer-
ence pattern of the transmitted light is shown in Fig.
4(a). These interference patterns are divided by the aver-
age intensity with the aid of a computer, resulting in in-
terference patterns shown in Fig. 4(b).

The index of refraction n H was measured in the fol-

lowing way. The angles 8 shown in Fig. 3 and 8„(the
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FIG. 2. A schematic drawing of the microphotographic method used to measure the area of the sample.
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FIG. 3. Schematic drawing of the light paths of incident, transmitted, and rejected light beams.

angle the incident beam makes with the front surface of
the diamond, the table) are related via

sln8 n gjgmog&sln8o sln8p

The wave number of a fringe maximum as a function of
the optical distance n H d and the incident angle 8o is

Errors in the area arise from the limited resolution of
the microphotographic method, mainly contributing a
statistical error, and from deviations from the right cy-

o =m /(ZnH d cos8),
2

which, for small 8, gives

o =op(l+0. 58o/nH ),

Cf)
I

D
CD
IX

where oo rn/(2n„d)—
The wave numbers of extrema in the transmission are

therefore dependent on 8o, with a minimum at 8o=0.
The second derivative of cr with respect to 8o determines
nH independent of the optical path length. Ho was

2

varied by rotating the cryostat and measured by the
reAection of a He-Ne laser beam off of a mirror mounted
on the cryostat. %e typically measured the interference
pattern for 6ve to seven diferent angles and made a
computer 5t to the above equation. %e were thus able
to determine the index of refraction n H as a function of

2

pressure and to determine d.

SOURCES OF ERROR
IN THE VOLUME DETERMINATION

The volume of the sample is taken to be the product
of the area A and the distance d. The error in the
volume can be split into two contributions, errors in the
area and in the thickness. The statistical and systematic
errors in these measurements are estimated below.

t 4
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FIG. 4. (a) Experimental interference pattern, (b} normal-
ized pattern.
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hndrical geometry, introducing both statistical and sys-
tematic errors. The resolution of the microphotographic
method, determined mainly by the numerical aperture of
the first lens, is approximately 2 pm. To obtain an
empirical value for the statistical error caused by the
limited resolution and the plammetric area measure-
ment, several photos were taken for most pressures. The
spread in area values so measured was on average 2.5%
with a maximum of 5%. The average of several photos
was taken for the area reducing this statistical error.

Figure 5 illustrates deviations from the right cylindri-
cal geometry. The area A is taken as the projection of
the gasket hole on the focal plane of the camera. The
sample volume wiB be underestimated since parts of the
sample are hidden from the observer. Figure 5(a) shows
a sample hole with tilted walls, the angle of tilt being a.
For this geometry the relative error in the volume,
hV/V, is

b V/V=( Ad —V)/( Ad)

= —(t ana)d /D —0.33(tan2u)d /D

= —(tana)d /D for small a and d /D,
where D is the diameter of the sample hole. Figure 5(b)
shows a sample hole with curved walls. Because in all

our experiments the area of the sample hole decreased
with increasing pressure and because H2 is more
compressible than the gasket material, a convex rather
than concave shape for the walls is assumed. The
volume of a sample hole with diameter D, thickness d,
and walls with radius of curvature R is

V =n /4 [ (D +R ) d —2R (D +R )[d /( 2R )cosg+ g]

+R 2[d /3(cos2(+2)] j,
where g=arcsin(d/2R). The maximum curvature of the
walls is R =d/2. The sample volume for this geometry
1s

V =m/4[D 1+d D(l —m/4)+d (1/3 n/—8)] .

The error in the volume, hV/V, is

b, V/V = d/D—(1 m!4) —d /D —(1/3 —m/8) .

Figure S(c) shows a sample hole with tilted, curved
walls, showing that to some extent the errors may com-
pensate.

The ratio of the thickness d to the diameter D in-
creased in our experiments on H2 from approximately
0.16 at 3 GPa to 0.25 at 30 GPa. For the 02 experiment
this ratio was 0.16 at 3 GPa, as for H2, but due to a sud-
den change in diameter and thickness decreased at 13
GPa to 0.07. Except for this sudden increase in diame-
ter at 13 GPa the diameter decreased as a function of
pressure. The estimated maximum errors at 30 GPa for
H2 are

hV/V= —0.06 (curved walls),

hV/V= —0.25tana (tilted walls) .

