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Results obtained from extensive Monte Carlo simulations of domain growth in the two-
dimensional spin-exchange kinetic Ising model with equal numbers of up and down spins are
presented. Using difterent measures of domain size —including the pair-correlation function, the

energy, and circularly-averaged structure factor —the domain size is determined (at T =0.5T, ) as
a function of time for times up to 10 Monte Carlo steps. The growth law R(t)= A +Bt'/ is

found to provide an excellent fit (within 0.3%) to the data, thus indicating that at long times the
classical value of —, for the exponent is correct. It is pointed out that this growth law is equivalent

to an effective exponent for a1I times (as given by Huse) n,z(t)= —,
' —

—,'C/8 (t). No evidence for

logarithmic behavior is seen. The self-averaging properties of the various measures of domain size
and the variation of the constants A and 8 with temperature are also discussed. In addition, the
scaling of the structure factor and anisotropy efrects due to the lattice are examined.

I. INTRODUCTION

The kinetics of domain growth in the late stages of
diffusion-limited spinodal decomposition has been stud-
ied by a variety of methods. However, disagreement has
remained as to the asymptotic time dependence of the
average linear domain size R (t) for long times t except
in the limit of small concentration. Thus, for example,
the classic work of Lifshitz and Slyozov' predicts a
long-time growth law of the form R (t)-t" where n =-,',
in the limit of a dilute amount of one phase. On the oth-
er hand, more recent work by Mazenko et al. on spino™
dal decomposition of the two-dimensional Ising model at
50% concentration, has led to the prediction of a loga-
rithmic growth law at long times in this case. At the
same time, Monte Carlo simulations of spinodal decom-
position in the two- and three-dimensional Ising model
(also at zero total magnetization) have found efFective ex-
ponents in the range 0.17-0.25 when fitting the domain
size to the power-law form.

Recently, the Lifshitz-Slyozov theory has been gen-
eralized qualitatively to apply to the case of equal frac-
tions of the two phases by Huse. Huse's theory assumes
that the rate of growth of the average domain size can
be written at late times, as

dt
=C, /R'(t)+C, /R'(t)+0(R -'),

where C2 corresponds to the contribution to growth
from diffusion between domains through the bulk and
C3 corresponds to the 5rsi-order correction, due to the
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n,s(t) =d I ln[R (t)] I /d (lnt) (4)

and C =—,
' A. Huse also presented Monte Carlo data for

a 192/ 192 lattice consisting of an average of 21 runs up
to 4000 Monte Carlo steps (MCS) and 7 runs from 4000
MCS to 40000 MCS, at a temperature of T =0.9T„and
one run (of 4000 MCS) at T =0.5T, . The effective ex-
ponent in Huse's data was found to increase with time
t —in agreement with his prediction. However„ the un-
certainty in the data led to an extrapolated long-time ex-
ponent of n (t = ao )=0.29+0.04—rather disappointing-
ly far from —,'. In addition, there were large fluctuations
in the later-time data.

Recently, in a detailed analysis of fluctuations in
Monte Carlo simulations, it has been pointed out that
certain measures of domain size (such as the value of the
peak of the structure function) may be quantities which
are not self-averaging —i.e., whose relative error does
not increase with increasing system size. In addition, it
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transport of spins along the interface between domains.
Solving Eq. (l) for large R and t, Huse obtained the
growth law

R (t)= A +Bt'",
where A =C&/2C2 and 8 =(3Cz)' . This resulted in a
prediction for the eff'ective exponent ,n(ts) at long times
given by

n,~(t)= ,
' C /R (t)-, —

where , n(ts) is defined by
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has been emphasized that even for quantities which are
self-averaging, one still needs to do averages over a large
number of runs (possibly up to 1000) in order to get
good results for growth exponents. At the same time,
other measures of domain size, such as the first moment
of the structure factor, were not studied in Ref. 6. Thus,
it was felt that a more extensive study, involving a larger
number of runs and a longer simulation time, as well as
a variety of measures of domain size, would be useful.
In addition, tile choice of a fairly large (512X512) sys-
tem would decrease the errors due to finite-size e6ects
and increase the statistics for those quantities measured
which are indeed self-averaging.

