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The density-wave theory of Ramakrishnan and Yussouff is extended to provide a scheme for
describing dislocations aud other topological defects in crystals. Quantitative calculations are

presented for the order-parameter pro61es, the atomic configuration, and the free energy of a screw

dislocation with Burgers vector b=(a/2, a/2, a/2) in a bcc solid. These calculations are done us-

ing a simple parametrization of the direct correlation function and a gradient expansion. It is con-
ventional to express the free energy of the dislocation in a crystal of size 8 as
(A, bt/4irl}n(aR /

~
b

~
), where l is the shear elastic constant, and a is a measure of the core ener-

gy. Our results yield for Na the value a=1.94a/(
~

c"
, ~

}'~ {=1.8S) at the freezing temperature
(371 K) and a=2.48a/(

~
c i'

~

)'~t at 271 K, where cI' is the curvature of the first peak of the
direct correlation function c(q}. Detailed results for the density distribution in the dislocation,
particularly the core region, are also presented. These show that the dislocation core has a colum-

nar character. To our knowledge, this study represents the Srst calculation of dislocation struc-

ture„ including the core, within the framework of an order-parameter theory and incorporating
thermal effects.

I. INTRQDUtmiON

In this paper, we present a new approach for describ-
ing dislocations and other topological defects in crystals.
This approach is an extension of the density-wave theory
of Ramakrishnan and Yussouff' to allow for topologi-
cal singularities in the phase of the density wave.

Earlier approaches used for studying dislocations and
other defects have employed either the continuum elastic
approximation or atomic models. Both these ap-
proaches have several drawbacks. The continuum elasti-
city theory fails where the deformation is large, e.g. , for
dislocation cores. The atomic model is too detailed and
requires poorly known interatomic potentials. It is
known that some of the core properties are highly sensi-
tive to the assumed interatomic potentials. Also, it is
basically a zero-temperature theory and is not easily ex-
tended to nonzero temperatures. Neither approach
makes connection with the fact that much of strong de-

formation behavior depends only on structure.
In contrast, our approach is structural and has the fol-

lowing advantages over the earher two schemes:
(i} Our scheme reduces to the correct elastic continu-

um theory far away from the core of the dislocation with
the elastic constants as given by the density-wave
theory. ' But the core region is adequately handled, un-
like in the continuum elasticity approach.

(ii} Thermal, statistical-mechanical effects are included
from the outset, in contrast to the atomistic description.

(iii) The parameters (the direct correlation function,
etc.) which are inputs to the theory are structural prop-
erties of the (supercooled) liquid which are either direct-
ly measurable or can be related to measured quantities.

Below we summarize the essential features of our ap-
proach and our major results.

In the density-wave theory of freezing, ' the following
functional gives the excess free energy for creating a gen-
eral density profile p(r) in a liquid of uniform density pI.

n
=P f dr U, (r)[p(r) p&]+ f drp(r—)ln[p(r)/p&] —f dr[p(r) p&]—

k~T

——,
' f dr f dr, c' '(r —ri)[p(r}—p&][p(r, ) —pt]+

where U, (r) is the external potential and c' '(r) is the
direct correlation function of the (supercooled) liquid.
Minimization of 0 gives the self-consistent equation

p(r}=pj exp PU, (r)+ f dr, c'—'(r —r, )

the lowest-free-energy solution of which is the stable
con6gur ation.

Speci6cally one 6nds that, ' if c' ' is large enough, then
the self-consistent equation (1.2) supports solutions with
crystalline periodicity and symmetry of the form

X [p(ri ) —pr ]+
(1.2} where ICOSI is the set of reciprocal-lattice vectors. If,
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for which bG ——0. Furthermore, all these amplitudes are
functions only r=[r/(

~

c"
, ~

)' ], where r is the radial
distance from the axis of the dislocation.

Our results for the order-parameter profiles g, (r),
(2(r), and i)0(r) are shown in Fig. 1 for T=T (the
freezing temperature), and in Fig. 2 for T=T —100 K,
for sodium. The input parameters have been obtained
from extrapolations of experimental data. These figures
show that the radii of the cores are approximately 2-3
lattice spacings. Note that g, (r), which characterizes
(G(r) for those G for which PG&0, vanishes at the core
of the dislocation.

Using the order-parameter profiles, we can calculate
the (free) energy of the dislocation. Expressing the re-

I

suits in the conventional form (Ab . /4m )ln(aR /b ),
where k is the shear elastic constant, and 8 the radial
size of the sample, we get for o., which is a measure of
the core energy, the following values:

(i) at T=T, +=1.9u /( ~c", ~

)'"=1.85;

(ii} at T=T —100 K, a=2.48a/(
~

c'i'
~

)'

By way of comparison, the only other calculation of the
core energy, the zero-temperature atomistic description,
gives a -4—5.

%ithin our formulation, we can also calculate the
atomic configuration of the dislocation. The density
profile in the solid with the screw dislocation is given by

pD(r)=p& exp[gD(r)],

(r)=c i) [(x +y )' a
f

c"
, f

'~ ]

+2),[(x +y )' a
~

c"
, ~

' ] cos 2m &2/3y+ z+P/2ir

1+2cos 2m —x ——
2 3

1 2
cos 2n— —.y + —z+ P/2m

6 3

+2(z[(xi+yi)'~~a
~

c)'
~

'~
] cos[2m(v 2x ——', )]+2cos 2m—x' —— cos[2m'(v 3/2y)]v'2 3

where x,y, z are in units of a, and P is the azimuthal an-
gle about the z axis which is the axis of the dislocation.
The origin for x and y has been chosen to be at the
center of a triangle in the triangular lattice obtained by
projection of the bcc lattice on to its (111) plane. Using
the order-parameter proNes given in Fig. 1, we can lo-
cate the positions of the maxima of pD(r). We find that
if these are identified with the atomic positions in the
presence of the dislocation, the results are very close to
what would be obtained using the continuum elasticity
description, ' euen inside the core region. That is, these
maxima are displaced relative to the maxima in the uni-
form solid mainly along the z axis, by an amount
u=(b/2n )tan '(y/x); the displacements normal to z
are very small,