{b)

This last maximum error is dependent on the tilt angle
o;. To obtain an empirical estimate of this error we used
an electron microscope to study a gasket that had under-
gone one pressure cycle to 30 GPa before failure of one
of the diamonds. The thickness to diameter ratio for
this gasket was 0.25. The error in the volume was es-
timated to be a maximum of 4%.

TlBckBess d

The thickness d is calculated from the optical path
length nH d and from the index of refraction nH as a

2 2

function of pressure. Errors may be caused by errors in
the optical path length and/or the index of refraction.

Optical path length

FIG. 5. (a} Cross-sectional and top view of a sample hole
which is tilted by an angle a. D denotes the sample hole diam-

eter, d denotes the hole thickness. (b) Cross sectional view of
sample with curved, convex walls. 4'c) Cross sectional view of
sample hole with tilted, curves walls.

The optical path length is calculated from the interfer-
ence pattern. The error is reduced substantially by
measuring several extrema. A typical error is 0.2%.
This statistical error is an order of magnitude less than
the statistical error in the area.

Systematic errors in the measured optical path length
may be introduced by cupping of the diamonds and by
dispersion in the index of refraction. Under pressure the
diamond faces will cup as shown in Fig. 6. This will
effect the interference pattern. The distance d is a func-
tion of the distance r to the center of the diamond faces
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FIG. 6. Cross-sectional view of sample hole showing cupped
dMHloQds.

terference pattern and a long-wavelength modulation on
the interference pattern but, neglecting higher-order
terms, does not introduce a systematic error in the
volume. The diamonds may also be slightly tilted, which
will decrease the fringe contrast, but not introduce a sys-
ternatic error in the volume determination.

A different systematic error in the optical path length
may arise due to dispersion in the index of refraction.
The distance (in cm ') between two successive extrema
1S

bo =mz/(2n2d) m,—/(2n, d),

d(r)=d + — r +higher orders,1 8 d
dr

where d0 is the distance between the diamonds at the
center. The volume of the sample is

V= 2trd(r)r dr =trro do+ — ro
0 1 Bd

0 4 Br'

where ro is the radius of the sample hole. The transmit-
ted light intensity I„as a function of r, is

I, =Io l[1+Fsin (5/2)] =Is(1 ,'F + ,'F—co—s5),—

where 5 is 4mnH d(r)/A, . The total intensity of the
".2

transmitted light is

ro
I,„,„,=f 2@I,(r)rdr .

Substituting I, in the integration we find after some
arithmetic that

I„,„,=Io ( 1 ,' F)err o + —,
' —n r—iiIoF( sinb, /6 )cos5o,

where 6 is

1 c)d
47T'7f H r 0

Br

alld 50 is

1 Bd
4~Pl H ~0 2 r0

2 Qr
L

The periodicity of the interference spectrum of the
transmitted light is therefore

and the thickness defined by this periodicity is

1 06/8 =cf + r0 g ~ 2 0

The volume calculated from this thickness d is

equal to the sample volume. Cupping of the diamonds
therefore produces a decrease in the contrast of the in-

where m2 is the order of the second extremum and is

m, +1, and n2 is the index of refraction at the wave
number of the second extremum and is approximately
n, +(dn/Bo )ho. Substituting we find

(2nd) '=ho 1+ cr, /n

where 0, is the wave number of the first extremum.
Due to dispersion in the index of refraction, the optical
path length is underestimated. The index of refraction is
related to the polarizability u by the Lorentz-Lorenz re-
lation