In this paper„we discuss the results of such a more ex-
tensive study, using a novel multispin Monte Carlo algo-
rithm. Our results suggest strongly that the classical
value of —,

' (e.g., 0.33020.005) is indeed the correct ex-

ponent in the asymptotic time regime, with the e8'ective
exponent varying linearly with I/R for intermediate and
late times, in agreement with the qualitative behavior
predicted by Huse. More strikingly, perhaps, we find
that a growth law of the form 8 (r)= 2 +Br '~' provides
an excellent fit to our data. At the same time we see
clearly the effects of the lattice in our simulations. We
also discuss scaling, including slight deviations
therefrom, and the dependence of the coeScients A and
8 from our fit as a function of temperature and cover-
age. In particular, while the observed variation of the
long-time coeScient 8 with temperature (at low temper-
ature) agrees quite well with the predictions of Huse, the
coemcient A appears to increase more slowly with de-
creasing temperature than indicated by the arguments of
Ref. 6. The self-averaging properties of our various
measures of domMn size are also discussed.

II, MONTE CARLO SIMULATIONS

Our Monte Carlo simulations were conducted, using
the standard Metropolis algorithm, on a 512g 512
square lattice with isotropic nearest-neighbor couplings J
and periodic boundary conditions. Using the binary rep-
resentation of an Ising spin as 1 bit of a 64-bit word, we
were able to store the entire lattice as one 4096-word
binary array. However, instead of simply attempting
one spin exchange at a time, we used an emcient vector-
izable algorithm involving a form of multispin coding
which is an extension of the checkerboard" algorithm'
used in multispin simulations of the Ising model with
spin-Hip dynamics. In our scheme, the 512/512 lattice
is broken up into a 128X128 array of 4X4 sublattices
(see Fig. 1). Equivalently, each set of corresponding
spins in each sublattice can be thought of as one of 16
planes or vectors. One "vectorized exchange'* then cor-
responds to allowing all the spins from one plane to at-
tempt to exchange with all the spins from another
nearest-neighbor plane. This algorithm was particularly
efficient because exchanges could then be implemented
using hardware logical vector operations on the Cyber
205. (The use of "if statements, "which prevent vectori-
zation, was avoided by using the technique of "demon
bits" in a manner similar to that used by Bhanot et al.

(~+, , +j + + + i 4j +

+
. . I

Q+ L+ -i- +-,'

Q+ + + + ,
'(k~ +~+'

+ + + + + + + +

+ + + i- + -i- ' + ', + + -1 +

FIG. 1. Schematic showing decomposition of 512X512 lat-
tice into 16 (128&128j sublattices (pluses correspond to lattice
sites). The circled sites correspond to one {128&128) sublattice
or "vector" awhile the sites labeled by a square correspond to
another. Each "vectorized exchange" corresponds to attempt-
ed exchange of 1 pair of (128X128) nearest-neighbor sublat-
tices. One MCS corresponds to 32 "vectorized exchanges. "

for equilibrium simulations of the three-dimensional Is-
ing model. ) The choice of which pair of planes or vec-
tors to try to exchange is made randomly and (since
there are 32 pairs of possible types of exchanges) each 32
sets of "attempted vectorized exchanges" corresponds to
one Monte Carlo step. This resulted in a fairly emcient
code in which we achieved a simulation rate of about
15)& 10 attempted exchanges per second' or equivalent-
ly about 28.5 MCS per second. %'e note that„because
the pair to be exchanged is chosen randomly, we did not
expect there to be any problem with "marching" or false
correlations. A similar type of multispin coding has al-
ready been used and found to compare favorably with
ordinary Monte Carlo in a study of domain growth in
the Ising model with spin-Hip dynamics by Gawlinski
e~ al."

Our lattice of spins was prepared in a random
(infinite-temperature) state, after which spins were ran-
domly flipped until a state consisting of an equal number
of up and down spins was achieved. A run then consist-
ed of quenching the system to a temperature below T,
and conducting the simulation. Our data consist of 100
runs of 100000 MCS at T =0.5T, and 10 runs of 10
MCA at T =0.5T, . (A temperature of 0.5T, was select-
ed partly because this is low enough so that thermal Auc-
tuations would not be too large and also because previ-
ous work has already been done at this temperature
with which we could compare our data. ) In addition, we
have conducted one additional run of 10 MCS at
T =0.3T, . Figure 2 shows the configuration of the lat-
tice at three difFerent times in the course of a run.



