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%e present a detailed analysis of one-dimensional models where frustration results from the

presence of nonconvex interparticle interactions. The phase diagrams, obtained numerically, are
qualitatively difkrent depending on whether or not the particles, in the ground state, experience
the nonconvex part of the interaction potential. %hen the particles experience only the convex

part of the interaction potential, only phases where the minding number is uniquely defined are
found and the transitions among these phases are suggestive of a complete devil' s-staircase behav-

ior. %hen some of the particles, in the ground state, experience the nonconvex part of the interac-
tion potential, phases where the winding number is not uniquely defined are found. In this case,
both erst- and second-order phase transitions and possibly quasicontinuous transitions are found.
Also of interest is the existence of sequences of superdegenerate points where the system has resid-
ual entropy and violates the third law of thermodynamics. At these points, we show that the
ground state consists of noninteracting solitons of zero energy.

I. INTRO)DUCTION

Today, many materials are known to exhibit phases
which are characterized by a commensurate or incom-
mensurate spatial modulation of a local property such as
magnetization, electric polarization, charge and mass
density, or chemical composition. ' Usually, the oc-
currence of these phases is looked for in the ground state
of a given Hamiltonian or mean-field free energy. In
that respect, the two most popular theoretical models
have certainly been the Frenkel-Kontorova model and
the axial next-nearest-neighbor (ANNNI) model.

In the Frenkel-Kontorova model, frustration results
from the competition between two periodicities: the
equilibrium length of the first-neighbor harmonic in-
teraction, and the period of the sinusoidal substrate po-
tential. On the other hand, in the ANNNI model
(within mean-field theory), frustration occurs when the
following ingredients are present simultaneously: com-
peting 6rst- and second-neighbor harmonic interactions
and a temperature-dependent double-well potential to
which the continuous variables (representing the average
magnetization of a plane) are submitted. In that respect,
the models of Axel and Aubry and Janssen and Tjon
are quite similar to the ANNNI model, since they both
contain all of these ingredients. The only differences
concern the mathematical form of the double-mell poten-
tial and the "physical" signi6cance of the continuous de-
grees of freedom (namely, they represent displacements
of atoms in the case of Axel and Aubry but they are
bond variables in the model of Janssen and Tjon).

Recently, in a short paper, we proposed a di8'erent
mechanism for the occurrence of modulated order in
condensed matter. The model consists of particles sub-
mitted to a convex (i.e., with monotonously increasing

first derivative) substrate potential and interacting with
their 6rst neighbors through a noneonUex interaction po-
tential, It is easy to show that frustration leading to
periodically modulated ground states can only occur in
this model when the interparticle interaction potential is
nonconvex. Similar to the ANNNI model (and related
models) but contrary to the Frenkel-Kontorova model,
the ground state can only occur in the thermodynamic
limit with zero average lattice distortion. On the other
hand, as in the Frenkel-Kontorova model but contrary
to the ANNNI model, only 6rst-neighbor interactions
are present and are needed to obtain modulated ground
states. In this paper we investigate the complicated
structure of the phase diagram for such a model.

The motivation for this kind of study is twofold.
Firstly, nonconvex interactions are common in solid
state physics. The oscillating (Ruderman-Kit tel-
Kasuya-Yoshida) exchange interaction between localized
spins in a metal is perhaps the most famous example.
Also, it has been shown' recently that magnetoelastic
coupling leads to an effective double-mell interparticle
interaction. More generally, and relevant to ferroelectri-
city, Villain and Gordon" have shown that oscillating
(and hence nonconvex) interactions can be mediated
through elastic strains and other harmonic 6elds. The
second reason that motivates this study is that noncon-
vex efFects are presently far from well understood. This
is not surprising, since theoretical approaches to prob-
lems involving nonconvex interparticle interactions have
so far been limited to models where frustration (leading
to modulated ground states) is present, even when the in-
terparticle interactions are convex. For example, if we
replace the interaction terms of the models studied by
Aubry, Fesser, and Bishop, ' Banerjea and Taylor, ' and
Yokoi, Tang, and Chou' by convex harmonic interac-
tions, we recover the Frenkel-Kontorova model. Hence,
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II. PRESENTATION OF THE MODELS

We consider a classical one-dimensional (1D) chain of
atoms described by the Hamiltonian

H= g [V(u„)+W(u„+i—u„)],
n=1

(2.1)

where u„ is the displaeernent of the nth particle with
respect to some reference position, here assumed to be a
regular one-dimensional (1D) lattice of equally spaced
points. The external single-particle potential has the
form

V(x)= ,'Ex (E &0) . — (2.2)

Physically, V(u„) is the local potential experienced by
a particle in the nth ceH as a result of the interaction

in order to focus only on nonconvex eftects, we have de-
cided to study microscopic models having nonconvex in-
teractions and for which the ground state is always uni-
form (unmodulated) when these interactions are convex.
Furthermore, these chosen models are representative of
certain kinds of interactions that can occur in real solids.
In fact, they are related to certain magnetoelastic prob-
lems' (more details will be given in a later publication)
and, as shown by Kholopov, '~

may be suited to describe
phase transitions in ferroelectrics such as TIHF2.