(n ' —1)/(n '+ 2)= ', lr(ItI„ /—V)a,

where X„ is Avogadro's number and V the molar
volume. In the simple oscillating shell model' u is
given by

a(o )=Z;e /m(cro —cr ),
where 0.0 is the frequency of vibration of the atomic
shell, Z; the atomic number, e the charge, and m the
mass of the electrons of the shell. %e write
a=Fo/(o'o —cr ), where cro can be seen as an average2 2

electronic transition frequency. Substituting this rela-
tion for o. in the L-L relation and di6'erentiating both
sides gives

cr/n =(n +2)(n —1)/(3n )cr /(oo cr ) . —
0

The gas value for 0.
0 is 114000 cm ', ' and cr is approx-

imately 18000 cm '
(n is given below as a function of

pressure). Substituting, we find the dispersion in the in-
dex of refraction, assuming that o0 is pressure indepen-
dent, to introduce a systematic underestimate of the op-
tical path length of 1.75%%uo at 3 GPa to 3% at 36 GPa,
thus introducing under this assumption a systematic de-
viation in the relative volumes of =1.3%.

Index of refraction nn

The index of refraction nH is measured independent

of the optical distance nH d. Figure 7 shows the mea-

sured nH and nD as a function of pressure. The error

bars in the index of refraction measurements are rela-
tively large. Because of this no distinction has been
made between measurements on H2 and 02. The pre-
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cision was restricted by the limited angle ( —7'&80&7')
under which the cryostat could be rotated. The errors
also become larger for higher pressures because the in-

dex of refraction of hydrogen increases, thereby decreas-
ing the fringe contrast, in addition to the decrease due to
cupping of the diamonds. In some of our more recent
measurements the diamond faces were coated with a
partially transparent coating of Cr, thus removing the
dependence of the contrast on nH . Shimuzu et al.

2

measured the index of refraction by Brillouin scattering
up to 20 GPa. These measurements are indicated in Fig.
7 by solid circles. To obtain an analytic form of n H as a

function of pressure we used the following smoothing
curve:

nH D ——0.828(1.694+8) ' ' —0.708 +0.0010229P,

FIG. 7. Index of refraction n of H2 and 02 as a function of
pressure. The line is the smoothing curve 4,

'see text). Upper
limits on some of the points were determined from the fringe
contrast.

ANALYTIC FORM OF THK KQS

%'e have 6t our measurements to an analytic form.
The principal objective is to find a form, governed by the
physics of the problem, which can be fit to the data with
a small number of parameters and extrapolated to higher
pressures without fear of becoming nonphysical. %'e

have chosen an analytical form which incorporates
zero-point motion contributions to fit our P-V data,
based on an eftective intermolecular potential. A
rigorous derivation is not used.

The EOS is most easily arrived at by consideration of
the free energy. The free energy of s solid is formed of
two parts, a static part equal to the lattice potential en-

ergy, and a dynamic part due to both zero-point motion
(ZPM) and lattice excitations. Writing

F=F t ~+FzpM+F(t T)

the pressure P is given by

=Fstat+PzpM+F ( V T) .
"dF—

The static lattice energy is, neglecting three-body in-
teractions, the sum of the intermolecular interactions
over the lattice. Considering nearest-neighbor (NN) in-
teractions only, we can write

F„„=ZE„4(R),
where 2Z denotes the number of nearest neighbors, N„
is Avogadro's number, R is the intermolecular nearest-
neighbor distance, and 4(R) is the intermolecular in-
teraction potential. This approximation for the lattice
energy wi11 be better for the short-range repulsive core,
where NN interactions are dominant, than for the long™
range attractive part.

The zero-point motion energy is'

where P is in units of 10 Pa. 's The form of this curve
wss chosen such that the polarizsbility as given by the
I.-I. relation is s constant or decreasing function of pres-
sure. This smoothing curve Sts our data as well as the
data of Shimuzu et al. This smoothing curve for n can
introduce systematic errors. Since the curve is within
0.7% of other measurements of n H, both at high and at2'

zero pressure, ' we estimate the error to be & 1.0%%uo.

To conclude, systematic and statistical errors in the
volume can be introduced by several causes. The most
important errors are systematic errors in the areal mea-
surernents. %e did not have enough experimental infor-
mation to try to correct our EOS to minimize the impact
of systematic errors.

