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A model with four protons and two randomly chosen effective rubidium and/or ammonium par-
ticles per unit cell has been studied by the molecular-dynamics method. The mixed system forms
a structural glass below some freezing temperature. In the glassy state a pattern of ferroelectric
and antiferroelectric quasipermanent clusters with random orientations exists. In addition, regions
of active jump motion of protons are observed. Because of inequivalent proton environments, the
square displacement and the average potential-energy fluctuations of individual protons are
represented by broad, wide distributions. The same distributions in the paraelectric state of the
mixed system and in the crystal are narrow. The spectra of elementary relaxation times for glassy
and crystal systems have been calculated and compared. The results agree with the concept of a

hierarchy of degrees of freedom.

I. INTRODUCTION

Systems with randomly competing interactions form-
ing structural glasses on lowering the temperatures are
one of the most active subjects of statistical mechanics.
The mixed system of ferroelectric RbH,PO, (RDP) and
antiferroelectric NH,H,PO, (ADP) has attracted consid-
erable attention in this respect. Rb,_,(NH,),H,PO,
(RADP) appears to be a perfectly random mixture of the
constituents. In the intermediate range of concentration
0.233 <x <0.74, the built-in frustration of RADP
prevents ordinary ferroelectric or antiferroelectric phase
transitions and the disordered acid-proton sublattice
freezes into a structural glass.

Preculiar properties of the RADP glassy state have
been observed with a variety of experimental techniques,
including dielectric dispersion,'* Raman® and Bril-
louin®~? scattering, x-ray diffraction,'®=1® NMR,!”!® op-
tical birefrengence,'® and neutron scattering.’?! The x-
ray and neutron measurements revealed diffuse scatter-
ing in the incommensurate position, which is a result of
the coherent scattering from frozen clusters having the
size of a few lattice constants.!"?® The freezing tempera-
ture recorded at the point of noticeable increase of the
width of the diffuse scattering peak has been found to be
100 K for a deuterated RADP (x=0.62). Above 100 K
the measurements®*?! confirmed the quasielastic origin
of these diffuse scattering peaks. Other experimental
techniques, probing the system with different frequen-
cies, have made possible the observation of the freezing
temperature over 17 orders of magnitude in the frequen-
cy. This freezing is well described?>?* phenomenologi-
cally by the Vogel-Fulcher?* law which involves intro-
ducing a finite static freezing temperature.

The glass state is characterized by a distribution of re-
laxation times, which is broad in In7 and spreads from
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10~!2 sec to, perhaps, infinity. A given experimental
technique is sensitive to those relaxation processes that
are of the same order of magnitude as the characteristic
time of measurements. Moreover, each technique mea-
sures a specific quantity. For example, incoherent neu-
tron scattering is described by displacements of single
atoms, while the dielectric measurements are sensitive to
the local dipole moment made from correlated displace-
ments of many particles. As a consequence, different ex-
perimental techniques measure different freezing temper-
atures. The broad distribution of relaxation times is
often associated with the size of reorienting clusters.

The purpose of this work is to study the effects of the
randomly competing interactions on the local motion of
particles in a mixed system. In the pure crystal all parti-
cles behave indentically; sufficiently long-time averages
are independent of particle location. In glasses the situa-
tion is different; local and interparticle potentials vary
from site to site. Consequently, even at low tempera-
tures no long range order can develop. In the strongly
bonded regions of the glass, quasipermanent clusters are
formed. At the same time, in the weakly bonded re-
gions, the particles still perform motion, which gives rise
to the observed relaxation times.

To study these phenomena the model from our previ-
ous paper,”® hereafter denoted by I, will be used. The
model considers the essential degrees of freedom of
RDP, ADP, and RADP: the acid protons moving along
the hydrogen bonds and the rubidium and ammonium
particles moving along the axes of spontaneous polariza-
tion. The protons are situated in a local double-
minimum potential and interact with neighboring parti-
cles. The model potential energy has the symmetry of a
three-dimensional tetragonal phase. A layer of the glass
or crystal that is perpendicular to the fourfold axes has
been simulated by the molecular-dynamics method. Pa-
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per I already contained the following results: the phase
diagram, the temperature and concentration depen-
dences of the glass order parameter, the dependence of
the freezing temperature on the averaging time, the tem-
perature dependence of the form and width of the diffuse
scattering peaks at an incommensurate position, and the
temperature dependence of the width of the quasielastic
scattering described by the dynamic structure factor. To
obtain reasonable results on the diffuse scattering we had
to enlarge the simulated system in the scattering plane at
the expense of the perpendicular direction.