In our opinion, the major conclusion of this study is
that nonconvex interparticle interactions alone can be
responsible for the occurrence of periodically modulated
structures when the substrate potential is convex, and
that the kind of phase transitions present strongly de-
pends on whether or not the particles experience the
nonconvex part of the interaction. Some of the interest-
ing features that we have found include both first- and
second-order phase transitions, as well as sequences of
transitions suggestive of a devil s-staircase ' behavior.
%e also note the possibility of "quasicontinuous" transi-
tions (i.e., an infinite sequence of first-order transitions)
as suggested by Yokoi et al. ' for the chiral XF model.
This behavior is similar to the one found ' for the
ANNNI model close to the multiphase point. ' %e
have also found sequences of "superdegenerate" points'
in parameter space. As for the multiphase point of the
ANNNI model, the ground state is infinitely degenerate
at these points. However, at some of these superdegen-
erate points, it is seen numerically that, contrary to the
multiphase point of the ANNNI model, only a finite
number of phases merge. A similar behavior has been
found for the chiral XFmodel. '

The organization of the paper is as follows: The mod-
els and some of their important properties are presented
in Sec. II. In order to make the paper more accessible
and to clarify the notation, we present in Sec. III a brief
and slightly modified version (since a convex substrate
potential is used instead of a periodic potential) of the
powerful numerical algorithm proposed recently by
GriSths and Chou' ' that we have used to find the
ground states of our models. The results, including
phase diagrams, are presented in Sec. IV. Finally, the
main results are discussed and summarized in Sec. V.

with a background of rigid atoms. If we restrict our-
selves to small deviations from symmetric equilibrium
positions, V(u„) is written as in (2.2). Note that al-
though unbounded potentials such as in (2.2) are useful
for describing structural phase transitions, ' they are not
appropriate for materials where particles can jump from
one unit cell to another. As usual, the ground state of
(2.1) represents the equilibrium structure of a three-
dimensional (3D) system of identical chains with all the
transverse couplings favoring a parallel alignment of
planes of atoms so that they need not be included in the
Hamiltonian.

As for the ANNNI model, unbounded potentials such
as (2.2) confine each particle to its cell and therefore, the
average lattice distortion (u„+,—u„) must be zero in
the ground state,

(2.3)

Were this not so then one would have (u„+,—u„) =5,
and the energy E(N) of a chain of N atoms would in-
crease dramatically with X,

(2.4)

W(x) =(x —y ) —
~

x —y ~

(model 1),
W(x)= —

—,'(x —y)'+ —,'(x —y)~ (model 2) .

(2.5)

(2.6)

Perhaps the most significant di6'erence between these
two models is the fact that the region of nonconvexity of
W(x) is of finite width ( ~x —y ~

&3 '~
) in model 2,

whereas it is limited to the nonanalytic point x =@ in
model 1.

Model 1 is typical of the T =0 double-quadratic-well
erat'ective interparticle interaction, which arises in a 10
magnetoelasiic problem' involving n-component classi-
cal spins, S„,coupled to their nearest neighbors through
an exchange integral which varies linearly with interpar-
ticle spacing. The exchange energy of the bonds is pro-
portional to —

~ u„+,—u„y~ since, at—T =0, the clas-
sical n vectors„S„, align themselves either ferromagneti-
eally or antiferromagnetieally with their first-nearest
neighbors depending on the sign of the exchange integral
between them. —y is the ratio of the exchange integral,
Jo, to its gradient, —J„evaluated at u„+,—u„=O. The
first term (x —y) comes from the first-neighbor elastic
interaction. At finite temperatures, it has been found
that the effective interaction between the u„has the
form of an analytic double-well potential if the spin-
exchange interactions are 1D (more details concerning

The fact that V(x) is convex implies (see the Appen-
dix) that the ground state is always uniform (all the
u„=0) when W(x) is also a convex function. Hence, if
V(x) is conuex, frustration that leads to modulated
ground states can only occur if W(x) is nonconuex. In or-
der to discover which kinds of modulated ground states
can occur in the presence of nonconvex interactions, we
have focused our attention on two qualitatively different
forms for W(x):
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magnetoelastic problems will be given in a later publica-

tioii). In tliis case, model 2 serves, uiider ceftaiii coiidi-
tions, as an approximation to this CSective,
temperature-dependent, interparticle interaction. More
generally, (2.6) represents the first terms of a Taylor ex-

pansion of a more general nonconvex interparticle in-
teraction as has been proposed for T1HFz. '

It should be noted that the particular choice of the
coefficients used in (2.2), (2.5), and (2.6) can always be
achieved by means of an appropriate scaling of lengths
and energies. Moreover, since the average lattice distor-
tion is zero in the ground state, one could add to (2.1)
the linear symmetry-breaking term (u„+,—u„) without

changing the ground state. However, the action of a
pressure (or a tension) can be simulated, to first order, by
changing the parameter y (keeping K constant). For
model 2, cubic terms can also be scaled away. If the
term —,'C(x —y) is added to (2.6), then it can be elim-

inated by transforming the Hamiltonian according to

X Qj
2

(1{,y ) —,—y+—K 1 C
g2» g

where g = 1+—,
' C2.

Since the Hamiltonian has the following symmetry,

H(y, Iu„ I ) =H( —y, I
—u„ I ), (2 7)

it is sufficient to consider the part y &0 of the phase dia-
gram. Moreover, Yokoi et al. ' have shown that, for
Hamiltonians of the type given by (2.1) having
V( —x)= V(x), a nondegenerate ground state of even
period Q must have the following structure (over one
period):

ug/2+I»u{?/z+l»» ug —1»ug l» (2.8)

with all u„&0, whereas a nondegenerate ground state of
odd period Q must have the form

l un 1 I ug» ug —1» ' ' » (g+ I )/2»» ug —1»ug I

(2.9)

(2.10)

with all u„&0 except for u~g+, ~/z
——0. By a nondegen-

erate ground state we mean a ground state from which
all the other ground states can be obtained through a
lattice translation' (i.e., a ground state with trivial de-
generacy). In Sec. IV, we shall see that there exist some
points in the phase diagram where the ground state is
(infinitely} degenerate.