198 AMAR, SULLIVAN, AND MOUNTAIN 37

Data taken included the two-dimensional structure
factor

& (k, t'1 ((=1/X)g s(r, , t)exp(ik r, )

w&th it=(2m'/I )(Pt i+@j) and m, g = 1,2, 3, ...,L, [where
N =(512) is the number of spins„and I. =512 is the di-
mension of the system, and the angular brackets de-
note an average over the number of runs], the
two-dimensional pair-correlation function g ( r; r )

=(s(0, t)s(r, r)) (also averaged over the number of
runs), and in addition the average of the squares of both
the structure factor and pair-correlation function. In ad-
dition to the structure factor, a further average was tak-
en to smooth the results —the circularly-averaged struc-
ture factor, defined as

S(k„,t)=g'S(k. , r) g'1, k„=2mnlI. (6)

where n =0, 1,2, . . . , 256 and each sum g' for a given
value of n is over a spherical shell de6ned by

FIG. 2. View of 512X512 lattice in the course of one run (at T=0.5T, ) at three di6'erent times: (a) 5000 MCS, (b) 100000
MCS, and (c) 980000 MCS.
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For the 100 runs of 100000 MCS, con6gurations were
saved and data were taken at intervals of 2000 MCS up
to 40000 MCS, and at intervals of 5000 MCS thereafter,
resulting in 32 data points per run. For the 10 -MCS
runs, data were taken every 5000 MCS, resulting in 200
data points over the course of a run.

The domain size R (t) was monitored using the follow-
ing three methods.

(1) From the energy per spin E(t),

R s (t) =2J/[E ( t) —Eo],
where Eo is the equilibrium energy per spin at tempera-
ture T from the Onsager solution. ' This "inverse per-
imeter density" has been suggested as a measure of
domain size in a previous study by Sadiq and Binder'
and has been used in a number of previous studies of
domain growth. ' '

(2) From the pair-correlation function g (r;t), we
proceed as follows. The average of the pair-correlation
function along the x and y axes (g„~(r,t)
=—,'[g(r, 0;t)+g(0, r;t)]) and along the two-body diago-
nals (gdd(~2r, t)= ,'[g(r, r;t)—+g( r, r;r)]) —was ob-

tained and from each an estimate of domain size
[RG„(t)and RG&d(t), respectively] was taken as the
point at which the functions g„~(r,t) and gdd(r, t), respec-
tively„crossed zero. [The three points in g„~(r,t) and

gdd(r, t) closest to zero were fit to a quadratic function
and R (t) defined as the value of r for which this func-
tion vanishes, as in Ref. 6.] The domain size Ro(t) was
then taken as the average of RG„~(t)and RGB(t).

(3) From the first and second moments of the
circularly-averaged structure factor 5'(k, t),

R I(t) =2lr/kI(t)

with

hR (t)=[(R '(t) ) —(R (t) ) ] (12)

From the variance bR (t), the estimated statistical error
5R (t) was calculated as

5R(r)=DR (r)/(N„1)'",—
where N, (equal to 10 or 100}is the number of runs.

HI. RESULTS

(13}

A.. Pair-correlation fjlnction and energy data

2. Domain size

Figures 3 and 4 show log-log plots of RG(t) and RE{i)
as a function of the number of MCS for our 10'- and
10 -MCS runs. We note that the increasing slope indi-
cates that the effective exponent is increasing with time
and thus the growth exponent has yet to reach its
asymptotic value. %e also note that the two curves in
each Sgure appear to be "parallel" and thus in agree-
ment with one another except for a scale factor.

this becomes an integral; see Eq. (17).] Thus, to mini-
mize as far as possible the statistical error in the evalua-
tion of R, we substituted in the numerator of the first
expression the sum-rule value —,'m and used for the cutoff
n, the maximum possible value (n, =256 or half the lat-

k
tice size). [The calculated value of gk' Ok„S(k„,t)
from our simulation using a cutoff' value of n, =256
varied by less than 1% from this value. ]

Using the three methods just mentioned, the average
domain size R (t) as a function of time (averaged over
the number of runs) was obtained. In addition, the vari-
ance hR (t)—calculated from the 6uctuations from run
to run —was also obtained as

kI{t)= g k„S(k„,r)

R,(t)= 2m /+k, (t)

with

g S(k„,r),

k, (r)= g k„'S(k„,r) g S(k„,t),

where k„=2mn /L, n =0, 1,2, 3, . . . , n, and k, =2mn, /
I.. %'e note that the numerators of both expressions de-
pend somewhat sensitively on the value used for the
cuto8' k, . However, we note that the sum rule

g QS(k, r)=1
all k

implies the approximate sum rule (cxact in the limit of
isotropic structure factor and large L},

g kS(k, r)=1/2ir .