In other models,?6— %815 the acid-proton motion is ap-
proximated by the Ising spin variable S; ,=+1 and the
rubidium and ammonium ions are not considered explic-
itly. Our model can be reduced to the existing ones®®!
by making the double-minimum potential infinitely deep
and disregarding the motion of rubidium and ammoni-
um. Basic interproton couplings in models*®!® and pa-
per I remain of the same form. Selke and Courtens?®
treated the ammonium-ion positions as additional ran-
dom variables, and using the Monte Carlo method have
found the phase diagram and glass order parameter of
RADP. By replacing the ammonium variable by an ad-
ditional effective random field between the acid protons
and using the effective crystal approximation, Cowley
et al.'® have demonstrated the origin of incommensurate
diffuse scattering peaks.

The paper is organized as follows. In Sec. II the de-
tails of the model and molecular-dynamics method are
sketched. The relation between the ferroelectric and an-
tiferroelectric clusters to the distribution of rubidium
and ammonium is illustrated in Sec. III. Section IV
deals with local displacement fluctuations in crystal and
glass. The distribution of potential energies and the
spectrum of relaxation times for crystal and glass are
considered in Secs. V and VI, respectively.

II. MODEL AND MOLECULAR-DYNAMICS
METHOD

The model consists of unit cells labeled i,j with six
particles in each unit cell: four protons u=1,2,3,4 and
two particles p=35,6 representing combined PO, and Rb
or PO, and ND, groups. This model is shown in Fig. 1.
Each particle has one degree of freedom, which is a dis-
placement u; ; , from its average position. The protons
u=12 and pu=3,4 can move only along the y and x
directions, respectively, in the model plane. These are
the directions of the hydrogen bonds. The particles
©=>5,6 can move only along z, the direction normal to
the model plane.

The potential energy V consists of a local potential,

A +Gu? (2.1a)
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an interparticle potential between protons,
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FIG. 1. Model used in the molecular-dynamics simulation.
This is a projection of the structure RADP down the c¢ axis.
The unit cell contains four protons, 1, 2, 3, and 4. Two com-
bined Rb and PO, or NH, and PO, particles, 5 and 6, are
shown by the large squares.

an interparticle potential between protons and rubidium
or ammonium,

Cu,-,j,(,(u,-,jyl——u,-,j,2+u,-'j,3——u,-’j,4) , (2.1¢)

the interparticle potential between the rubidium or am-
monium particles,

—Eu;;5u; 6 (2.1d)

and similarly for other particles. The local springs 4, ; ,
are different for protons between two rubidium and two
ammonium particles. For rubidium-ammonium neigh-
bors, an average is taken. The constants D; i and B; I
depend on the kind of particle located at the site u=5 or
6. A complete form of the potential energy has been
given in paper I, Egs. (3.1)-(3.5), hereafter abbreviated
as Egs. (I.3.1)-(I1.3.5). Two sets of parameters quoted in
Table I of paper I have been used, one corresponding to
the model of RDP and the other to the model of ADP.
The parameter sets promote the phase transitions from
paraelectric to ferroelectric and antiferroelectric phases,
respectively, with condensation of the modes with
correct wave vectors and correct irreducible representa-
tions.

In the glass model the rubidium and ammonium parti-
cles are distributed randomly among p=>5,6 sites with a
concentration x=0.62. The coupling constants at a
given place have been taken from Table I of paper I in
accordance with the local distribution of particles.

The system used in the computer simulation was a
square two-dimensional crystallite of the size of 3838
unit cells. In total the system consisted of N,=8741
particles. Free-boundary conditions and the micro-
canonical ensemble were used. The Newton equations of
motion were solved by a simple difference scheme. The
iteration step was At=0.057),, where 7=27/w, is the
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characteristic mode frequency. The temperature was de-
scribed by the average kinetic energy. The system was
cooled or heated by a delicate change of particle veloci-
ties in each iteration step. We have calculated averages
(0), of dynamical variables O over a long but finite
time 7.