In order to identify the phases, it is convenient to
define a label. Perhaps the most widely used label 1s thc
winding number' defined by the value of (u„+,—u„)
in the ground state. Since this quantity is always zero in
our case, we need another de6nition. The de6nition for
the winding number that we have found convenient for
our problem is

FIG. 1. Examples of ground states and their winding num-

ber co. The )& denote points of reAection symmetry.

where Q is the period of the state (we restrict ourselves
to states of fimte periodicity), uo ——ug and 8(x)=+1 (if
x )0) and 8(x)=0 (if x g0). Note that the numerator
and denominator are two separate integers so that, in
this way, we can distinguish between the state ~= —,

'

(which has Q = —,') and the state co= —', (which has Q =4).
This is illustrated in Fig. 1.

(3.1)

For the Hamiltonian (2.1), (3.1) leads to the following
two dimensional (2D) map:

IV'(M„+, —u„)= W'(u„—u„ i )+ V'(u„), (3.2)

where W'(x ) and V'(x ) denote the first derivatives of
W(x) and V(x), respectively. However, the fact that
(3.2} also holds for metastable and unstable states means
that the mapping problem is, in some sense, more com-
plex than the original ground-state problem, as Aubry
has emphasized. Moreover, an additional and substan-
tial difficulty arises when 8'(x) is nonconvex, since then
the 2D map (3.2) becomes multivalued.

Recently, Gri%ths and Chou' ' have presented an al-

gorithm that, in contrast to the traditional methods,
focuses directly on the ground state and is valid for non-
convex interactions. This method is quite elegant and
powerful and can be summarized as follows. Imagine
that a system described by (2.1) is in its ground state. If
we displace an atom from its equilibrium position, then
the surrounding atoms will change their positions in or-

III. THE ALGORITHM OF GRIFFITHS AND CHOU

The traditional approach' to finding the ground state
involves a search for the lowest-energy configuration
satisfying



der to minimize the total energy. This local deformation
will, in general, cost some energy and therefore, we can
define a function, called the e+ectiue porentiaI, which will

describe this energy cost as a function of the atomic po-
sition. At site n, the effective potential R(u„), due to
the presence of the atoms i ~ n, can be formally written

R (u„)—=min g [ W(u, —u, , )+ V(u; ) —A, ] (3.3)

where A, is the (unknown) ground-state energy per parti-
cle and where the minimum must be taken over all
atomic positions u; with i ~ n. We can rewrite this equa-
tion by expressing the right-hand side (rhs) in terms of
R (u„,) and in this manner, we obtain the following
nonlinear eigenvalue equation:

A, +R (u„)= V(u„)+ min j W(u„—u„ i)+R (u„~ ) I .
n —l

(3.4)

The rhs of (3.4) defines a nonlinear functional operator
R and (3.4) can be written simply as

havior, the orbits of p and o. will tend to an attractor
which represents the ground state. Hence, to generate
the ground state, we only need to iterate p or o. once we
have obtained R (u) or S(u).

Unfortunately, we are usually unable to find an analyt-
ic solution to (3.4) and we need to rely on numerical
solutions. One way to proceed is to discretize the unit
cell. We replace the continuous set of possible atomic
positions by a discrete set of 6 points uniformly spaced
on an interval D chosen suSciently large so that the
atoms are never located too near the boundaries:
u = (D/—2)+i(D/6) with i =1,2, . . . , 6. If R' '(u)
denotes the trial function [R' '(u)= V(u) is a good
choice], then the sequence of iterations suggested by
GrifBths and Chou,

R 'J+ "(u)=—'[RR '~'(u)+R ' '(u)] —C (3.12)

generally converges. The constant C is chosen in order
that the minimum value of R'~+ "(u) be zero. This se-
quence is iterated until

max
~

RR'J (u) A.
'~' R—'~'(u) —

~

&@max
~

R'J'(u)
~

A, +R (u) =AR (u) . (3.&) (3.13)

We can also write the effective potential S(u„) due to
the presence of the atoms with i p n,

S{u„)=min g [W(u, +,—u, )+V(u, ) —A, ]
i&n

F(u)=R (u)+S(u) —V(u), (3.8)

where V(u) is subtracted in order to avoid being count-
ed twice. When V( —u)= V(u), comparison of (3.4) and
(3.7) yields

R(u)=S( —u), (3.9)

and hence, in this case, all the information is contained
in R (u). Griffiths and Chou have showh that a.continu-
ous solution of (3.4) for R (u) always exists [provided
that V(x) and W(x) are continuous and are bounded
from below] and the corresponding iL is unique (the
ground-state energy must be unique).

For a given value of u„, the value of u„& that rnini-
mlzcs thc rlis of (3.4) dcflilcs tlic 1D IIlap

u„,=p(u„) . (3.10)

Similarly, for a given u„, the value of u„+& that mini-
mizes the rhs of (3.7) defines the 1D map

u„+,——a(u„) . (3.11)

Physically we expect that, after some initial transient be-

and the associated eigenvalue equation is

A+S(u„)= V(u„)+min [S(u„,)+ W(u„+i —u„)I .
n+1

(3.7)

Hence the total effectiv potential F(u), due to all the
neighboring atoms, is given by

where the approximate ground-state energy is given by

A,"'= min f&R "I(u)I, (3.14)

and the final R"'(u) is the approximate efFective poten-
tial. We have chosen e= 10 ~10 ' for 6 =200
~3200 points. Typically, we need about 30 iterations
when a=10 and 60 iterations when @=10 ' . Howev-
er, convergence is slower near a phase transition bound-
ary.