[Ill thc liilllt that flic lattice size L becomes very large

FIG. 3. Log-log plot of RG(t) and RE(t) for 32 times
up to 100 000 MCS, averaged over 100 runs. Rz —pluses„
Rg —circles.
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FIG. 4. Log-log plot of R(t) and RE(t), at intervals of
5000 MCS up to 10 MCS, averaged over 10 runs. Upper
curve is E&(t).

0.00 0.04 0.08 0.12

I/R
0.16 0.20

2. Effective exponent

As a practical matter we have also calculated the
effective exponent from our data points as

,n(ltt f)=lnCR (tf )/R (t; )]/ln(t&/t, ), (14)

where tf/t, was selected to be close to 2. In particular,
for the 10 -MCS runs tf was taken to be all multiples of
10000 MCS (with t; =tf/2) —fesulhng ln 100 potnts.
For the 105-MCS runs 22 values of tf
(tf ——4000, 8000, . . . , 40000, 45 000, . . . , 100000) and
for t;, the closest values to tf /2 were selected. Two was
selected because it is big enough to avoid fluctuations,
but smaB enough to observe "local time. " Figures 5 and
6 show the results of eS'ective exponents using both
RE(t) and RG(t) in terms of plots of the effective ex-
ponent as a function of inverse domain size 1/R. We
note that the 10 -MCS data (100 runs} appear to fit quite
well to a straight line. The 10 MCS data appear to be
consistent with this straight line, although the fluctua-
tions are fairly large due to the limited number (10) of
long-time runs. (This linear behavior was implicit in the
early time Huse data at T =0.9T, but not clearly shown
at later times. } What is more remarkable is that the y
intercept or extrapolated late-time exponent appears to
be very close to —,

' (see figure caption).

FIG. 5. Plot of effective exponent n, fr{Ra ) vs 1/8G.
Crosses correspond to averages over 100 runs (100000 MCS)
while solid curve corresponds to 10 runs of 106 MCS. Straight
line shown is least-squares 6t to the 100-run data, with a y in-

tercept of 0.328+0.0008 and a slope of —0, 665+0.007.

also plotted in "gray scale" the two-dimensional struc-
ture factor for three different times (Fig. 8}. We note the
presence of a fourfold symmetry, indicative of the under-
lying lattice, which persists even into the later stages of
the simulation.

2. Scaling of circularly-averaged structure factor

As has been shown previously in a number of studies
(see, for example, Ref. 4) the circularly-averaged struc-
ture factor is expected to scale as

8. Structure factor data

l. 2D structure factor and circularly averaged-
structure factor

Figure 7 shows the iocrease in the peak height and the
decrease of the peak position of the circularly-averaged
structure factor with increasing time. %e note that the
structure factors for the later times are indeed much
noisier due to the smaller number of runs. As a test of
our simulation, aod also io order to better understand
the efFects of the square lattice oo anisotropy, we have

0.00 0.04 0.08 0.16

FIG. 6. Same as Fig. 5, except for R+. Least-squares fit has
a y intercept of 0.326+0.003 and a slope of —0.563+0.026.
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FIG. 7. Circularly-averaged structure factor S(k, t) as a
function of k for six difFerent values of t. In order of increas-
ing peak height they are 4000 MCS, 2& 10 MCS, 5 p 10" MCS,
10 MCS, 4&10' MCS„10 MCS. Last two curves are from
averages over 10 runs only.

S(k, t)=Mk, (t) "F[k/k, (t)j,
where F(x) is a fixed scaling function independent of
time and k, is the first moment of the circularly-
averaged structure factor (or can be any other measure
of the domain size) and M is an arbitrary normalization
constant. [The scaling function F(x) has been found to
depend weakly on temperature and minority concentra-
tion in a study by Lebowitz et al. of growth in the
three-dimensional kinetic Ising model. ] In order to test
if scaling holds in our simulation we have plotted

F(x)=(2~/L ')k, (t)' S(xk, (t), t ) (16)

as a function of x for diferent values of t in Fig. 9.
Here, the normalization constant M has been chosen
such that one has

I F(x)x dx =1 (17)
0

in the limit that I. goes to infinity, in accordance with
the sum rule of Eq. (11). We note that, except for the
data near the peak, the data all seem to lie on the same
curve. Thus scaling appears to hold quite well. Howev-
er (although this is not clearly shown in the 6gure), the
peak height of F(x, t) for times up to about 36000 MCS
is somewhat below the data for later times —thus caus-
ing the spread in the data near the peak shown in the
figure. In addition, there is a slight increase in the peak
height for later times as well. Thus, while scaling ap-
pears to hold roughly after about 36000 MCS, there are
slight deviations from scaling of the peak height even up
to 100000 MCS. The data beyond 100000 MCS do not
appear to show a definite increase in peak height (al-
though the width seems to decrease slightly at low x).

c iI

t I 1

0.0 0.2 0.:1 0.6 0.8 1.0 1.~
I ] t

)
1

l. i 1.6 1.8 ".0

FIG. 8. Gray-scale plot {256 diFerent levels) shoeing tvvo-

dimensional structure factor at three difFerent times. In order
of decreasing ring size —2000 MCS, 10 MCS, 10 MCS. Note
fourfold symmetry, even at later times. Also, note the narrow-
ing of the rings, anth increasing time.