The models of RDP and ADP crystals exhibit phase
transitions from paraelectric to ferroelectric and to anti-
ferroelectric phases at temperatures 7T,=0.00565 and
T,=0.004 30, respectively. The RDP transition is
driven by an order parameter at the zone center, while
ADP is the result of the condensation of an irreducible
representation at the zone boundary. The RDP and
ADP can exist in two and four domains, respectively.

The glassy state of the model has been characterized
by the glass Edwards-Anderson order parameter

L ) )2,

=3 (Ku
No ijop

7 ij (2.2)
where the summation runs over all particles. The 7,
does not vanish if at least a few particles remain either
in positive or negative positions during time 7. The
freezing temperature has been defined by extrapolating
the temperature-dependent 7. curve monotonously to
zero. The freezing temperature T,(r) depends on the
averaging time 7. For averaging time 7=1007, and
100007,, the freezing temperatures have been
T;=0.00425 and 0.00270, respectively. At infinite
averaging time one expects the lowest possible freezing
temperature, the so-called static freezing temperature
Ty=T;(7= ). Computer simulation does not allow us
to study this.

III. FERROELECTRIC AND ANTIFERROELECTRIC
CLUSTERS

In the glass, below the freezing temperature, one may
expect chemical clusters of rubidium and ammonium to
promote the appearance of the ferroelectric and antifer-
roelectric proton clusters, respectively. To verify that
statement, the glass system was twice cooled slowly to
the temperature T"=0.001 00, which is much lower than
T,. Then it was equilibrated and the position of each
proton was averaged over 1007,. The two runs were
performed with the same initial and final temperatures,
the same distribution of rubidium and ammonium, and
the same cooling rate and equilibration times. The ener-
gies of the low-temperature states also proved to be the
same. However, the two runs differed in the distribution
of initial velocities and initial positions of particles.

As a result of those runs, two maps of average proton
positions were obtained. Knowing the elementary fer-
roelectric and antiferroelectric patterns of proton dis-
placements, we assigned the type of cluster (ferroelectric
or antiferroelectric) and its orientation to the
configurations of protons. The result of this procedure
is shown in Fig. 2. According to the symmetry reduc-
tion in the phase transitions of RDP and ADP, the fer-
roelectric and antiferroelectric domains can exist in two
and four (including two antiphase) orientations, respec-
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FIG. 2. Cluster structure of two runs, obtained as a result of
independent cooling processes. The rubidium (O) and am-
monium (0J) particles are indicated. The notations for the fer-
roelectric and antiferroelectric clusters together with their
orientations are shown at the bottom of the figure.

tively. Hence, each cluster has a definite domain orien-
tation.

Figure 2 allows us to draw the following conclusions.
(i) There are regions where the assignment of the type of
cluster is not possible. (ii) The ferroelectric or antifer-
roelectric clusters occur in regions of rubidium or am-
monium chemical clusters, respectively. Thus, chemical
clusters promote corresponding clusters of protons. (iii)
The orientations of ferroelectric or antiferroelectric clus-
ters are random and, generally, different on both maps.

The maps are history dependent. Cooled twice from
the paraelectric phase, the glass approaches two different
patterns of cluster orientations. In the phase space the
two patterns correspond to two different local minima.

IV. LOCAL DISPLACEMENT FLUCTUATIONS

In the simulation we can try to localize regions where
protons do not jump over local barriers, regions where
they undergo an active motion. A suitable quantity that
can serve as a measure of local activity of particles is the
squared displacement fluctuation (SDF)

— {2 2
W,'j,#——(u- ), — Ay,

i jop T (4.1)

where 7 is a finite averaging time. If a particle remains
in one of the local minima during time 7 its SDF is
small. If a particle is visiting both minima in a compa-
rable time then its SDF becomes large.

Below we show a few maps of SDF. They all
represent the central part of 14X 14 unit cells of the sys-
tem, which contain 30% of particles. The distribution
of rubidium and ammonium was fixed in the calcula-
tions. The symbols given on the maps, Figs. 3-6,
represent the particles. The size of each symbol is pro-
portional to the value of SDF, Eq. (4.1). Each map in
each figure was obtained from the same initial equilibrat-
ed state but averaged over different times 7.