However, an examination of the actual density distri-
bution pD(r) in the presence of the dislocation shows
that the core region is greatly modified compared to the
uniform solid. Because g, (r) vanishes at the axis of the
dislocation, the modulation of pD(r) parallel to the z axis
is very small within the core. Thus the dislocation core
has a columnar character. %e believe that ours is the
first calculation to reveal this picture of the core region.
The details are presented in Sec. VI. Note that pD(r) is
periodic in the z direction with the same periodicity as
the uniform crystal.

The rest of this paper is organized as follows: In or-
der to make this paper self-contained„we recapitulate
the essentials of the density-wave theory and its applica-
tion to inhomogeneous solids in general in Sec. II. In
Sec. III we present our scheme for treating dislocations

I

in crystals. This scheme is applied to the —,'a(1, 1, 1)
screw dislocation in the bcc solid in Sec. IV. The calcu-
lational details are given in Sec. V, where we also intro-
duce the molecular field and show its usefulness. In Sec.
VI, we discuss the results of our calculations. %e dis-
cuss the limitations of our present study, possible further
improvements, and other applications of the theory in
Sec. VII.

II. THE RAMAKRISHNAN- YUSSOUFF
THEORY OF FREEZING

The basic philosophy of the Ramakrishnan-YussoufF
theory of freezing is that the solid is regarded as a cal-
culable perturbation on the liquid, and various of its
properties are obtained in terms of the fiuid-phase corre-
lations.

In an ideal Quid, an externally applied potential U, (r}
induces a spatially varying local density according to
Boltzman's law:

p(r) =p;d exp[ pU, (r)]—
p;d = (2n m /Ph )

i exp(Pp ) .

In a nonideal Quid, because of the presence of interac-
tions, within a mean-field description the external poten-
tial is augmented by an induced internal potential, or
molecular field, which we denote [ —g(r)/p). In this
case the local density is
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p(r)=p;dexp[ —pU, (r)+g(r)] .

In general, g(r) is a functional of U, (r), or equivalently
of p(r). Consider expanding g'(r) as a functional Taylor

series in the density change [p(r) —p, ], where p, is the
liquid density, and the derivatives are the fiuid-phase
direct correlation functions. Keeping only the erst few
terms in such an expansion, one can write

p(r)=piexp —pU, (r)+ f dr, c' '(r, r, )[p(r, ) —p, ]+—,
' f dr, f drzc"'(r, ri, r2)[p(r, ) —pI][p(r, ) —pI]+

(2.1)

Here the zeroth-order molecular Geld converts p;d into

pI. By considering the perturbative response of p(r) to a
small external potential, it is easy to show that c'z'(r, ri)
and c' '(r, r„r2) are to be interpreted as the measured
second- and third-order direct correlation functions in
the liquid state. In particular pIck

' ——(1—S„'), where

5& is the static structure factor of the liquid, and

Pleo ={1 ~0 }={1 p/P—IItT }(2]

where vT is the compressibility of the liquid.
The self-consistent equation for p(r), Eq. (2.1), can

also be thought of as arising from the minimization of
the following free-energy functional:

p(Q —Q, )=p f dr U, (r)[p(r) —p, ]+ f drp(r)in[p(r)/pi] —f dr[p(r) —p, ]

——,
' f dr f dr, c' '(r, r, )[p(r) —p, ][p(r, ) —pI]

—
—,', f dr f dr, f dr2c' '(r, r, rz)[p(r) —pI][p{ri}—pi][p(rz) —pI]+ (2.2)

where QI is the free energy of the uniform liquid. Here,
the first two terms are essentially the ideal-gas term (ex-
cept for the replacement of p;d by pI }. The remaining
part of the free energy has again been expanded as a
functional Taylor series in [p(r) —pI]. (The first-order
term converts p;d to pI. )

The whole point is that, even when U, =0, Eq. (2.1)

can support solutions other than p=pl if e' ' and e'3'

are suSciently large. In particular, consider three-
dimensional (3D) density-wave states of crystalline
periodicity and symmetry:

P(Q, —QI ) = {co 1)no+—r X co I no I

' . (2.6)

{In principle one has to further minimize Q, with
respect to the choice of IG]. ) If Q, )QI, this crystal-
line state is metastable. As the temperature is reduced,

Minimization with respect to gG yields a set of equations
which is equivalent to Eq. (2.4). If Ico ) are large
enough, (2.4) has solutions with nonzero values for Tto,
which we will denote by gG. The minimized free energy,
for 'gg ='gg, 1s given by

P(r)=P, 1+ ggae'o'
G

{2.3)
0.8

where IGI is the set of reciprocal-lattice vectors. Tio is
the fractional density change, and trio(G&0)I are the
Fourier components of the periodic density. The self-
consistent equation (2.1) now reduces to

0.g—

0.2—

cr 0.0 l
1 I

0 1.0 t.0 1

1+ yg, e'o'=exp yc,g, e o' {2.4)
G G

where we have ignored c' ' (and all higher-order correla-
tion functions) for simplicity (as we shall do for the rest
of this PaPer), and denoted PIco ':co The free—ener.gy-
functional is

5 0 6.0 7.0 8.0 9.0 10 0

=—f dr '1+ g gGe'
U G

X ln 1+ gqoe'
G

no ,' &co I no—I'.——
G

(2.5} FIG. 3. The direct correlation function c(q) for sodium at
T =378 K (=Tf+6 K).
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U
I