We compare to xenon, where Mskarenko et a1.
found a fit with the EOS of Ross and McMahsn' with s
1.5% mean deviation between IO and 60 GPa. At 60
GPa the thickness-to-diameter ratio was 0.20. X-ray
dN'raction studies on solid xenon' showed the EOS of
Ross and McMahan to give shghtly (1—2%) smaller
volumes than experimental. However, xenon is less
compressible than H2 and the systematic error for H2
could be larger for a similar thickness-to-dismeter ratio.

where (cu) is the first moment of the vibration spec-
trurn. For a Debye spectrum FzpM is given by'

FzpM = '2NqR(co) = 9EqfuoD

In the free-volume theory, in its simplest interpretation
given by Lennard-Jones, eD is related to the pair po-
tential 4(R) via

m~D ~
z

R 4(R)2R' ~R

Assuming the lattice energy E„„ is proportional to
4(R), coD is given by

mcuD ~ V F„„.2 2

%'e use this theory, which relates the zero-point motion
energy and the lattice energy, to derive the analytic form
of the zero-point motion contribution to the EOS. The
analytical form for the EOS contains several (four) pa-
rarneters snd mill be fit to the experimental data, to
determine these parameters.

Different intermolecular potentials have been pro-
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posed for H2 and Dz. ' %e use as a basis for our EOS a
simplified version of the potential due to Silvers and
Goldmsn,

4(R)= A exp( —PR) C—f (R)/R

where

f (R)=exp[ (8.—24/R —1) ]

is a function which stienustes the attractive van der
Waals term at short distance (R in a.u. ).

The static pressure P„„is

av

=C, Y exp( —C2Y) C3f (—Y)Y

where Y =R /R„and R, is the nearest-neighbor distance
at a reference volume V„. The zero-point motion pres-
sure 1s

2 1/2
—~+zpM —«~

ZPM gV gV
( stat)

=C Y [J(Y)] ' G(Y),

where

J( Y') =C, [exp( CY)](—C —2jY)—5C3f ( Y)Y

If V„ is taken equal for H2 and 02, we expect C& —C3 to
be (approximately) the same for both isotopes, and
C4(H2)/C4(D~) =&2.

The pressure at T=0 K is

~ =~stat+~ZPM .

All our data were taken at liquid-helium temperature, so
P ( V, T), the thermal pressure, is negligible, since

OD )~5 K. To compare our data to other experimental
data, some of which have been taken at room tempera-
ture, the thermal pressure is calculated using the Mie-
Gruniesen model. The thermal pressure csn be given in

this model as a function of a characteristic temperature

8D and the Gruneisen parameter y( V):

P(V, T)=y(V)9Nqkb/8D(V)T I x j(e"—1)dx,
0

where

—8 ln8
y( V) = and xD ——8Lt /T .

8lnV

For eD we use an empirical function proposed by Ber-
khout and Silvers,

8rt = II exp(D„b"), k & 0,
with b =ln(V/Vo) and Vo the zero-pressure volume.
The parameters used are given in Table I, taken from
Ref. 7.

RKSUI.TS

G(Y')= C, exp( —C2 Y)(Cz —2C2/Y' —2/Y )

40C)f ( Y)Y—

with

f(Y)=exp[ —(3.254Y 'V, ' —1) ] .

For simplification f (Y), which is the same attenuation
function as the function f (R ) given above, is taken as a
constant for the difFerentiations. The EOS at T =0 K
contains four parameters, C, -C4. In a Birch relation

Vo, the zero-pressure volume is an independent variable;
in this EOS we use a reference volume V„which is not
an independent variable. V„ is taken as 20 cm /mole for
both H2 and 02. C, and Cz are related to the parame-
ters a and P in the exponentially repulsive part of the in-
termolecular 4(R ),

C, =C2X„ZA /(3V„),

C2 =pR, ,

where A is e . C3 is related to parameter C in the at-
tractive part of 4(R ),

The sample volume is measured as a function of pres-
sure. However, the amount of material in the sample
volume is not known. Although this could be calculated
from the original size of the sample hole, leakage at low
pressures (P g0. 1 GPa) or precompression could intro-
duce substantial errors. We therefore scale the sample
volumes to the known molar volumes of H2 and Dz at
low pressure (P &3.0 GPa) using the EOS of Ref. 7.
Typically an experiment consisted of eight volume mea-
surements st pressures between 1.0 and 30 Gpa.