A. Glass model of RADP

Figure 3 shows subsequent maps at averaging times
1007, 5007,, 25007,, and 12 5007, and low temperature
T =0.00103. The freezing temperatures are 0.004 25,
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0.003 70, 0.003 16, and 0.002 60, respectively. As seen in
Fig. 3, in spite of such a low temperature, some particles
jump between the minima. For the short time 1007, the
number of active particles is small, but for the longest
time 12 5007, it becomes larger. There are particles or
small clusters which are always active. Other clusters
are present in some of the maps only. For particles be-
longing to such clusters one should assume active
motion during some time, followed by quiet periods.
Apart from that, one can easily notice large frozen re-
gions of quasipermanent clusters. It was also found that
during the time of 12 5007, 52% of the protons have
not jumped even once to the opposite local minimum.
The remaining particles have performed on the average
100 jumps during the observed period of time. Hence,
well-localized regions of activity are identified.

At the higher temperatures 0.00204 and 0.003 04, as
shown in Fig. 4, one is still able to recognize frozen re-
gions. For T'=0.003 04 and 25007, the regions of quasi-
permanent clusters have shrunk, as expected for condi-
tions close to the freezing temperature. The maps ob-
tained well above the freezing temperature showed a
homogeneous distribution of SDF.

Different protons exhibit different SDF amplitudes.
The distribution of these amplitudes can be described as

1

p(W)=— > 1,
N Ljp

< W +dw

(4.2)

W<Win

where the summation runs only over those protons
whose SDF amplitudes are confined to the interval
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FIG. 3. Maps of the squared displacement fluctuations for a glassy state, Eq. (4.1), obtained at a temperature T =0.00103.
(a)—(d) correspond to the averaging times 1007, 5007y, 25007, and 12 5007, respectively.
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FIG. 4. Maps of the squared displacement fluctuations for a glassy state, Eq. (4.1). (a)—(c) are obtained at temperature
T'=0.00204, (a’)-(c’') are maps obtained at temperature T =0.00304. The corresponding averaging times are (a),(a’), 1007;
(b),(b"), 5007¢; (c),(c"), 25007.
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FIG. 5. Distribution p(W), Eq. (4.2), of the squared dis-
placement fluctuations in a glassy state for some averaging
times 7.

(W, W +dW), and N is the number of protons. Figure 5
shows the p (W) distributions at T =0.00103 for three
averaging times. The distributions have been obtained
during the same runs as the respective maps of Fig. 3.
As seen in Fig. 5, a majority of particles, oscillating
within one minimum, possess small SDF amplitudes.
The other particles have amplitudes that correspond to
the jump motion between local minima. For longer
averaging times, more particles join the jumping group.
Figure 6 represents the distribution of SDF ampli-
tudes calculated for various temperatures. As expected,
above the freezing temperature 7,=0.00316 for
7=25007,, the distribution p (W) shows one peak at the
squared half-distance between local minima. The peaks
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FIG. 6. Distribution p(W), Eq. (4.2), of the squared dis-
placement fluctuations in glassy and paraelectric states. For

the averaging time 7=25007,, the freezing temperature is
T,=0.003 16.

FIG. 7. First moment of the square displacement fluctua-
tions, Eq. (4.3), for glassy and crystal RDP states as a function
of reduced temperatures.

have a tendency to become narrower with increasing
temperature. Below T, the distribution p (W) becomes
fairly broad. Protons belonging to quasipermanent clus-
ters contribute to the peak of the p (W) spectrum at
small values. The jumping particles produce a wide pla-
teau.

We also calculated the first moment, or the average
SDF,

W.= [ Wp(W)dw . 4.3)
0

It is presented as a function of the reduced temperature

in Fig. 7. This average increases with temperature until

the freezing temperature is reached. Above T, all pro-

tons jump between both local minima frequently, and

thus W _ remains constant.

B. Crystal model of RDP

Figure 8 shows four maps of the SDF for a pure crys-
tal model of RDP at a temperature close to the phase
transition 7,=0.00565. For the short-time average of
207, the clusters of larger displacements are dynamical
critical fluctuations. For the long-time averages the map
becomes more homogeneous, since all the particles locat-
ed at identical potentials behave similarly. Any excita-
tion easily propagates through the crystal and therefore
the motion is not localized.