(2.7)

Here m, (r)=(1/z, ) g, ', exp(iGI" r), and U is the
volume of a umt cell of the lattice. The remaining t r)G I

(for those 6 for which cG has been set to zero) are deter-
mined in terms of the above Irl,'} simply by the in-

tegrals:

cell
7JG = exp{cof/0 } dre

U

X exp g c, rl,'z, m, (r)
s=1

(2.8)

As Ramakrishnan and Yussouff have shown, ' one ob-
tains a surprisingly good account of freezing into a bcc
solid even at the level of a "one-order-parameter"
theory, where n =1; i.e., only co and cl are nonzero.
For an account of freezing into an fcc solid, at least two
order parameters are necessary, including the sets (111)
and (311}which lie close to the first two peaks of c(q ),
respectively. Calculations including as many as 50 order
parameters have also been carried out using model
correlation functions for hard spheres, ' '" I ennard-
Jones systems, ' and one-component plasma. Several13

authors'" ' have also investigated a variational approx-
imation erst used by Tarazona, ' where, instead of trun-
cating the set of equations in reciprocal space as de-

typically IcG I increase, and 0, decreases, until eventual-

ly 0, & 0&, whence the crystal becomes the stable phase,
and the liquid freezes when Q, =BI.

A typical c(q)-versus-q curve is shown in Fig. 3. Cer-
tainly c(q) decreases rapidly for large q. Suppose one
sets c& ——0 for all but G=O and the first n sets of
reciprocal-lattice vectors IG;"I, s=l, 2, . . . , n .Here
IG';"] for a given set s are z, reciprocal-lattice vectors
related by the point-group symmetry operations of the
crystal, and will, hence, all have the same c „)=—c, as

well as the same g*{,)=—g,'. It is easy to obtain the fol-

lowing (n+1) coupled equations that determine Irl,'),
s =0, 1, . . . , n, from (2.4):

1+no

and the free energy is minimized with respect to the
three parameters A, a and the lattice constant a. Such
investigations, which, in principle, use the full c(q },have
been carried out using the Ramakrishnan-Yussou6' free-
energy functional as we11 as other alternative forms' '6
for the functional, for hard spheres, ' ' Leonard-Jones
systems, ' and the one-component plasma. ' Two-
component systems, such as alloys' and ionic solids,
have also been studied within the framework of the
theory. For a recent review and reference to earlier
work, see Refs. 11 and 21.

A. Extension to inhomogeneous crystals

In the sense of a mean-field approximation, it is
reasonable to assume that the free-energy functional
given in Eq. (2.2) not only describes the uniform crystal
and the liquid, but also all possible intermediate density
configurations corresponding to inhomogeneous crystals.
Configurations that are important are those that corre-
spond to local minima, in the space of density
configurations, of Q —Q&. The extension of the
Ramakrishnan- Yussouff' theory to cover such cir-
cumstances has been discussed by Oxtoby and co-
workers in the contexts of the liquid-solid interface and
a critical nucleus of the crystalline solid inside a super-
cooled liquid. Here we recapitulate the salient features
of this extension.

Consider inhomogeneous solids which can be de-
scribed by a density wave where the Fourier components
are slowly varying spatially, i.e., density waves of the
form

p(r) =p, 1+ g i)G(r)e'
6

(2.10)

For this to be meaningful, rlG(r) inust vary slowly on
the scale of the unit cell. Further, if we assume that the
scale of variation of rl&(r) is small compared to the
range of e' '(r) then we can make a gradient expansion
[of IilG.(r'}j) in the nonlocal part of the free-energy
functional (2.2} and write

scribed above, a periodic Gaussian ansatz is made for
p(r):

{2.9)

P(Q —Qi } = f dr 1+ gi)G(r)e' ' ln 1+ gr)G(r)e' ' —g f dry)G(r)e'
PI 6 G 6

f dr f dr'rlG{r)e' 'c(r r')e' "'[i)G(r—)+(r' —r);8;rlG(r)

where, as before, we have neglected c'"' for n & 3 and denoted

pic' '(r —r')—:c(r—r') .

+ —,'(r' —r), (r' —r)JB;B,rlG (r)+ ], (2.1 1)

Now we invoke the assumed slow variation of i)G(r) to make a further "local" approximation as regards the first two
terms, and write



1941

p(Q —QI )
(2.12)

in terms of co{ga I„ the free-energy functional for the
homogeneous crystal, i.e., as given by the right-hand side
of Eq. (2.5). Here cG,cj' are the moments of the direct
correlation function, given by

CG ere-'6'
c

c(r)=P.Tj
c(G) .

(2.14)

The extremization of the free-energy functional (2.12}
with respect to gaia(r} and bio(r) gives us the following
coupled nonlinear second-order difkrential equations:

(2.15a)

(2.15b)

(2.13)

Since c(G) is a function of
~

G
~

alone, these can be
written as

+ g(cariG —Ua)e'
0

(2.16)

[Differentation of the right-hand side of Eq. (2.5) with
respect to q& yields a set of equations which is
equivalent. ] a){gaia) can be expressed in terms of the
functions U& as

co=(co—1)rto —Uo+ —,
' +ca ~ gaia ~

—
g gaia Ua . (2.17)

6 6

In any particular application, suppose that, similar to
the case of the uniform crystal, we take ca, ca, and cP
to be nonzero only for the first (n+1) sets of
reciprocal-lattice vectors (including G=O). Then the
differential equations (2.15) have to be solved only for
the (1+ g," &z, ) variables bio(r) and {fata(,)(r)I. Uo and

t

UG(, ) can now be regarded as functions only of these
t

variables and are determined as solutions of the (n+1)
coupled equations [obtained from (2.16)]:

By considering the freezing of a crystal in the presence
of a periodic potential, it is not hard to see that
Uo{i)GI jp and UG{riaj/p can be interpreted as the
Fourier components of an external potential that would
be required to stabilize any giuen Ualaes of {riG) in a
homogeneous situation. Hence, they are also determined
implicitly as solutions of the equations [cf. (2.1) and
(2.4)]

1+ X&Ge = e"p (co'90 —Uo}
6

gGIs)
t

(coqo —U( }=e Qf
e

n t iG'" r
.G(s). exp

t=l j=l j
(2.18)

The remaining {ria(r) I, i.e., corresponding to those reciprocal-lattice vectors (RLV's) for which cG, ca, and cj have

been set equal to zero, are determined as the zeros of the corresponding potentials {Ua(r) I. Hence, from (2.16)
1 r

(cogo —Uo } cell
ria(r}=e ' ' ' dre ' 'exp g g (c,r)G(, ) UG(,))e-

t=1 j=l J
(2.19)

where the right-hand side is first obtained as a function
of go and {g (,)I and then evaluated at the go(r) and

{ri „,(r)I that solve the differential equations. In other
l

words, these {qa ] are the same functions (locally) of
{c,q (,)(r) —U (,)(r)] and [cogo(r) —Uo(r)] as they are

l t

of {c, ri (,) I and rto in the homogeneous case.

Thc ImniImzcd &cc cncrgy for the inhomogcncous
case, Q;„h, is also straightforward to write down. One
can, starting from (2.12), make use of the fact that go
and {i)G„)J satisfy the difFerential equations (2.15), and

t

show that

p(Q;„h —Ql }
dr co —1 qo —Uo

G(r}[cai)G(r)—UG ]

(2.20)

III. SCHEME FOR MSLGCATIQNS IN GENKRAI.

{na(r) I = {ita(r) exp[id a(r)] l .

In general, {rt&(r)I are complex and can be represent-
ed as
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Dislocations are topological defects and we character-
ize them by the condition that the phases IPG(r)I may
change by integral multiples of 2m on going around
paths encircling the dislocation, i.e., f d PG 2——nn 6
This condition is equivalent to the more familiar Burgers
condition. For, even in the presence of the dislocation,
and the accompanying strain 6eld, the solid will be local-
ly periodic, asymptotically far from the core of the dislo-
cation. Locally, the efFective reciprocal-lattice vectors
are G+VPG and these can always be linearly related to
G. Hence, we can argue that

PG =G u(r ), (3.1)

where u(r ) can be interpreted as the local displacement
or deformation of the solid. The topological condition

f d{tG=2rrnG=G f du= )du=1, (3.2)

where 1 must be a vector of the direct lattice. This is
the familiar condition, and b is nothing but the Burgers
vector that characterizes the dislocation.

As is well known, the geometry and configuration of
dislocations completely determine the singular part of
the displacement field. For example, for a screw disloca-
tion along the z axis, with the Burgers vector b=bz, we
have

u'""s'(r ) =bzg/2m, (3.3)

where P is the azimuthal angle, and for an edge disloca-
tion along the z axis with the Burgers vector b=bx, we
have

u'""s'(r )=b xP/2m . (3.4)

Then the singular part af the phases is

y'"""(r)=G u'"""(r ) . (3.5)

Given these, we sti11 need to determine the regular
parts of the phases t(tG(r)I as well as the amplitudes

Ipo(r)I to obtain the dislocation structure and energet-
ics. For this, we use the framework developed in Sec. II
for handling general inhomogeneous situations, which
depends on the gradient expansion and local approxima-
tion. In other words the regular parts of the phases and
the amplitudes are obtained by solving the set of non-
linear difFerential equations (2.15) with appropriate
boundary conditions. These boundary conditions are the
following: (i) as we go away from the dislocation, i.e., as
r ~ 00, I pG(r ) I ~ IpG I of the underformed solid, and
(ii) at the core of the dislocation, i.e., as r ~0, IpG I ~0
for those G for which G b&0; that is, the G for which

f dPG&0 around paths encircling the dislocation.
%e thus have a prescription for calculating the free

energies of dislocations, the structure of their cores, the
core energy, etc. The above scheme is analogous to the
calculation of vortex structure and energetics in a super-
conductor or superAuid within the framework of a
Landau-Qinzburg theory.

IV. APPLICATION TO THE (a /2)[111]
SCRE% DISLOCATION IN A bcc SOLID

%e now apply the above scheme to investigate in de-
tail the structure of the —,'a(1, 1, 1) screw dislocation in a
bcc solid.

We have chosen to study the —,'a (1, 1, 1) screw disloca-
tion because this is the simplest of the dislocation prob-
lems; for, the differential equations for IpG ) in this case
can be reduced to ordinary difterential equations. All
edge dislocations, as also screw dislocations in other
directions, lead to partial-difFerential equations which
are much more dif6cult to solve. At the same time„
—,'a(l, l, 1) being the smallest possible Burgers vector,
dislocations with this Burgers vector have the least ener-

gy (Ed;„~b ) and are, therefore, the ones most likely to
appear in actual systems. They, hence, play an impor-
tant role in determining the mechanical properties of bcc
solids, and have been studied extensively by atomistic
theories.