FIG. 9. Scaling function F(x) superimposing data for 20
diFerent times. Small symbols —multiples of 4000 MCS up to
40000 MCS and from 50000 MCS up to 100000 MCS in steps
of 10000 MCS. Large open squares correspond to averages
over 10 runs and times in multiples of 200000 MCS up to 10
MCS.
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However, the noisiness of these data makes it diScult to
draw a definite conclusion. %c note that the peak of the
scaling function I'(x} is located at x =0.8 instead of
x =1, indicating a signi6cant contribution to the Srst
moment k, beyond the peak of the circularly-averaged
structure factor.

3. Domain size obtained from moments

Figures 10 and 11 show log-log plots of the domain
size R, (t) and R2(t) as obtained from the circularly-
averaged structure factor. We note that the curves for
R, (t) and R, (t) are not quite parallel, indicating that
the two measures of domain size are not equivalent. The
efFective exponents for these two measures of domain
size, calculated as discussed above, are shown in Figs. 12
and 13. %e note that the efkctive exponent calculated
from the first moment (R, ) is comparable to that calcu-
lated from the energy and pair-correlation function,
again 6tting a straight line with y intercept very close to
3

The results for the second moment, however, yield a

y intercept somewhat below that from 8 &. This, howev-
er, is not surprising, given the greater sensitivity of the
second moment to noise in thc data and the choice of
cutoK

C. Fits to T =0.5T, data

Thus, our data for the efFective exponents for RF(t),
RG(t), and R, (t) (when extrapolated linearly as a func-
tion of 1/R) seem to point fairly clearly to a long-time
growth exponent very close to —,'. Table I shows a sum-

mary of values obtained from linear least-squares 6ts to
our plots of n, !r(R) versus 1/R. Included are the results
of least-squares fits to the long-time data, We note that,
even though these results are not expected to be as accu-
rate (due to the smaller number of runs), they give ex-
trapolated values of the long-time growth exponent
which are not too different from those obtained from the
shorter-run data. Averaging the extrapolated values for
the long-time exponent from the 100-run data for RE(t),

FIG. 11. Log-log plot of R, (t) (upper curve) and R2(t) in
steps of 5000 MCS up to 10 MCS,

RG(t}, and R, (t} yields a value for the long-time growth
exponent of 0.330+0.005.

Surprisingly, the linear behavior of n, tt(t) as a func-
tion of 1/R seems to hold even for fairly early times. As
previously noted, this is equivalent to the form

R (t}=A +Bt '~', (18)

h

where A =3C. In order to test the conjecture that this
is in fact a goad expression for the growth of domain
size as a function of time, for all but early times, we
have performed least-squares fits to our data using Eq.
(18). Figure 14 shows the data for RE(t) and RG(t) from
the 10 runs of 10 MCS superimposed with the fit to

Jf

r

I I I I

10

FIG. 10. Log-log plot of R&(t) (pluses) and R2(t) (circles)
averaged over 100 runs.

FIG. 12. EN'ective exponent n,ff(R &
) vs 1/R l. The &'s cor-

respond to data over 100 runs up to 10 MCS, solid curve to
10 -MCS data (10 runs). Least-squares 6t to 100-run data has a
y intercept of 0.336+0.0007 and a slope of —1.633+0.014.
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0.00 0 0~~ 0.04 0.06

1/V.,
0.08 0.0

l

4.0

105 t
6.0

)

8.0 10.0

FIG. 13. Same as Fig. 10 but for R2. Least-squares fit has a
y intercept of 0.310+0.0008, slope of —1.353%0.013.