The quantitative description of this effect is given in
Fig. 9, where the distribution of SDF amplitudes is
presented. This should be compared with Fig. 6 show-
ing the strikingly different SDF distribution for glass at
low temperature. At T =0.003 06 some jumps have oc-
curred, but the jump process has not been localized.
The localization would cause a long tail for large W
values. The broad distribution at 7 =0.00543 reflects
the critical fluctuations which are so slow that the time
25007, cannot serve as a representative average. Above
the phase transition all protons jump between local mini-
ma with the same rate, producing a single peak at the
same position as for the high-temperature glass system.
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FIG. 8. Maps of the squared displacement fluctuations for the crystal RDP, Eq. (4.1), obtained at temperatures T =0.005 45
close to the critical temperature T, =0.005 65. (a)-(d) correspond to the averaging times 207, 1007, 5007,, and 25007, respective-
ly. The size of symbols on all the maps is not rescaled and therefore they are comparable.

The average SDF, Eq. (4.3), calculated from the distri-
bution p (W) in Fig. 9, is shown in Fig. 7 together with a
similar curve for the glass system. The increase of the
average SDF for the pure crystal occurs in the critical
region and is confined to a narrow interval of tempera-
tures. In the glass system that region is much broader.

The above effect has been confirmed experimentally.
The incoherent inelastic neutron scattering is propor-
tional to the SDF. In Fig. 10 inelastic incoherent

neutron scattering measurements at the constant
energy transfer for the structural glass
Rbj ¢s(NH,), 3sH,AsO, (Ref. 29) and crystalline

RbH,AsO, samples are compared. The results are
analogous to the curves of Fig. 7.

V. DISTRIBUTION OF PROTON POTENTIAL
ENERGIES

The potential energy of the system, Egs. (I.3.1)-(1.3.5),
can be written as a sum over potential energies of indi-
vidual particles,

V=—"-317, (5.1

[

We have introduced a deviation of the individual aver-
age potential

v, —(Y, (5.2)

[NAT >T_<V>T’

e
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FIG. 9. The distribution p (W), Eq. (4.2), of the squared dis-
placement fluctuations for the crystal RDP in ferroelectric and
paraelectric states (7, =0.005 65).

where { V') _is the average potential of the whole crystal,
per particle. Its temperature dependence is given in Fig.
4 of 1. Similarly to the distribution of SDF’s, Eq. (4.2),
the distribution of local potential-energy deviations for
protons

pV=1 3 1

i jypt
VeV, u<V+dv

(5.3)

were calculated for the RDP crystal and for the glass
system. The results are displayed in Figs. 11 and 12, re-
spectively. The averaging time used was 7=25007,,.

In our model the potential energies of rubidium and
ammonium at the minimum of the local single minimum
potentials and the potential energies of protons at the
top of the local potential barriers are zero. Hence, fluc-
tuations of rubidium and ammonium give positive con-
tributions to the average potential energy { ¥ ). while
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FIG. 10. Comparison of the incoherent inelastic neutron
scattering at constant energy transfer of —0.5 THz for the
mixture Rbg ¢s(NH,)o 3sH,PO, (Ref. 29) (+) and pure
RbH,AsO, (0,®).
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FIG. 11. Distribution of individual potential energy devia-
tions for protons, Eq. (5.3), in a crystalline phase of RDP.

negative contributions to (¥ )_ are expected from pro-
tons residing in one of the local minima. In agreement
with Eq. (5.2), the two factors shift the potential energies
of protons V; ; ,, and the distribution p (V), towards neg-
ative values of V.

In the RDP crystal, the distribution p (V) is narrow,
as shown in Fig. 11. The protons are subject to identical
potentials, and therefore the width of the distribution is
attributed to the finiteness of the averaging process,
which is less sufficient closer to the critical temperature.
Therefore, at T=0.00543 the width of the p (V) distri-
bution is the largest. Increasing the temperature, the
protons reside for a longer time on the local barriers, di-
minishing the difference between the potential energies.
Hence, the average position of the peaks in Fig. 11 in-
creases with the temperature.