The system of ordinary difrerential equations for the
—,'a(1, 1, 1) screw dislocation in a bcc solid alluded to
above are still suf6ciently complicated to present a hard
numerical problem. %'e have, hence, made the further
simplifying assumption of neglecting all but c' '(q=0)
and the first peak of c' '(q). That is, in Eqs. (2.15) and
(2.16), only co ', c', I~, and c' ~'&'~', where G"' is the first set

of reciprocal-lattice vectors, are taken to be nonzero; we
will denote these by eo, e, , and c", , respectively. As
mentioned earlier, it hss been shown that even within
this approximation, one gets a reasonable zeroth-order
description of the 1iquid-bcc transition, the elastic prop-
erties of the bcc solid, * etc. Furthermore, this is the
only approximation within which any inhomogeneous
problems such as so1id-liquid interface or nucleation
have been tackled. %'e discuss the limitations of the
various approximations we have made, in Sec. VI.

The efFect of the above approximation is that the
differential equations (2.15) have to be set up and solved
only for the IrlG~~~I for the first set of reciprocal-lattice

I

vectors. The remaining IqG ) will be determined in
terms of these by algebraic equations, as described in
Sec. II.

The symmetries inherent in the present problem per-
mit its further simplification as follows. Depending on
the value of the singular part of the phase

PG (G 1/2n)P, w——here .P is the azimuthal angle around
the [111]direction and b= —,'a(x+y+z), the 12 smallest

reciproca1-1attice vectors fa11 into three classes:

(i) G/(2m/a)=(1, 1,0),(1,0, 1),(0, 1, 1), KG=+/
(ii) G/(2m/a)=( —1, —1,0), ( —1,0, —1),(0, —1, —1),

(iii) G/(2ir/a )=(1,—1,0),(1,0, —1),(0, 1, —1),( —1, 1„0),( —1,0, 1),(0, —1, 1), QG =0 .
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)M)G) for G within each class will be the same by symme-

try. Consequently, there will be only three distinct am-
plitudes which we denote p& +, p, , and p, o, and, cor-
respondingly, three distinct Fourier components of the
potential which we denote U, +, U&, and U& 0. Furth-

ermore, from Eqs. (2.15) it is clear that we can set

U& + ——U& and p& + ——
p& . Finally, from the symme-

try of the problem, it is not hard to see that p& +, IM]

and p& o will be functions only of the radial distance r
from the axis of the dislocation; that is,

ri) +(r)=tu) +(r)&'ip

(4.4a)

(4.4b)

Here, U, and U, have been treated to be functions of p&
and p2 alone, and not of go too. This is possible because

qo can be determined in terms of p& and p2 via Eq.
(2.15a) which, as a result of setting co =0, reduces to the
algebraic equation UO=O. When this is used in the 6rst
of Eqs. (2.18},we get

(r) =p) (r )e (4.2)
6

1+bio=e ' ' I drexp g (c)p, )
—U, )exp(iGJ"'r)

j=l

Hereafter we will use the following notation for conveni-
ence:

Pi =P&, +~PI, —~ P2=P1,0

12

+ g (c))M1 Ul)

X exp(iG,"'r) . (4.5)

U] =Ui, + U]„— U2=Ui, o

(4.3) Generally, the value of co is found to be very large and
negative. So we can make a large co expansion in the
above equations, and obtain rio explicitly to be

Thus, the set of nonlinear partial-di6'erential equations
(2.15) can be reduced to just two coupled ordinary
differential equations for the amplitudes p& and p2..

rio= —1ngoA1 —c )

where

(4.6)

ceH
dr exp[6(c)tu) —U, )to) (r)+6(c)pl —Ul )u)l(r)], (4.7)

G ( ' Fclass[i)
and[ii)

exp(iGJ" ' r)

1
cos

3

28 2m'
(x +y) + cos (y +z) + cos

a Q

2m (z+x) (4.8a)

6 (1 }C ctass( &11]

exp(iG,"'r)

1 2m 2m 2'
cos (x —y) + cos (y —z) + cos (z —x)

3 Q 0 a
L

(4.8b)

1»ko 1 ce)) to) (r)
1+ «}exp[6(c)p) —Ul )u) ) (r)+ 6(c)/L, —U, )LU, (r}].

)I}o 1 —co U
L J

[refer to equation (4 1) fol' classes (i), (ii), and (iii)]. Now it is easy to see that the functions U) and U have to be
determi ed numerically from the two equations [obtained by using Eqs. (4.5) and (4.6) in Eq. (2.18)]:

r

(4.9)
P2

The differential equations (4.4) have to be solved with
the following boundary conditions for p& and p2.

(1} As r ~ oo, p, ),p2~p, , the vallle of )I fol the ulll-

form solid for the first set of reciprocal-lattice vectors
[G(1)

I

(ii) [riG(r)J must be regular at r =0. Hence, as r~0,
we expect that p& —+0 because the phases of q& + and

'9) a«»ngular a«=0. ln contrast, dij, &/dr~0 but
p, 2

—+const as r ~Q.
In principle, the above boundary conditions are

suScient for solving the differential equations (4.4) nu-
merically. In practice we have found it useful to cwork

out, explicitly, the asymptotic behavior of p& and p2 as
r~O and r~00, which can. be done analytically. The
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results are [with r= r—/(
~
c 1'

~

)' ] (i) as r ~0,

p, , =a, r —4Ui(O, az)r

pz=az —Uz(o az}r '

where a l, a2 are constants that are to be determined by

solving the boundary-value problem; (ii) as r +ao—,

(aUz/apz} p 1
Pi=P 2+ 'j

(4.11)
(aU2/apl)'p*

where the e on the derivatives means that these are to
be evaluated for P, Pz

——P' and

V. DETAILS OF THE CALCULATIONS:
USE OF THE MOLECULAR FIELD

ka =CGPG —UG (5.1)

The boundary-value problem defined by Eqs. (4.4),
(4.10), and (4.11) is to be solved numerically. Typically
this is done using shooting and matching methods or
iteration methods. For this purpose we need the func-
tioils U, (P, ,P2) and Uz(P„P2) for a whole range of
values of p, and IM, 2. Since U& and U2 can be obtained
only by numerically solving the coupled nonlinear equa-
tions, this proves to be very expensive computationally.