The major inconvenience with the discretization pro-
cedure is certainly that we cannot find any ground state
with a period Q greater than the number of points 6 of
the grid. Hence, we cannot distinguish commensurate
states of period Q —6 from truly incommensurate'
states, since the attractors of p and 0 are then only
periodic cycles.

The amount of central-processing-unit (CPU) time in-
creases as 6 and becomes excessive if, for each value of
u„, a systematic search among all the possible values

u„, is done to solve (3.4). For this reason, we can, at
each iteration, determine an interval bu„(for each u„)
based on the results obtained from the previous itera-
tion, among which the search is restrained. We can also
proceed by stages: a solution obtained rapidly for
6 =25 can then be used to generate R' '(u) for 6 =50
and so on. With these tricks, it takes about 3 s of CPU
time {on an IBM 4381) to find R (u) with 6 =200 and
a=10 . This precision is suf5cient to obtain the gen-
eral aspects of a phase diagram. Finer details can be ex-
amined with larger grids of points and finer e [it takes
about 5 min of CPU on an IBM 4381 to obtain R (u) for
6 =3200 and @=10 ' ].

Under certain circumstances, (3.4) may have many,
qualitatively different (i.e., they do not diffe only by a
constant) solutions R, (u). Suppose, for instance, that
two phases {A and 8) are separated by a first-order tran-



1902 MARIO MARCHAND, KEVIN HOOD, AND ALAIN CAILI.E 37

sition line. If R„(u) and RB(u) denote, respectively, the
eff'ective potentials of phases A and 8, then any com-
bination of the form

I.Q

8 (u)= min IR,.(u)+C, j, (3.15)

with i = A, 8, and C; a constant, will also be a solution
along the transition line. ' 13ue to the discretization
procedure, 8~ and Rz can only be determined to within
a certain precision (-G ). Hence, there will exist
around the transition line a region of finite width where
the numerical solution of (3.4) will be of the form (3.15)
rather than that of a single 8;. One consequence of this
is that in this region the mapping p has two different
periodic cycles corresponding to the two phases A and
8. This property turns out to be very useful in distin-
guishing erst-order transition lines from cases where
there may exist more phases between a given pair. Al-
though this test is not absolutely rigorous, we have never
been able to And other phases, upon increasing 6, be-
tween two phases when we had previously observed two
periodic cycles simultaneously.

IV. RKSUI.TS
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A. Effective potentials

An example of an effective potential, R (u), and its as-
sociated map, p, is shown in Fig. 2 for model 2, for a
particular choice of K and y. Note that the first deriva-
tive of E. is discontinuous at the same points where the
mapping p is discontinuous. Also shown is the periodic
cycle for the m= —', phase. Note that the local minima
are not locilized at the same values of u as for the
periodic cycle.

It is more interesting to examine the behavior of the
total effective potential F(u). It is clear from Figs. 3, 4,
and 5 that F(u) generally has many absolute minima of
equal energy. These absolute minima are localized at
the possible atomic positions of the ground state. Also
visible in Figs. 4 and 5 are secondary minima, higher in
energy, located at metastable atomic positions. Starting
from one of these secondary minima, the iteration of p
will lead us to other secondary minima and ultimately to
the ground-state periodic cycle. This sequence of atomic
positions represents the left-hand part of an elementary
defect which we shall call a soliton. The right-hand part
of the soliton can be generated by iterating cr starting
from the same secondary minimum. The soliton
creation energy can be obtained by calculating the
difference between F(u} evaluated at the atomic posi-
tions of the defect and F(u) evaluated at the atomic po-
sitions of the ground state. However, because of discret-
ization, the result obtained in this manner may not be
very precise.

The typical behavior of F(u) near a second-order
transition line is illustrated in Fig. 3. The transition in-
volves a uniform (co=1/1) and a dimerized (co=1/2)
phase for model 2. As the transition line is crossed, the
single minimum of F(u) in the uniform phase (curve 1}
loses its stability (curve 2) with respect to the two mini-
ma of the dimerized phase (curve 3). Note that, because

FIG. 2. (a} Effective potential R(u} and {b) the associated
map (solid line) u„&——p(u„) of model 2 for X=0.5 and
y=0. 33. Also shown in (b) are the discontinuities {dotted
lines), the line u„&——u„, and the cycle of period 3.
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FIG. 3. Effective potential F(u) in the vicinity of a second-
order phase transition (model 2). K =3 and @=0.31, 0.28868,
and 0.27 for curves 1, 2, and 3, respectively.

of the absence of any secondary minimum, only the
ground state is stable.

A different behavior of F(u) is observed near a first-
order transition line [Figs. 4(a) —4(d)]. The transition in-
volves a dimerized and a trimerized (co=2/3) phase,
again for model 2. Deep in the dimerized phase [Fig.
4(a)], the two absolute minima and also a secondary
minimum at u =0 are clearly visible. If y is changed
such that the co= —', phase is approached [Fig. 4(b)], then
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Note the similarity of Fig. 6 with Ishimura s phase dia-
gram. Since the effective lattice Hamiltonian (i.e., model
1} is the same for all n-vector models, Ishimura's results
should be valid for any n-vector model.