In the glassy state at low temperatures, as shown in
Fig. 12, one observes a dramatic broadening due to the

10 — T T

01F

p(V)

L

00001
-0002

0,001 0 0001 0002

FIG. 12. Distribution of individual potential-energy devia-
tions for protons, Eq. (5.3), in a glassy state.
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distribution of local minima for protons and to the
variety of the interparticle potentials. Indeed, the poten-
tial energies of ferroelectric and antiferroelectric clusters
are different (see Fig. 4 of I). Moreover, the minima of
the local potentials of protons, those between two rubi-
dia or two ammonia, are different. All these states gen-
erate at low temperatures a large distribution of the pro-
ton potential energies. Above the freezing temperature,
where quasipermanent clusters vanish, all particles ex-
plore the region of potential energy close to zero, and
the distribution becomes narrower and resembles the
crystal case.

VI. SPECTRUM OF RELAXATION TIMES

In spin glasses and structural glasses the dynamics
play a major role in the freezing process. The conven-
tional freezing temperature T;(7) is defined by the point
where the Edwards-Anderson order parameter, Eq. (2.2),
averaged over time 7 tends to zero. Below 7, an inten-
sive motion in the system is still present. This motion
dies out in the course of temperature decrease. It is be-
lieved that there exists a ‘‘static” freezing temperature
Ty=T;(1= ) described by an infinite averaging time
below which the frozen-in clusters of infinite surface®
exist. The averaging time 7 and the associated freezing
temperature 7, can be related to each other by the phe-
nomenological Vogel-Fulcher?* law, which is applicable
to RADP.22 Other relationships have also been pro-
posed.’!¥

In glasses, the relaxation times form a broad spectrum
ranging from extremely short times on the order of
10712 sec to some finite cutoff time. At a given freezing
temperature Tf(T), the cutoff time is of the same order
as the respective averaging time 7.
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FIG. 13. Log-log plot of the distribution g (t) of elementary
relaxation times of protons for the glassy state.
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FIG. 14. Log-log plot of the distribution g (¢) of elementary
relaxation times of protons for the crystalline phase of RDP.

To whatever quantity the relaxation time is related,
the elementary relaxation step will be the jump of pro-
tons between the local minima. Simplifying the problem
a little, one can easily calculate the distribution of ele-
mentary relaxation times using the following procedure:
We define that a particle (i, j,u) has jumped from one lo-
cal minimum to another when the displacement u; ; ,(¢)
alternates sign between two subsequent iteration steps
At. Thus, according to our definition, the jump occurs if
the product

(nAt)u; ; [(n —1)At] 6.1)

Yijiu i
becomes negative. The time between two subsequent
jumps of the same particle defines the elementary relaxa-
tion time.

The elementary relaxation times of all protons, except
those located in the unit cells at the border of the sys-
tem, have been segregated into a histogram representing
a distribution of the relaxation times g(z). Figures 13
and 14 show the resulting distributions for the glass
RADP and pure RDP systems, respectively, as a func-
tion of temperature. Each distribution is a result of a
run which lasted 100007,. The distributions have been

normalized
f gltdt=1;
0

therefore, they do not reflect the total number of jumps.

A. Glass model of RADP

Above T, the presence of quick proton jumps involve
a narrow spectrum of g(¢) peaked at short relaxation
times, as shown in Fig. 13. Below T, the spectrum
evolves towards longer relaxation times at the expense of
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the short times. Protons from active regions of the glass
contribute to the short relaxation times while protons of
quasipermanent clusters give rise to the long relaxation
times.

Above 10007, the elementary relaxation times have
not been recorded because the time of the simulation
was finite and the system was of a small size. Large fluc-
tuations cannot appear in the small system, thus large
clusters are not able to reorient.

A wide spectrum of experimentally observed relaxa-
tion times of RADP have been constructed®? from the
neutron, Raman, Brillouin, and dielectric measurements.
However, each experimental technjque deals with other
quantity. The incoherent neutron scattering is defined
by the single-atom motion and hence by the distribution
of the elementary relaxation times. For times longer
than 102 sec, the dielectric measurements are usually
used. Such measurements are sensitive not to the distri-
bution of the relaxation times of single protons but to
the corresponding distribution of the local dipole mo-
ments of the ferroelectric clusters. Such clusters reorient
rarely so they cannot contribute significantly to the dis-
tribution of the elementary relaxation times. We add
that on the series of maps of proton configurations the
reorientation of clusters of a size of one, two lattice con-
stants has been observed.