%e have found that a nice way of avoiding this corn-
putational expense is to work with Ig'GI, the Fourier
components of the molecular field rather than with

IPG ]. We define them by

'aU, aU,
aP i aPz

aUi aU2

apz api Pl~82=P

In our case we need only two molecular fields:

ki= cipi —Ui and-4=cipz —Uz ~-
The 1/F dePendence of P, and Pz as r~~ is con-

sistent with what is expected for an elastically distorted
solid with the displacement field u=blI)/2m (see Sec. V}.

Now consider expressing Ul &2 a d p 1 0'2 as functions
of g, and gz. The equations determining these are clear-

ly

P 1((l,g'2) 1»00 1 cell w 1(r)
1+ — dr

)
exp[6(lw1(r)+6(zwz(r)],

P2 b 1&bz il 1 —CP U F2[ r
I

Ul(gl~gz)=C IP1(gl, (2)—gl, Uz(gl, (2)=C lP2(gl, (2)—$2,

with

(5.3)

(5.4)

cell
((,(g, , gz)

—=—j drexp[g, w, (r)+6(zwz(r)] . (5.5)

(5.6)

Note that the computation of U, , Uz or P„Pz as functions of g„gz does not involve solving equations but only needs

evaluation of integrals. We have found it computationally advantageous to avoid even the latter by developing $0 as a

power series in g, and gz, and computing P, and Pz as ratios of two series:

1 (ago/ag, ) in/0 1 (al))0/agz) info
Pl = &+ ~ P2= 1+

6 $0 1 —cil
' 6 po 1 —co

The differential equations (4.4) for P, (r) and Pz(r) can be recast as the following equations for gl(r ) and gz(r ):

Pii Plz

Pzi Pzz

Pl 1 lkl 2P11241(2 Pl (222 lPlkl / xP1242/x +Pl x 12c1P1+ 1~El'
P21141 2P2124142 P22242 Pzlkl /x P2212/x 4ciPz+4(2

(5.7)

and

Pij =aPi /akj~ —Pijk. :aPi /@j a~k ~—

g =dg;/dr, g,"=d g;/dr

The boundary conditions for g, (r ) and $2(r ) are as fol-
lows:

(i) as r ~D, g, (r )~0 and diaz(r )/dr ~0 „

(ii) as r~oo, (,(r)~g'(=C, P') and gz(r)~g" . (5.9}
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The asymptotic behavior of g, (F) and (2(F) can also be
obtained. Close to the dislocation core, i.e., as r ~0, the
behavior is [compare to Eq. (4.10)]

g, (r)=b, r+b3r +O(F ),
gz(F) =bz+b4r

(5.10)

where b, and b2 are related to the constants a, and a2
in Eq. (4.10), and b3, b„are determined in terms of b,
and b2 via the equations

6I 11~3+6912~4 39111~1

~821~3 +~822~4 ~J 211b 1 ~~ 192+~b 2

(5.11)

obtained by substituting the expressions (5.10) in Eqs.
(5.7). Here p, ,p;,tu;„are evaluated at (1=0, gz —bz. —
The coefficient b3 turns out to be zero, and then the
second equation in (5.11) determines b4. In the region
asymptotically far from the dislocation axis, i.e. ss
P~ co, we can show that

(F)=g*+d' '/r +d'1 '/F +

g (F)=g'+d' '/r +d' '/r +
Here

4) '(cia 22
—1)1—

48I.{clI ll 1)(cia'22 1) c 1P12]

(5.12)

—4P C1P21
d2

48[(clPI1 1)(ciwzz —1)—c itul2]

Here the tu,, are evaluated at (i=(2——g". We have also
I

7/o(F) =in1))o(gi(F) gz(F ) )/( 1 —co ) (5.14)

The excess free energy of the distorted solid (i.e., the
solid with the dislocation) over the uniform liquid can be
obtained from Eq. (2.20), now reexpressible as

calculated d',"' and d2 ', but do not display their lengthy
expressions here.

To solve the difFerential equations (5.7), we follow the
standard technique of casting them into a system of four
first-order equations by introducing the derivative func-
tions g3:g and g4:gz This system is then solved us-

ing the NAG routine DQ2RAF Cwhich uses a variable-
order, variable-step-size finite-di8'erence method with de-
ferred corrections and Newton iteration) in a range
~min &~ &~max' Here in and Fm have tO b SO ChOSCn

that for F &F;„ the solution (5.10) is valid and for
F ~F,„ the asymptotic solution (5.12) holds. The
boundary condition at F;„can bc reduced to the follow-
ing two equations by eliminating the unknown constants
b, and bz in Eq. (5.10):

kl( min ) rmin(3("min ) ~

(5.13)
g (r;„)=2r;mb„[g (F;„),j (2F;„)—,'( (r—;„)r;„],
where the function b4[bi, bz] was defined in (5.11). At
r =rm, „we can simply use expressions (5.12) for g, (F,„)
and gz(r, „).

Once the functions gi(F) and gz(F) are known, various
properties of the dislocation, such as the local mean den-
sity change I)o(F) in the distorted solid, the dislocation
core energy, and the core structure, can be obtained.