We 6nd that our results are consistent with a devil' s-
staircase behavior. Indeed, we have always been able to
find a phase (P+Q)/(8+5) between any two given
phases P/Q and 8/5 if a sufficiently fine grid of points
is used to solve (3.4) (we have used grids up to 6 =3200
points). Also, we have never been able to find simultane-
ously two periodic cycles as in the case of first-order
transitions. Moreover, it is easy to show that any
configuration I u; ) satisfying (3.1} is linearly stable
agailist, slrlall pertlli'batioils. Indeed, lf [ u; +E;j deilot'es

a state slightly perturbed from I u, ), then the linearized
equations of motion

2

2.0

l.Q

Q 0 04

—m
2
e;= V"(u;)e;+ W"(u, +i —u, )(e,. —e, +i)

+ W'(uj —uj, )(e, —e', , ), (4.3)

FIG. 7. Phase diagram for model 2. The numbers are
values of the ~inding number m. The unlabeled regions con-
tain additional commensurate phases. The dashed lines are
separation lines de6ned in the text. Inset: TCP indicates a tri-
critical point and the other points are triple points.

with V"=E, 8"'=2, and m the atomic mass, are those
of a harmonic chain in which each particle is confined to
a parabohc potential. Since all the frequencies of (4.3)
are strictly positive, all configurations satisfying (3.1) are
stable, and therefore apy phase transition of model 1

should be accompanied by hysteresis eff'ects. These re-
sults are all consistent with a complete devil' s-staircase
behavior (recalhng Aubry's definition' of a devil's stair-
case) and therefore incommensurate ground states
should occur in this model only with zero measure in pa-
rameter space.

Finally, it is worth mentioning that as o;~0, X~00
and the first-neighbor elastic interactions become negligi-
ble relative to the curvature of the external potential, so
that we recover the magnetoelastic model of De Simone,
Stratt, and Tobochnick, z which is identical to the
ANNNI model. Thus the two multiphase points of Fig.
6 are those of the ANNNI model at T =0.

C. Phase diagram for model 2

The phase diagram for model 2 is shown in Fig. 7. As
mentioned in Sec. II, the phase P/Q for y ~0 becomes
the phase (Q —P)/Q when y ~—y. At E~0+, the
P/Q phase tends towards y =(2P —Q)/Q. Note that, in
contrast with model 1, there exists a critical value of
E(K =4) above which the ground state is always uni-
form.

For the following analysis it is desirable to introduce
the notation of Ref. 14. A phase is called "nonconvex'*
if at least one pair of atoms uses the nonconvex part of
W(x); otherwise it is called "convex. " Some phases (the
3/S phase, for example) are 'convex" everywhere, others
(the 2/4 phase, for example} are "nonconvex" every-
where. Most of the phases, however, are both "convex"
and "nonconvex" in di5'erent regions of the phase dia-
gram. A separation hne, indicated by a dashed line in
Fig. 7, separates the "nonconvex" region from the "con-
vex" region of the same phase. Note that only "convex*'

phases are present in model 1, since atoms are always
unstable at the single nonconvex point, x =y, of W(x).
In model 2, however, large portions of the phase dia-
gram are filled with "nonconvex" phases which are lo-
cated above (to the left of, for the 1/1 phase) the separa-
tion lines.

Although there is no phase transition when these sep-
aration lines are crossed, we expect (and find) that the
type of transition between any two given phases strongly
depends on the convexity of the phases on either side of
the transition line. Indeed, Yokoi et al. ' have shown
recently that the interaction between solitons of a given
commensurate phase is generally repulsive for "convex"
phases but oscillatory for "nonconvex" phases. In addi-
tion, it is now well known' ' '" that the transition must
be continuous (i.e., a devils staircase) when the soliton
interaction is always repulsive and that it occurs when
the soliton creation energy vamshes. The solitons then
condense with zero density at the transition line. If,
however, there is a distance for which the interaction be-
tween solitons is attractive, then the transition must be
discontinuous" (i.e., of first order) and must take place
before the soliton creation energy vanishes. In this case,
solitons condense with a finite density.

The same numerical evidence that supports the ex-
istence of a devil's staircase in model l is also present in
model 2 for transitions between "convex" phases. For
example, between the 3/S phase (which is "convex"
everywhere) and the "convex" 2/3 phase, we are always
able to find (with a sufficiently fine grid of points) an in-
tervening phase (I'+Q}/(8 +5}between any two given
phases P/Q and R/S, all of which are "convex." Fur-
thermore, as can be seen directly from (4.3), "convex"
phases are structurally stable snd, therefore, hysteresis
e8'ects should be present. Hence, in this region of the
phase diagram, our results are consistent with a com-
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piete devil s-staircase behavior. Although it is impossi-
ble to distinguish high-order commensurate states from
truly incommensurate states when using this numerical
algorithm, we believe that incommensurate ground states
can only occur in this model with zero measure in pa-
rameter space because, in order that hysteresis effects be
absent, it is necessary (since V is convex) that some of
the particles experience the nonconvex part of 8'. On
the other hand, between "nonconvex" phases we have
observed two difterent kinds of behavior. Firstly, we
have found second-order phase transitions between ihe
"nonconvex" 1/1 and 1/2 phases where the uniform
state is unstable against dimerization along the parabola
K+4(3y —1)=0 and between the phase 1/2 and the
(everywhere "nonconvex") 2/4 phase to the left of the
tricritical point (TCP) (the transition is first order to the
right of the TCP). Secondly, first-order transitions and
triple points have been found in several places in the
phase diagram. Examples of triple points are shown in
the inset of Fig. 7. It is straightforward to show, by
6nding the state that has the lowest energy among states
of period lower than 5, that thc transitions between thc
phases 1/2 and 2/3, 1/2 and 3/4, 2/4 and 2/3, and 2/3
and 3/4 are all first order.

The presence of the "nonconvex" 2/4 phase is another
feature of model 2 that differs from model l. Other
"nonconvex" phases where the numerator and the
denominator have a common divisor are also found in
this model. For example, note the presence of the 4/6
phase in a narrow region of Fig. 8. This phase springs
from the point SDUz where the 5/6 phase disappears.
The position of the atoms in the 4/5, 5/6, and 4/6
phases near the point SDU2 is illustrated in Fig. 9. The
amplitudes of atomic displacements u &, u 2, and e are all,

convention, positive and e~0. The amplitudes u,
and u2 are the same for these three phases. Note that
the 4/6 and 5/6 phases are identical when e=O. In this
case, we can consider the group of atoms
1
—u2, —u„u„u2 j as a soliton of the uniform phase.