%'e take our data and determine the coefFicients

C, -C4 by minimizing
' 1/2

0 = g(b, Vk/Vk )

where k runs over our data points and over eight points
of the EOS given in Ref. 7 between 10 and 20 cm /mole.
Here 5 Vk is the difFerence in molar volume between the

TABLE I. The coe%cients DI,. and Vo used in the analytic
expression for e.

D2
C3 2NqZC/V, . ——

Taking EzPM ———,'AX&ma and mrna ——V Fst„, C4 is calcu-
lated to be

C4 = 3'/R„[N„ /(3mZV„)]—'

Da
Dl
Dg
D4
~o

4.5987
—2.2128
—0.611 92
—0.0196
23.207 I',cm'/mole)

4.5525
—1.836
—0.184 48

19.95 (em'/mole)
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TABLE II. The coeScients of the T =0 K isotherm, V, =20
cm'/mole, I' in GPa.

H2

02

10" GPa
0.6839
1.0811

9.995
10.531

GPa
0.3317
0.3629

10-' GPa'"
5.577
3.902

TABLE III. EOS for solid H2 at 0, 77, and 300 K using the
analytic from with parameters given in Table II.

V (cm /mole)
Pressure (GPa)

T=0 T=77 K T=300 K

20
19
18
17
16
15
14
13
12
11
10

8

6
5

3

0.0647
0.0923
0.1313
0.1842
0.2572
0,3587
0.5032
0.7071
1.005
1.446
2.116
3.165
4.867
7.76

12.97
23.12
45.09

100.7
281.6

0.5559
0.7518
1.042
1.473
2.139
3.182
4.879
7.77

12.98
23.12
45.09

100.7
281.6

5.311
8.15

13.29
23.37
45.24

100.7
281.6

measured data points and a calculated point of the EOS.
The resulting cocScicnts C, -C4 for H2 and Dz are
given in Table II. The resulting equations of state for
T =0, 77, and 300 K are given in Tables III and IV for
H2 and D2, respectively. The EOS for T =0 K of D2
given here is the same as the EOS given in Ref. 2, while
for H2 it differs due to the inclusion of new data points.
The EOS given here is somewhat softer at high pres-
sures. This may of course be due to systematic errors as
explained above. The difference between the two equa-
tions of state is always within the estimated maximum
error. In general, C, -C3 are roughly equal for H2 and

Dz as expected, since these coefficients are related to the
static lattice energy. C& and C2, the coefficients corre-
sponding to the repulsive part of the potential, are small-
er for H2 than for D2, because H2 is slightly softer for
high pressures than Dz. Thc coef6cicnts C4 are close to
the calculated coemcients, which for 12 nearest neigh-
bors are 6.93 X 10 (GPa)' and 4.9X 10 (GPa)' for
H2 and D2, respectively. The EOS at T =0 K is shown
in Fig. 8 on a quasilogarithmic scale in which we add 0.1

Gpa to the sample pressure. Figure 9 is a deviation plot
showing the relative difference between the measured
volumes and the EOS, dLV/V, as a function of volume
for H2 and D2, respectively. Also shown, by open cir-
cles, are selected points of the EOS of solid Hz and Dz

TABLE IV. EOS for Dz at 0, 77, and 300 K using the ana-
lytic form with parameters given in Table III.

V {cm'/mole)
Pressure (GPa)

T=O K T=77 K

20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2

—0.0008
0.0118
0.0407
0.0829
0 1AAA

0.2340
0.3655
0.5602
0.8526
1.300
1.998
3.121
4.992
8.250

14.26
26.25
52.80

121.6
351.4

0.6484
0.9328
1.370
2.058
3.169
5.028
8.275

14.28
26.25
52.81

121.6
351.4

5.873
9.117

15.09
26.98
53.39

122.0
351.4

«om Ref'. 7. For D2 no systematic deviation between
the EOS and the measured volumes is seen. For Hz a
small positive deviation for volumes greater than 7
cm /mole and a small negative deviation for smaller
volumes is seen.