The local density change rlo(F) of the distorted solid
with respect to the liquid is obtained simply as [cf. Eq.
(4.6)]

0,+d;,1
—0I R ] 2 ] 2 ] 2

)oika T
=2m'L

I
cl'

I
«r[(co 1)go(r)+—'corjo{r)+ -'zicipi(r)+— zzcilzz(

0 2 2 2

IP I(r) UI(P I Pz) —
—,'zzP2(r) Uz(P 1 Pz)]

=ZEAL
I

c"
, I f dr r[(co —1)I)o(r)+—,'corlo(r)+ —,'z, P, (rg', (r)+ —,'zzP2(r)gz(r)], (5.15)

Fd;,1

] IIaT
n, +„,„—n,

pIk~ T
0, +d;,1

—01

p(k~ T

(5.16)

where R is the radial size of the solid and I. the axial
size. Then the free energy of the dislocation is given by

(the freezing temPerature). Here, I)o is the value of I)o in
the uniform solid. Using the asymptotic solutions for gi
and gz for large r [sufficiently large that the terms of
O(1/r ) in (5.12) are negligible], it is straightforward to
see that the dominant contribution to the dislocation
free energy from the asymptotic region is

(Ab/4Ir) f =.(Ab/4m)l (. Rn/R i
. ) .

R] p

n, —n,
=2~L

I
cl'

I [«o—1)no+ ,'cono'+ ,'zlclP1--
v~kaT

~=pikaT
I

cl'
I I Gi I's *'/3,

(5.18)

+ —,'zzc, pz] f r dr . {5.17)

Now Q, —0& is nonzero at temperatures less than T

which is nothing but the shear elastic constant (ap-
propriate to the present case) in the one —order-
parameter approximation of the density-wave theory, as
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has been calculated earlier by other methods. ' Thus
our theory for the dislocation agrees with the elastic
continuum description in the asymptotic region.

It is conventional to express the full free energy for
the dislocation, including the contribution from the
nonasyrnptotic region, in the form

Fd;„/2 = ( A,b /4n )In(aR /b ) . (5.19)

Then a, which is a measure of the core energy„can be
calculated. The details are given in the next section.

%'e can also easily obtain the detailed structure of the
dislocation, since, in terms of the molecular 6elds, the
density distribution is just [cf. Eq. (2.16)]

= exp go(r)+ g (G(r)e'o'"
G( ~0)

=exp[corlo(~)+6(i(»)~i(r)+64(» )~&(r)]

(5.20)

VI. RKSUI TS

which can be computed for any choice of the placing of
the dislocation axis relative to the unit cell of the lattice.

A. Order-yarameter profiles

The profiles of g„g2, and i)0 as a function of the re-
duced radial variable»[=»/(

~

c", ~

)' ] are shown in

Fig. 1 for T=T (=371 K for Na), and in Fig. 2 for
T=T —100 K (=271 K). It is worth noting some
features of our results for the pronles. If we estimate the
radial extent of the dislocation core as the radial dis-
tance at which g, (r ) attains 95% of its value in the uni-

form solid, then, in reduced units, we get a width of
about 3.1 at the melting temperature and a much lower
value of 2.4 at the lower temperature. However, since

~

c"
, ~

can be expected to be higher at the lower temper-
ature, in real units the difFerence in core widths is prob-
ably much less. To get an idea of the actual widths, note
that at T =T, ( ~

c", ~

)' and a are almost the same for
sodium, and hence r is roughly r in units of the bcc lat-
tice constant. Using the value of a for Na, this corre-
sponds to a width of about 14 A.

Further, the core of the dislocation is somewhat
liquidlike, in that r}0, the fractional mean density change
at x =0, is only 0.015 (0.017) at T =T (T —100 K),
which is about one-third of its value in the uniform
solid.

Another notable feature is that as one moves outward
from the core, the go profile grows to its uniform solid
value slower than the g, g2 profiles do to theirs.

In this section we present and discuss our results for
the order-parameter pro61es, the dislocation core energy,
and the core structure. We have performed the calcula-
tions for sodium at two temperatures, the melting tem-
perature T and at T —100 K (at ambient pressure).
Temperature enters our theory via the parameters a, t."0,
c„and c", which are temperature dependent. Of these,
the role of the parameters a and c"

, is trivial in that they
enter the theory as scale factors. However, the depen-
dence on co and c, of the various properties of the dislo-
cation is nontrivial.

For the purposes of our calculations, we need the
values of a, co, c&, and e", at freezing and in the super-
cooled, metastable liquid at the temperature of interest.
Unfortunately, such detailed information about the
liquid structure factor or direct correlation function is
not available. %e have relied on experimental data for
sodium extrapolated into the supercooled region from
data taken at and above the freezing temperature, and
used earlier in the context of the liquid-solid interface
and nucleation. The data are summarized in Table I.
They are expected to be accurate up to 5%.

B. Dislocation core energy

In order to calculate a [cf. Eq. (5.19)], we have calcu-
lated F~;„(the full free energy for the dislocation} as the
sum of three contributions: (i) from the near region,
0&» &»,„,using the numerical solutions for g, and gz,
(ii) from the intermediate region, »,„&»«R „using the
asymptotic solution for g, and gz given by (5.12), and (iii)

from the far region, R& ~r, where the contribution to
the free energy is given by Eq. (5.18). We have checked
that the result is independent of the choice of R, .

%e get for a, the measure of the core energy, the fol-
lowing values:

(i) At T = T ( =371 K for Na)

a = I.94a /(
i

c"
, i

)
'i

(using the values of parameters given in Table I).
(ii} At T =T —100 K (=271 K)

a=2.48a/(
i

c", i

)'

TABLE I. Values of parameters for sodium (taken from Refs. 1 and 21).

371
271

—40.0'
—49.96'

0.6S7'
0.717'

0.484'
0.533

0.049'
0.047'

cl' (A )

-20.6'

a (A)

4.313'
4.276'

'Input data taken from experiments.
Obtained froIH theory.
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As one might have expected, the core energy increases
with decreasing temperature. The only other calculation
of the dislocation core energy is the atomistic descrip-
tion ' (i.e., T =0) which gives a-4—5.