These solitons are noninteracting, since they are separat-
ed by a sufficiently large number of atoms (two for a
Hamiltonian where the range of interaction is limited to

1.4

4) =—
5

FIG. 9. Structure of the ground states near the point SDU2.
NC and C denote nonconvex and convex bonds, respectively.

D. Sgperdegenerlte poiats

By using only the numerical algorithm of Griaths and
Chou we are unable to definitely verify that SDU2 is a
superdegenerate point. Therefore, we take a dN'erent
approach which involves finding the locus of points
(K, y) where the 2D map (3.2) gives a phase of period 6
with two consecutive atoms located at u =0. Wc then
obtain the following three equations:

4(&2+)')=4(r»
y(u i

—up+ y ) Ku i ——y(y ), —

P(y —2u, ) —Ku, =P(u, —ui+y),

(4.4a}

(4.4b)

(4.4c)

where the amplitudes u, and u2 are de6ned in Fig. 9 and
the function P(x) is obtained from W':

first neighbors) at positions corresponding to the uni-
form phase. Hence, we have infinite degeneracy when
a=0 since, starting from this state of period 6, we can
build an infinite number of other states of the same ener-
gy by separating these solitons by an arbitrary number
(larger than two) of atoms located at u =0. If this state
is the ground state at SDUi, then SDU& would be a su-
perdegenerate point where the ground state is infinitely
degenerate and where the third law of thermodynamics
is violated.

p(x)=x —x . (4.5)

1. 2

s s ~ s I s a a a l i t a a I a s a a 1 a a ~ s 1 s ~ ~ & 1 a t )I.
0.48 0,50 0.52 Q54

FIG. 8. Phase diagram of model 2 around the point SDU, .
T denotes a triple point.

Note that we have used 4( —x) = —P(x). Equation
(4.4a) is obtained from (3.2) when u„ i

——u„=O and
u„+,———u2. It is important to note that in this case
u„+,—0 is also a solution of (3.2). In addition, a solu-
tion of (4.4a) with ui &0 exists only if y & I/&3 (i.e., to
the left of the separation line of the uniform phase).
Equation (4.4b), obtained from (3.2) when u „ i

——0,
u„=—u 2, and u„+ t

———u „has a solution only if
u

&
«2u2 or u, ~ u2, however, this last possibility has to

be rejected since this bond is convex. Equation (4.4c} is
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obtained from (3.2) when u„ i ———u2, u„= —ui, and

IM„,=u, . The three remaining equations that can be
obtained from (3.2) are identical to (4.4).

The solution of (4.4) defines a line K() ), which is plot-
ted in Fig. 10(a) and along which the solitons are nonin-
teracting. The point on this line [Fig. 10(b)] where the
phase of period 6 (with two consecutive atoms at u =0)
has the same energy as the uniform phase, is the point
where the phases 4/5, 5/6, 4/6, 1/1, and infinitely many
other phases have the same energy. %e conclude that
this point will be a superdegenerate point if at this point
the algorithm of Griffiths and Chou gives the phase 1/1
or the phase 4/5 [with the atomic positions consistent
with those obtained from (4.4)]. However, if the algo-

}

rithm finds another phase P/Q, then the ground state
will be this nondegenerate state P/Q at this point.
have obtained the 1/1 phase and hence we conclude that
SDU2 is a superdegenerate point. However, in contrast
with the multiphase points of model 1, there are only
four phases springing from this point. Indeed, only
first-order transitions are observed between the phases
shown in Fig. 8.

%e can use this technique to see if other superdegen-
erate points exist along the boundary of the 1/1 phase.
Generally, the line IC(y), along which the phase of
period Q (Q is an even number) has two consecutive
atoms at u =0, is obtained by solving the following sys-
tem of equations [obtained from (3.2)]:

M — uM+I } + M 0( M+V)

(t(uM —2 ~M — +11 ) &n—M i =4(uM i nM—+r )

4(uM —3 nM —2+) ) +nM —2 4(~M —2 nM —1+1 )~

~ 7

P(ui —u2+y) —Ku2 ——P(u2 —u3+y),
P(y —2u, ) —Eu, =P(u, —u2+y),

M —1 equations (4.6)

where the u; are the amplitudes of the atomic displace-
ments and M=(Q —2)/2. By definition, the point
SDUM is the point on the hne X(y) where the phase of
period Q, with two consecutive atoms at II =0, has the
same energy as the uniform phase. Equations (4.4} are
Eqs. (4.6) when M =2. The first equation of (4.6) indi-
cates that all the points SDU~ are located to the left of
the se aration line of the uniform phase (i.e., for

y ~1 3). The coordinates (K,y) of ".he points SDUM

2 I I I I } I I I I
}

'I I I I'

} I I 1 I } I I I I

0.55 0.40 0A5 0.50 0.55 0.60

I I I I
}

I I I I } I I I I '} I I I I
}

I I I

E : (b)

OP I i I I } I I I I I» I I }

FIG. 10. (a) Curve E(y) obtained by solving (4.4), and (b)
the energy E(y ) of this phase of period 6 minus the energy of
the uniform phase [on the line It'(y l].