POSSIBI K MODIFICATION OF THE KOS
AT HIGH PRESSURE

We have derived equations of state for H2 and D2
based on certain assumptions, namely a simplified
Silvera-Goldman potential; the seven coefficients of the
potential, a, P, and y for the repulsive core, and C6, C„
C9, and C,o for the long-range interaction are replaced
by three, A, and 8 for the repulsive core, and C for the
attractive 8 interaction. The zero-point motion pres-
sure is calculated by a simple model. Next-nearest-
neighbor as well as three-body interactions are not con-

25—
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FIG. 8. The T=O K isotherms of H2 and 02. Pressures
beyond 37 GPa are extrapolations.
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FIG. 9. The relative difference in volume hV/V as a func-

tion of the molar volume between the measurements and an an-

alytic EOS given by the horizontal line. Selected points of the
EOS of Ref. 7 are given by open circles. (a) H2, (b) 02.

sidered. The latter is believed to be responsible for a
softer efFective pair potential at high pressure.

In this approach we have completely ignored the
internal structure of the molecules, which must begin to
expose itself as one approaches the molecular-atomic
solid transition. A contribution to the EOS which has
not been explicitly taken into account arises from the
zero-point motion associated with the molecular vibra-
tions, the vibrons. This intramolecular zero-point
motion pressure is small, of order 0.001—0.3 GPa in the
pressure regime of 0—10 GPa, but not negligible. It is
small in the 30-50 GPa region since the vibron frequen-

cy goes through a maximum at approximately 30 GPa
(Ref. 24) for the Raman-active and 50 GPa (Ref. 25) for
the infrared (ir) active vibrons, and as we shall see this
pressure is proportional to BV/BP. All of these effects
and simplifications are incorporated in C&-C4 to some
extent.

Raman-scattering experiments at high pressure
have shown that the pressure dependence of the in-

tramolecular Raman-active vibrational-mode frequencies
of H2 and 02 do not scale according to the mass ratios.
Using the Dunham theory, %'ijngaarden et al. "
transformed these vibrational-mode frequencies to a
mass independent value. Above approximately 10 GPa
the values for Hz and 02 diverged. This as yet unex-
plained phenomena indicates that the inAuence of the in-
termolecular interactions on the intramolecular bond is
difFerent for the two hydrogens for high pressure. One
consequence of this could be that at a given pressure the
intrarnolecular H-H distance difFers from the D-D dis-
tance. The efFective pair potentials can then be diferent
for the two hydrogens, resulting in difFerent equations of
state.

For extrapolation of the EOS to higher pressure it
should be realized that the intramolecular zero-point
motion pressure wi11 give a negative contribution to the
total pressure. At pressures above 2 Mbar the vibration-
al frequencies continue to decrease. %'e estimate the

=0.5N„ fi(8/V)

COMPARISON TO OTHER KXPKRIMKNTAI. DATA

»gure 10 compares the deviation b, V/V of other ex-
perimental data on the EOS of H2 with our results, as a
function of the molar volume. Several experiments have
been done for pressures below 2.5 GPa. Most of these
have been reviewed by Driessen et al. , and were fitted
for T =0 K by a BM equation which is compared in Fig.
10 to our T =0 K isotherm by curve 1. Recently Ish-
maev et al. investigated solid para-H2 by neutron
difFraction between 4.2 and 100 K to pressures of 2.4
GPa. Their results are given by curve 5. Above 2.5
GPa the EOS of H2 has been measured by Matveev
et al. in a metallic Z pinch to 15 GPa, by Ross et al. in
shock wave experiments to 76 GPa (Ref. 4) and by
Shirnuzu et al. to 20 GPa by Brillouin scattering. The
measurements of Matveev et al. are given in Fig. 10 by
solid dots. The temperature for this experiment was
given as ~ 100 K and their results are compared to our
T =0 isotherm. The 0 K equation of state for solid H2

]l I I I (
I

L. {1981)
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g

0

2
l
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I
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FIG. 10. A comparison of the relative difference in volume
hV/V at equal pressure as a function of the molar volume be-
tween this work and other data. Our EOS is given by the hor-
1zontal axis.