these data using Eq. (18). We see that the fits are excel-
lent. In addition, the fits to the early-time data (100000
MCS, 100 runs) extrapolated to 10 MCS are also shown.
We note that there is excellent agreement in the case of
Rz(t), while in the case of RG(t) the deviation of the
later-time (10 MCS) data from the extrapolated St is
about one and a half times the estimated error SR&(t)
from Auctuations. Figure 15 shows an expanded view of
the early-time data along with the fit (again error bars
are not shown since they are too small). As a measure
of the accuracy of the early-time data, we have plotted
in Fig. 16 the estimated relative error (calculated from
(luctuations over 100 runs) in RG(t) and Rz(t) as a func-
tion of time. In Fig. 17, we have plotted the relative er-
ror of the fit to the early-time data using Eq. (18) to fit
the data. The average relative error of the fit [about
0.05% for RG(t) and about 0.1% for Rz(t)] is of the or-
der of the average estimated relative statistical error
[about 0.07% for both RG(t) and RE(t)]. Figure 18
shows the relative error of the fit to the longer-time (10
MCS, 10 runs) data. The average relative error of the fit
to this data is about twice that for the shorter-time data
but is less than (0.15% versus 0.4%) the estimated rela-
tive error from fluctuations.

FIG. 14. Linear plot of domain size vs time for RG and E.E
vnth accompanying fits: solid lines —106-MCS data, open
squares —10~-MCS data, crosses —fits of form of Eq. (18) to
106 MCS data, pluses —fits of form of Eq. (18) to 10'-MCS data
(extrapolated). CoeScients of fits for 106-MCS data are for RG,
A =1.829 and B =0.2003; for Rz, A =1.694 and B =0, 1629.

Figures 19 and 20 show fits, similar to those in Figs.
14 and 15, but for the domain size R, obtained froxn the
first moment of the circularly-averaged structure func-
tion S(k, r). We note that the extrapolated short-time fit
for R, (t) in Fig. 19 does not agree quite as well with the
long-time data as the data in Fig. 14. However, as previ-
ously mentioned there is a moderate amount of uncer-
tainty in R „duenot only to the small number of runs

TABLE I. Extrapolated long-time exponents at T =0.5T,
using least-squares fits of the form n,z(1/R)=D —C/R to
data.

0.0
f

4.0

10' t,

6.0 10.0

0.326+0.003
0.328+0.0008
0.336+0.0007
0.310+0.0008

0.337+0.001
0.336+0.001
0.344+0.0009
0.315+0.0008

FIG. 15. Expanded linear plot of R&(t) and EE(t) for 10'-
MCS data with accompanying fits (solid lines). CoeScients of
fits are for 86, A =1.942 and B =0.1977; for RE, A =1.679
and 8 =0.1634.
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FIG. 16. Estimated relative statistical error 5R/R in RG
(crosses) and RE (open circles) for data over 100 runs.
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(
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10" t, (10 runs)

FIG. 18. Relative error of Ats to 10'-MCS data for times at
intervals of 50000 MCS. Crosses —RG, open circles —Rz.

(10) but also to the dependence on the cutoK Thus, it is
not clear vrhether the observed deviations of the extrapo-
lated short-time data from the longer-time data are due
to these uncertainties or are in fact indications of a
next-order correction to the form of Eq. (1). Table II
shows a summary of our fits to the data at T =0.5T, for
all three measures of domain size.

As an aside, it is interesting to note that for the 100-
run data, the relative statistical error M /R for all three
measures of domain size —RE (see Fig. 16), RG (see Fig.
16), and R, (not shown) —is approximately the same at
a given time. Since we already know (see Ref. 7) that
the energy per spin E(t) is a self-averaging quantity

[whose relative error decreases with system size as
M/E-(1/N'~ ), where X is the number of spina in the
system], then this suggests that the other two measures
of domain size —RG and R& —are also self-averaging.
In the case of R

&
this is not too surprising if one consid-

ers that the doininant part of the circularly-averaged
structure function S(k, t) involves an average over the
structure factor of order X' points ~bile the 6rst and
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FIG. 17. Relative error of 6ts to 10'-MCS data. Symbols
same as in Fig. 16.

FIG. 19. Plot of Ri(t} with fit out to 10 MCS. Solid
curve —data from 10 runs. Large open squares —data from
100 runs of 10 MCS. Crosses —fit to 10 -MCS data.
Pluses —5t to 10'-MCS data extrapolated to 10 MCS.
CoeScients of 6t to long-time data are A =3.699 and
8 =0.4314.
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D. Data for T =0.3T,
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1
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As a comparison with the results at T =0.5T, we
have also conducted one run of 10 MCS at T=0.3T, .
Figure 21 shows a plot of the efFective exponent n,e(Ro )

as a function of inverse domain size. A plot of n,e(RF )

versus 1/Rz shows a similar behavior, with a least-
squares At whose y intercept gives a value for the
effective exponent at long times somewhat below the
value for Ro(t). We see that, due to the low tempera-
ture, the Auctuations are relatively small. Figure 22
shows the behavior of Ro(t) and RF(t) as a function of t
along with fits of the form of Eq. (18). Again we see an
excellent fit to the data over a range of 10 MCS. While
these results may not be considered to be statistically
significant, they clearly agree with those presented ear-
lier.