(for M =1, 2, 3, 4, and 5) and the amplitudes u;, ob-

tained by solving (4.6), are listed in Table I. Note that
SK)U& is the only such point which does not occur as a
superdegenerate point in the phase diagram, since the al-
gorithm of Griffiths and Chou gives the 1/2 phase at
that point. Indeed, as already mentioned in Sec. IVC,
only triple points are found between the phases 2/4, 3/4,
2/3, and 1/1 (see inset of Fig. 7} when a systematic
search for the states of lowest energy among states of
period lower than 5 is made. However, this method be-
comes extremely cumbersome when we increase the
maximum periodicity over which the ground state is
searched. This is why we use the GriSths and Chou al-
gorithm as the final test to see whether or not an SDU~
point is in fact a superdegenerate point.

From the above investigation, we propose Fig. 11 as a
schematic representation of the phase diagram along the
uniform phase boundary. %e have been able to confirm,
by observing simultaneously two periodic cycles, that the
transitions around SDUz and SDU3 are all first order
and we believe that it is also the case for the transitions
around the other SDU~ points, since all the phases are
"nonconvex" in these regions. It seems that the SDU~
points are aH superdegenerate points and accumulate on
the point SDU„ located on the line y= 1&3. If this is
the case, then all the phases (Q —1)/Q should converge
in this region near SDU . A similar behavior was found
by Yokoi et aI. ' for the chiral XF model.

%'e think that superdegenerate points are found in
many regions of the phase diagram. Figure 12 shows a
small portion of the phase diagram near the dimerized
phase. The 4/7 phase seems to disappear at the point
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TABLE I. Location of the points SDU~. The uncertainty is one in the last digit. In the column

labeled SD we have indicated whether or not the point SDU~ is a superdegenerate point.

Point

SDUl

SDU2

SDU3

SDU4

SDU5

Coordinate E
1, 714285714

1, 248 262049

1, 051996809

0, 995923 167

0, 991 174197

Coordinate y

0, 428571429

0, 518876524

0„562914 104

0, 576203682

0, 577344696

Amplitudes

u, =0, 285714286

u, =0, 446409274
uq ——0, 115035854

u i ——0, 506487626
u2 ——0, 171454697
u3 ——0, 028752994

u l
——0, 523 851 301

u2 ——0, 189118264
u3 ——0, 039391936
u4=0, 002292416

ul ——0, 525328629
u2 ——0, 190649177
u3 ——0, 040347348
u4 ——0, 002540394
u5 ——0, 000011 146

SD

no

SDD&. The positions of the atoms in the 4/7 phase,
slightly over and slightly under the point SDD] are
presented in Fig. 13. The amplitude, a, of the dimerized
phase is simply found by searching for the value of a
that minimizes H when u„=(—1)"a:

a = ,'(4 E ——12y—)'~ (4.7)

P(ui +a —y ) =P(2a —y ), (4.8a)

P( —u, —y) —Eu, =P(u, +a —y) . (4.8b)

From Fig. 13, we see that the sequence lu, ,0, —u i l

forms a soliton of the dimerized phase when e=O.
These solitons are noninteracting, since they are separat-
ed by a sufficiently large number of atoms (four) in the
dimerized phase. The hne E(y), on which the 4/7
phase has four consecutive atoms in the dimerized
phase, is obtained by solving the system of equations
[obtained from (3.2)]

We define the point SDDi as the point on the line E (y)
where the energy of this 4/7 phase is the same as the en-

ergy of the I/2 phase. At this point, the phases 1/2,
4/7, 3/5, and also infinitely many other states (obtained
by separating the solitons by an arbitrary number,
greater than four, of atoms) have the same energy. We
will conclude that this point is a superdegenerate point if
the GriSths and Chou algorithm gives, at this point, the
1/2 phase or the 3/5 phase [with the atomic positions in
accordance with those obtained from (4.7) and (4.8)].
We have obtained the 3/5 phase with the correct atomic
positions and we conclude that SDD, is in fact a super-
degenerate point.

We have found other SDD points between the
phases 1/2, (M+2)/(2M+3), and (M+3)/(2M+5),
where M is an odd integer (M=1,3, 5, . . . , ). The
phase (M+3)/(2M+5), formed by a regular array of
noninteracting solitons of the dimerized phase, exists on
the line E (y ) obtained by solving the system of equa-
tions [from (3.2)]

l 5

l. 4

l 3
I

l 2

I I I l l 5 I ~ I I I I i I I i I I I I ~ t I I I l I lI.
0.20 O. 2 l O. 22 O.23 0.24 O. 25 O.26

FIG. 11. Structure of the phase diagram of model 2
I,'schematic) near the 1/1 phase boundary. FIG. 12. Phase diagram of model 2 near the point SDD, .
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g(u, +a —y)=P(2a —y),
u, —u, —y) —Zu, =y(u, +a —y),

y(u, +u, —y)+au, =P( —u, —u, —y),
~ j

4(uM+ I i y—)+&uM

uM y) +uM i (uM+uM —1

'M —1 equations (4.9)

The general structure of the phase (M +3)/(2M +5) on

the line K(y) and the definition of the amplitudes u;
used to write (4.9) are found in Fig. 14. The point

SDDst is defined as the point on K (y) where the energy
of the phase (M +3)/(2M +5) is identical to that of the
1/2 phase. Note that the first equation of (4.9) indicates
that all the SDD~ points are located above the separa-
tion line of the 1/2 phase (i.e., for 2a —y &1/&3). The
coordinates (E,y ) of the SDDiu points (for M =1, 3, 5,
and 7) and the amplitudes are listed in Table II. Using
the criteria mentioned above, we have found that they
are all superdegenerate points.