~here 8 is the bulk modulus and V the molar volume.
If we take the Raman-active vibron frequency as a mea-
sure for the total intramolecular vibrational energy, we
can estimate PzaM(vibrons) using the measurements of
Mao et al. up to 150 GPa. PzpM is approximately 0,
—4, and —9 GPa at 50, 100, and 150 GPa total pres-
sure, respectively, for H2 and 0, —1, and —2 GPa for
02. This shows that for H2 between 100 and 150 GPa,
the intrarnolecular modes give an important, negative
contribution to the total pressure. which increase with
pressure. Because this efFect has not been taken into
consideration in the EOS we might speculate that at
pressures of more than 100 GPa, the EOS for H2 given
here overestimates the pressure.
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derived by Ross et a/. is compared to our T =0 K iso-
therrn by curve 3. The T =300 K isotherm derived
from the Brillouin measurements by Shimuzu et a/. is
compared to the 5 =300 K isotherm of our EOS by
curve 4. Perhaps the most accurately determined high-
pressure point is from the recent x-ray study of Hazen
et a/. who found V=7.994+0.015 crn /mole at 5.40
GPa and T =300 K. Correcting our measurement to
300 K Table III gives P=5.33 GPa at this density.
More appropriately, at a pressure of 5.40 GPa we find a
deviation of AV=0. 019 cm or b, V/V=2. 38)&10 in

excellent agreement. Finally, for comparison, the EOS
for Hz given by us in Ref. 2 is given by the dashed curve
2.

These measurements, taken independently and using
different techniques, overlap within 5% in volume, ex-
cept for the measurements by Shimuzu et al. Our EOS
gives slightly higher (approximately 2%) larger volumes
than other experimental data for molar volumes larger
than 11 cm /mole. For this regime we recommend the
EOS of Driessen et al. This EOS, when extrapolated,
gives a substantially larger volume than the other mea-
surements, but as explained above, a BM equation is not
the best analytic form of the EOS for extrapolation. For
decreasing molar volume an increasing difference is seen
between our EOS and the EGS given by Ross et a/. , up
to approximately 5%. This difference is not outside the
estimated maximum error. The EOS of Ross et a/. is
dependent on data from shock experiments taken on Hz
and Dz. These experiments comprise single-shock exper-
iments on Hz to a pressure of 20 GPa, corresponding to
a molar volume of 7.1 cm'/mole, and double-shock ex-
periments on Dz, corresponding to a molar volume of
3.8 cm /mole. From these data one effective potential
for both Hz and Dz was calculated. For small molar
volume the resulting effective potential is therefore main-

ly determined by the Dz experiments. Differences be-
tween the effective potentials of Hz and Dz for inter-
molecular distances smaller than those probed in the Hz
experiments could explain the difference between our
EOS and the EOS given by Ross et al. Comparing the
measured single-shock Hz molar volumes to the calculat-
ed molar volume at high pressures, a small systematic
difFerence can be seen, with the measured volumes being
smaller than the calculated volumes.

Shimuzu et a/. derive an EOS for Hz from their Bril-
louin scattering measurements that is substantially
different from the other experimental data, as can be
seen in Fig. 10. A possible explanation for the difference
in the equations of state for solid Hz is given by Shimuzu
in a later article. The hypersonic longitudinal and
transverse speed of sound of solid Hz and the hypersonic
speed of sound of liquid Hz were measured. From these
the bulk modulus 8 is calculated as a function of pres-
sure and by integration of 8 over pressure the EOS is
calculated. The EOS for the solid phase therefore de-

pends on measurements taken in the Auid phase. Chemi-
cal contamination of the Hz in the liquid phase might
inAuence the sound velocities in liquid Hz and the result-

ing EOS for both the Quid and solid phase. It was

indeed noticed that the sound velocity in Hz decreased
as a function of time, probably due to progressive con-
tamination. Shirnuzu estimates this efFect to contribute a
constant shift in volume of 0.4 cm /mole for solid Hz.
The EOS of solid Hz when corrected for this effect is

given by curve 4a, showing improved agreement with
our EOS and other data. It should be remarked here
that some of these data are for parahydrogen and some
for normal hydrogen. However, at high pressure the
ortho-para effects on the EOS should be negligible. In
conclusion, we believe that reasonable agreement be-
tween our EOS and other data, with the exception of the
uncorrected EOS of Shimuzu, exists.