C. Atomic con8gum ation of the dislocation Oz

Here we discuss the atomic configuration of the dislo-
cation for a particular choice of the position of its axis,
namely, when it passes through the center of a triangle
in the triangular lattice obtained by projection of the bcc
lattice on its (111) plane (see Fig. 4). The z axis is
chosen to be along the dislocation axis, i.e., in the [111]
direction, and the x and y axes are as shown in the
figure. In this coordinate system, the functions co, (r)
and wz(r) which appear in Eq. (5.20) are given by

FIG. 4. The triangular lattice obtained by projection of the
bcc lattice on to its (111) plane. The dislocation axis posi-
tioned at is perpendicular to this plane. AB and CD denote
two planes parallel to the dislocation axis.

w, (r)= — cos 2m v 2/3y+ z+1
3 27r

1 1+2 cos 277 —x-
v'2 3

cos 2m y+ z+
—1 2

6 3 2n
I

1 1 1
ia, (r) =— cos[2n(v'2x ——')]+2 cos 2m —x —— cos[2n(v'3/2y )]2 3 3 v'2 3

(where x,y, z are in units of a, and P is the azimuthal an-
gle), and the functions i&0, g„and (2 are now. functions
of (x2+y )'/ a

~

c"
, ~

'/. Hence our results for pD(r)
quoted in Sec. I [cf. Eq. (1.5)].

Figures 5 and 6 show contour plots of p(r), in the
planes AB and CD, respectively [shown in Fig. 4; all
these planes are perpendicular to the (111) plane, the
plane of the paper]. Each figure shows the density con-
tours for both the uniform bcc solid and the bcc solid
with the —,'a(1, 1, 1) screw dislocation.

These figures give a clear picture of the density distri-
bution in the solid in the presence of the screw disloca-
tion. %e note the following features of our results.
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(i) The density pn(r) in the presence of the dislocation
retains the same periodicity in the z direction as in the
uniform solid.

(ii) But the positions of the maxima of pD(r), however,
are displaced along the z axis relative to that of p(r)-for
the uniform solid, by amounts which are very close to
those expected from continuum elasticity theory, namely
u=bg/2m. So, if just these maxima were to be marked
in Figs. 5 and 6, the results would be very similar to the
conventional pictures of the dislocation (cf. Figs. 5(c)
and 5(d) of Duesbery ).

(iii) However, the detailed density distribution in the
core of the dislocation is very difkrent from the conven-
tional pictures. In particular, the modulation of pD(r)
along the dislocation axis is small near the core. This
can also be readily seen from Eq. (1.5) for pD(r). The z
dependence of the density is only through the second
term, and g, (r) vanishes at the core. Thus the disloca-
tion core has a columnar character.
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FIG. 5. Contours of constant density in the plane AB of
Fig. 4: (a) for undistorted solid; (b) for solid with dislocation.
The contour levels shown are for p(r)/p& ——1.0 (dotted line), 7.4
(dashed line), 20. 1 (outer solid line, , and 33.1 (inner solid line).
The horizontal and vertical distances are in units of (3) Q

and (&3/2)a, respectively, where a is the bcc lattice spacing.
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VII. CONCLUDING DISCUSSION:
THE PEIERLS-NABARRO BARRIER

There are two major improvements that need to be
made to the calculations we have presented here.

The 6rst is that we must perform calculations going
beyond the gradient and local approximations used in
this paper. This improvement is crucial for obtaining,
within our formalism, the Peierls-Nabarro barrier. This
barrier describes the dependence of the energy of the

FIG. 6. Contours of constant density in the plane CD of
Fig. 4: (a) for undistorted solid; (b) for solid with dislocation.
The contour levels shown are for p(r)lp& ——1.0 (dotted line), 7.4
(dashed line), 20. 1 (outer solid line), and 33.1 (inner solid line).
The horizontal and vertical distances are in units of ( —, )' a

and (&3/2)a, respectively, where a is the bcc lattice spacing.

dis1ocation on its location within the unit cell of the
crystal, and has great inhuence on the mechanical prop-
erties of the crystal. It is easy to see that within the ap-
proximations presented in this paper, the energy of the
dislocation is independent of its location; in other words
the Peierls-Nabarro barrier is zero, and the dislocation
can move freely through the crystal. This is, in one
sense, a nice feature of our theory, for, experimentally
inferred values for the Peierls-Nabarro barrier are actu-
ally very small (10 of the extrapolated elastic energy
needed for 10% strain, say). Now the degree of validity
of the gradient and local approximation depends on the
largeness of

~

c"
, ~

(the larger the
~

c", ~, the slower the
spatial variation of the order parameters). Hence, in our
theory the smallness of the Peierls-Nabarro barrier is un-
derstandable, and calculable perturbatively (by going
beyond the gradient and local approximation) in terms
of the small parameter 1/

~

c", ~

. Such a calculation will

be presented elsewhere.
The second improvement needed is that we must in-

clude much more of the detailed q dependence of the
c' '(q) than we have done here, where we kept only its
6rst peak. This means including many more Fourier
components of the molecular field than considered here.
For the uniform crystal it is known that this has impor-
tant efFects on the energetics and relative stability of
different crystal structures. Its efrect on the energetics
and structure of the dislocation must, hence, be studied.
Of course this improvement renders the problem much
harder computationally, and will probably necessitate
the use of supercomputers.

%e believe that given the above-mentioned improve-
ments, the formalism presented here can be a viable and
useful framework for investigating the structure and en-
ergetics of dislocation in crystals. Even more important,
we hope to extend our formalism to calculate the struc-
ture and energetics of (large-angle) grain boundaries.
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