The result fits the concept of hierarchically con-
strained dynamics® that involves a hierarchy of degrees
of freedom, from fast to slow. The fastest degrees of
freedom involve single atoms or very small clusters, and
distributions of their elementary relaxation times have
been recorded in Fig. 13. Larger groups of atoms or
even quasipermanent clusters are only able to move
when several of the fastest atoms happen to move in the
right way, weakening the constraints at the cluster
boundary and promoting the reorientation of the cluster.

At low temperatures it is expected that not all protons
jump. Using Eq. (6.1), n —the number of protons which
have been jumped at least once—was recorded and the
result of the ratio n /N shown in Fig. 15. In spite of a
long-time average of 7=100007,, many protons have not
jumped even once below T =0.002 00.

T T T T T
x=0.62 T=10000 T,
1.0 —e- - *—
Z
~
c
0.5 -
0 1 1 1 1 1
0 0.002 T 0.004 0.006

FIG. 15. Temperature dependence of relative number of
particles n /N in a glassy state which during the time 100007,
have performed at least one jump over the local barrier.
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B. Crystal model of RDP

Above T,, the spectrum of the elementary relaxation
times of the crystal, as shown in Fig. 14, is similar to the
corresponding spectrum of the glass. Below 7., and at
the same reduced temperatures, the rate of proton jumps
is considerably lower in the crystal than in the glass. In
the ferroelectric phase, two types of domains separated
by the domain walls are formed. There, the jump
motion of protons organizes into a collective motion of a
domain wall. The oscillations of the domain wall in-
volve fast jump motion of these protons which are locat-
ed in it. These protons contribute to that part of g(z)
which corresponds to the short relaxation times.

The spectra at T=0.00306 and 0.004 52 exhibit, in
addition, a remarkable increase of g (¢) at the long relax-
ation times. These parts of the spectra convert in anoth-
er representation of the spectrum G(z), where
G (t)d Int =g (t)dt, into the maxima placed at longer re-
laxation times 5007, and 507, respectively. The maxima
arise because the domain wall propagates and returns to
the same protons after longer periods. The domain wall
ceases to propagate below 7 =0.00200. Of course,
within domains are protons which jump owing to the ac-
tivation energies and they contribute also to the spec-
trum of the elementary relaxation times.

VII. SUMMARY

From the computer simulation and the analysis of the
configurational maps the following picture of RADP
glass emerges. In high temperatures the glass behaves
much like paraelectric crystal. On cooling, the chemical
clusters of rubidium and ammonium, of the size of a few
lattice constants, promote the formation of quasiper-
manent ferroelectric or antiferroelectric clusters of pro-
tons, respectively. The orientation of the clusters is of
either one of two ferroelectric or one of four antifer-
roelectric crystal domains, respectively. These orienta-
tions are random; they depend on sample history and
freeze gradually during the cooling process. Moreover,
the clusters of given orientations may be subject to con-
straints superimposed by the surrounding quasiper-
manent clusters of other orientations. The quasiper-
manent clusters contribute to the glass order parameter
and to the elastic coherent diffuse scattering.

In the intermediate region between the quasiper-
manent clusters, mainly in the region of competing in-
teraction potentials, the protons are active and jump fre-
quently over local barriers.

The local kinetic and potential energies of the glass
fluctuate. Such a local fluctuation travels in the system,
and in the active region is manifest in the motion of the
jumping protons. If the excess of energy travels away
from the active region, the proton remains in one of the
local minima. Hence, a single proton jumps irregularly;
active periods are interrupted by quiet intervals.

Entering a quasipermanent cluster, an energy fluctua-
tion is converted into a phonontype motion. Rare jumps
of protons, expected to be even collective, are initiated
by active regions attached to cluster boundaries. The
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collective jumps may lead to a reorientation of the quasi-
permanent cluster and may influence the macroscopic
quantities, such as net polarization. These events, no
matter how seldom, contribute to the longer relaxation
times.
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