IV, DISCUSSION
FIG. 20. Expanded plot of 10'-MCS data (open squares)

with fit (solid curve) for R &(t). CoeScients of 6t are A =4.331
and 8 =0.4307.

second moments involve a further average up to a cutofF
of order L =N'~ points. Similarly, the pair-correlation
function involves, like the energy, an average over
(N/g ) independent samples. We note that since RE(t)
is given by Eq. (8), and assuming that one has, as in

equilibrium,

~E (r ) =(k, Z'C„)'"/X'",
this implies that the relative variance

ARE/RF ———,'(ks T CH )'~ Rs/N'

Thus, the relative error in RE should increase with in-
creasing domain size as is observed (see Fig. 16). We
note, however, that the constant of proportionality is
somewhat larger than predicted above. Inserting the ap-
propriate values in the above formula at T =0.5T, for
r =10 MCS [and dividing by (X„—1)'~ to get the rela-
tive errort gives a predicted value for

(5Rs /RE )p„d——2.2)& 10

while the observed value of 5RE/Rz at 10 MCS is (see
Fig. 16) about 7X10 . A more careful study of the
variation of 5RE with time will, however„require much
better statistics.

The results presented so far indicate that, even at low
temperatures, and with a "critical" concentration, the
long-time growth exponent is in fact —,'. What is more
striking is that the data can all be quite accurately fit
(within the accuracy of our simulation) by the simple
form given by Eq. (18): R (r) = A +Br ' . Thus, it
would appear that an excellent fit is provided by Eq.
(18), and that in the future, the problem will center more
on the determination of the value of the coefBcients A

and 8 as functions of temperature and concentration.
Table II shows the values for A and 8 for RF, RG, and

R& for both the short-time and the long-time data and
the relative difFerences between them. We note that the
relative error in A tends to be somewhat larger than for
8.

One point which should be stressed is that, as pointed
out earlier in our discussion of statistical error, the
quantities which we have used for the determination of
domain size as a function of time are all self-averaging.
That is, their relative statistical error decreases not only
with the number of independent runs but also with the
size of the system. This is to be contrasted with certain
measures of domain size used in the study of growth
with nonconserved order parameter (such as the mean
square of the magnetization per spin) which are not self-
averaging. ' For these measures of domain size the rel-
ative statistical error is independent of system size and
decreases only with the number of runs.

If we consider the results of this work at T =0.5T,
and 0.3T, and of previous work ' at T=0.9T, and at

TABLE II. Coei%cients A and 8 at T =0.5T, using linear least-squares fits of form of Eq. (18} to
data. Last two rows show values for A obtained from slopes of n,N(R) vs 1/|I(l for comparison

100 runs (10 MCS)
10 runs (10 MCS)
% dif erence
3C (100 runs)
3C (10 runs)

1.679
1.694
0.89
1.690
1.824

0.1634
0.1629

—0.31

1.942
1.829

—5.8
1.994
2.158

0.1977
0.2003
1.3

4.331
3.729

—13.9
4.90
5.25

0.4307
0.4452
3.3
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FIG. 21. Plot of n, ff(R&) vs 1/R6 at T=0.3T, from one

run of 10 MCS. Straight line is least-squares 6t with a slope
of —0.7854%0.009 and y intercept of 0.329+0.001.

minority concentration in the light of Huse's phenome-
nological theory, as embodied in Eqs. (1)-(4), it is possi-
ble to get a better understanding of the growth law as a
function of temperature and concentration. In what fol-
lows, we compare our results and those of other simula-
tions ' with the predictions of Huse's theory. %hile
some of the data used in our comparison are somewhat
tentative (or based on a limited number of runs or
"early-time" data), we feel that they are sufficiently ac-
curate for the type of comparison which we wish to
make.