POLARIZABILITY AND THE METAL-INSUI. ATOR
TRANSITION

The polarizability, a, of solid Hz and Dz can be calcu-
lated as a function of pressure using the Lorentz-Lorenz
relation

(n 1)/(n—+2)=~4m(X„ /V)a,

where N z is Avogadro's number and V the molar
volume. Using the smoothing curve for n given above,
the EOS of Driessen et a/. for molar volumes less than
11 cm, and for smaller volumes the EOS given here for
Hz at T =0 K, we And the polarizability to be essentially
a decreasing function of pressure. In Fig. 11 we show
the polarizability of Hz as a function of density. The
static values of cx measured by several workers are given
in Fig. 11: Peck and Huang, ' Diller, ' and Younglove
(curve 1 for the Iluid phase, curve 2 for the solid) and
are approximately 8.03 & 10 crn . The dynamical
values at 5145 A were measured by Peck and Huang
(open triangle) and Diller (open square} and are approxi-
mately 8.27&10 cm . Shimuzu et a/. estimate u to
be pressure insensitive in the Quid phase with
o.=8.17X10 cm and to show a discontinuous de-
crease on the Auid-solid phase transition followed by a
continuous decrease in the solid phase to 7. 12&(10
cm . Using the corrected EOS of Shimuzu a is given

by curve 4a. The polarizability from our work is given

by curves 5 and 6. [Curve 5 gives a for low pressures
(P & 1.5 GPa} using the EOS of Driessen et al. ; curve 6
gives a for higher pressures. j In general the polarizabili-

ty is a decreasing function of pressure. At pressures
below 1.5 GPa rx determined here agrees within experi-
mental error to the values as measured by Peck and
Huang and Diller.

The insulator-metal transition of Hz has been the
focus of considerable research ever since signer and
Huntington proposed a structural transition from a di-
atomic to a monatomic metallic phase. Since then many
predictions of the insulator-metal transition have been
made. Friedly and Ashcroft have predicted a continu-
ous insulator-metal transition in the molecular solid,
with band crossing at a volume of 2.4 cm /mole, and a
pressure of 210 GPa. Monte Carlo simulations by
Ceperley and Adler in both the molecular and atomic
phase are in reasonable agreement with our EOS and
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FIG. 11. Polarizability of H, as a function of density.

give a transition pressure and volume of 2.8 Mbar and
2.1 cm /mole. Recently Min et al. predicted a transi-
tion from a diatomic insulator to a diatomic metal state
at a volume of 2.33 cm /mole, corresponding to a pres-
sure of 170 GPa, followed by a structural phase transi-
tion to a monoatomic metallic phase at 400 GPa. The
highest pressure reached for Hz and D2 in a DAC is 147
GPa (Ref. 27), for which the sample remained transpar-
ent.

Recently the insulator-metal transitions of several

molecular and ionic solids under high pressure, e.g., Iz,
'

HI, BaTe, and CsI, have been investigated. For
these solids the Herzfeld criterion accurately predicts
the metal-insulator transition. In the Herzfeld approach
the dielectric constant and also the index of refraction
become infinite at the insulator-metal transition. It then
follows from the Lorentz-Lorenz relation that the
metallization volume V is 4m% ~a. Using the Herzfeld

criterion we estimate the metallization volume to be 2.02
cm /mole, corresponding to a pressure of 280 GPa.
There have been some claims of metallization of hydro-
gen in dynamic compression experiments. ' However,
we believe that a satisfactory proof of metallization with
reliable measurements of physical properties should be
done statically under equilibrium conditions. Tech-
niques to reach pressures of the required magnitude on
hard materials, using a DAC, have recently been
developed. However, extending these techniques to a
soft material such as hydrogen remains a challenging
problem.
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