A. Variation of effective exponent
with concentration of minority phase

Lebowitz et al. , in a simulation of spinodal decompo-
sition for the three-dimensional Ising model at
T=0.59T„measured an exponent of 0.33 for an o8'-

critical quench (5% concentration, T =0.59T, ) while the
value of the eff'ective exponent n [when fit to the form
8 (t)-t "] appeared to be about 0.2 for simulations with
equal phase concentrations. The first value of the ex-
ponent is explained by the fact that for minority concen-
tration, there will be, as pointed out by Huse, very little
growth of domains due to surface conduction. Thus the
correction to the —,

' growth law at early times is very
small. For equal concentrations the surface conduction
becomes important at early times so that one sees a
slowly increasing exponent near 0.2 if one does a simple
fit of form R (t)-t".

8. Variation with temperature of slope
of n,1{8)versus 1/8 at critical concentration

Huse has suggested (see Ref. 6) that at low tempera-
ture, the surface-conduction coeScient C3 should de-
crease less rapidly than the bulk-conduction coeScient
C2, since surface conduction may involve processes
which require less energy than bulk conduction. ' This
implies that with decreasing temperature, the slope
C =C3/6C2 (and A =3C) should increase. While this is
qualitatiuely consistent with the results of our simula-
tions and those of Huse at 0.9T„the observed increase
in the slope C with decreasing temperature is much /ess
than the exponential factor C-exp(4J/T) suggested by
Huse's arguments. Using the results obtained from our
simulations, we obtain'

CG(0. 3T, )/CG(0. 5T, ) =1.18,
while e xp( 4M /T)= 533. Thus, it is plausible' that,
rather than increasing exponentially with decreasing
temperature, the slope C approaches a 6nite value in the
limit of zero temperature. This is also consistent with
the observed freezing at a finite value of R (t) at T =0.

C. Variation of long-time growth coe%cient B
with temperature at critical concentration

Using arguments similar to those used by I.ifshitz' in
a study of nonconserved order-parameter growth, Huse
obtained as a formula for the long-time growth
coefficient 8 [see Eq. (5) of Ref. 6],

8 =(3C )' -(AX/M )' -(DXX/M )' (19)

0.0

10' t (at.3 T)

f

8.0

FIG. 22. Plot of RG{t) and RE{t) data at T=0.3T, from
one run of 10 MCS {solid curves) along with 5ts of the form of
Eq. (18}(crosses}. Coefficients of fft are for Re, A =2.275 and
8 =0.0716; for E.E, A = 1.995 and 8 =0.0653.

where k =DX is the bulk spin conductivity, D is the
dift'usion coe%cient, 7 is the magnetic susceptibility, X is
the surface free energy, and M is the magnetization per
spin. Assuming that the coeScient of di6'usion D is in-
dependent of temperature at low temperature, and using
values of X obtained from low-temperature series expan-
sions, using for M the exact Onsager expression, ' and
using for X the average of the exact expressions for the
surface free energy of the Ising model in the principal'
and diagonal directions, we obtain
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[8(0.5T, )/8 (0.3T, )]p„,d ——2.7 .

Using our simulation values we obtain

B~(0.5T, )/BE(0. 3T, ) =2.5

BG(0.5T, )/BG(0. 3T, )=2.75,

which is not too di8'erent from the predicted value.
Thus, while this agreement may be fortuitous, it is
tempting to believe that Eq. (19) does in fact express
quantitatively correctly the variation of 8 (T) with tem-
perature at low temperatures.

However, Eq. (19) does not appear to describe the
temperature variation of 8(T) at higher temperatures.
Thus, if we calculate the value of

BG(0.9T, }/BG(0.5T, )

obtained from our simulations [using Huse's early-time
data we obtained a value of BG(0.9T, 1=0.40, in rough
agreement with a run we did ourselves] we get

BG(0.9T, )IBa(0.5T, ) =2.0 .

Using Eq. (19) and substituting values for the spin con-
ductivity A, which we obtained from additional Monte
Carlo simulations, ' we obtain

[BG(0.9T, )/BG(0. 5T, )]p„d—l.5,
lower than our simulation value by about 25%. We
note, however, that our estimate for BG(0.9T, ) from

simulations is based on early-time data and may not be
too accurate. Thus it is not clear whether the discrepan-
cy between the predicted and measured values of 86 at
T =0.9T, is due to some factor not taken into account
in Eq. (20} at high temperatures (such as a variation in
the "geometry" of the domains with temperature) or is
simply due to an inaccurate value of BG (0.9T, ). We
note in this connection that at high temperatures one ex-
pects fluctuations to be very large and thus a larger
number of runs may be required to determine the correct
long-time behavior. At the same time the domains grow
relatively fast, further increasing the error. A more de-
tailed discussion of the temperature and concentration
dependence of the coeScients A and 8 will have to
await further simulations.
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