From these results, we propose Fig. 1S as a schematic
representation of the phase diagram along the boundary
of the dimerized phase. However, in contrast to the be-

havior found near the boundary of the uniform phase,
the phase transitions surrounding the SDDM points are
necessarily of first order, since we have not been able to
observe simu1taneously two periodic cycles between any
of these phases. Hence, other phases may exist between
the (M +2)/(2M +3) and (M +3)/(2M +5) phases.
However, we have not been able to Snd them. In addi-

tion, it is important to . mention that, while the
(M+3)/(2M+5) phases are "nonconvex" around the

SDDsr points, the (M+2)/(2M+3) phases are "con-
vex" everywhere. Following Yokoi et al. ' and Villain
and Gordon, this suggests a continuous transition
when leaving the (M +2)/(2M +3) phases but a discon-
tinuous transition when leaving the (M+3)/(2M +5)
phases and hence, quasicontinuous transitions. '

K. Quasicontinuous transitions

The region of the phase diagram where the possibility
of a quasicontinuous transition is most apparent is
shown in Fig. 16. In this region, the 2/3 phase is "con-
vex", whereas the 1/2 and the 4/7 phases are "noncon-
vex." Also visible in Fig. 16 is the "nonconvex" 6/10
phase separated from the 4/7 phase by a first-order tran-
sition. In between the 6/10 and the 2/3 phases, we have
also found the "nonconvex" 8/13 phase separated from
the 6/10 phase by a first-order transition. It seems
reasonable that this process continues to infinity. In that
case, the resulting phase diagram would be as shown in

Fig. 17, every transition being of first order except for
the last devil' s-staircase step3 located on the boundary of
the 2/3 phase. This seems to be an elegant compromise
for transitions between "convex" and "nonconvex"
phases following from the fact that we expect"' a
discontinuous transition when leaving a "nonconvex"
phase but a continuous transition when leaving a "con-
vex" phase.

C C C C C C NC
V. CONCLUSION

a-E -Q™6 +0) 0 -U~ 0+6 -a+&

u = —(b)4
7

In this paper we have presented a detailed (but cer-
tainly not complete) analysis of 1D models where frus-
tration results from the presence of nonconvex interpar-
ticle interactions. The resulting phase diagrams turn out
to be qualitative1y di6'erent depending on whether or not
the particles in the ground state experience the noncon-
vex part of the interaction. %'hen the particles experi-

M+/
2M+5

FIG. 13. Structure of the ground states near the point
SDD, . t, T) denotes the superior part of the 4/7 phase and (8)
the inferior part of the 4/7 phase relative to the location of the
point SDD&. NC and C denote nonconvex and convex bonds,
respectively.

NC

0 -a U
1

-U2 M M 2

FIG. 14. Structure of the ground state of period 2M+5 at
the point SDD. The only nonconvex bond is identified by
NC.
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TABLE II. Location of the points SDD~. The uncertainty is one in the last digit. In the column

labeled SD me have indicated whether or not the point SDD~ is a superdegenerate point.

Point Coordinate E

1, 318992878

Coordinate y

0, 227 251 518

Amplitudes

ul ——0, 528268172

SD

SDD3

SDDq

1, 118885289

1, 097792958

0, 203000781

0, 200515065

0, 200486074

u& ——0, 402018510
u2 ——0, 360730956
u3 ——0, 576200170

u I
——0, 389 069 189

u2 ——0, 388598313
u3 ——0, 406457753
u4 ——0, 360550609
u5 ——0, 581187194

u& ——0, 388918188
u2 ——0, 388918134
u3 ——0, 389102495
u4 ——0, 388625680
u5 ——0, 406507745
u6 ——0, 360551082
u7 ——0, 581234050

yes

ence only the convex part of the interaction potential, as
for model 1, only phases where the winding number is

uniquely defined (i.e., when the numerator and denomi-

nator do not have a common divisor) are found, and the
transitions among these phases are suggestive of a coin-

plete devil' s-staircase behavior. When some of the parti-
cles in the ground state experience the nonconvex part of
the interaction potential, phases where the winding num-

ber is not uniquely defined (the 2/4 phase, for example)
are found in the phase diagram. In this case, both Srst-
and second-order phase transitions and possibly
quasicontinuous transitions are found. Also of interest is
the existence of sequences of superdegenerate points
where the system has residual entropy and violates the

third law of thermodynamics. At these points, we have
shown that the ground state consists of noninteracting
solitons of zero energy.

Finally, it is worth mentioning that the phase diagram
of model 2 is quite similar to that obtained by Yokoi
et 01. ' for the chiral XF model in a Inagnetic field.
However, important differences occur at low fields,
where their phase diagram becomes very similar to that
of the Frenkel-Kontorova model. Indeed, the width of
the main commensurate phases for small E are substan-
tially larger for model 2 than for the chiral XF model at
low fields. This fact supports our conjecture that, in
contrast to the XF model, incommensurate ground states
can occur in model 2 only with zero measure in parame-
ter space. Also of importance is the fact that the phase

I I l I l l I I I l l a a r l l t ~ I I i I i s

0.246 0.247 0.248 0.249 0.250 0,25'

FIG. 15. Structure of the phase diagram of model 2

(schematic) near the boundary of the 1/2 phase.
FICs. 16. Phase diagram of model 2 near the 4/7 and 2/3

phases.
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E„„;(&)= g [V(0)+ IV(0}] . (A2)

Recall that by definition of V(x) and u„, the minimum
of V(x) is at x =0. Hence, for at least one nonzero u„,

8
Io I &

D~SeO~T.

N

g V(u„)&XV(0) .
n=1

(A3}

FIG. 17. Probable structure of the phase diagram of model
2 (schematic) in between the 4/7 and 2/3 phases. The T s
denote triple points that accumulate at point A.

Moreover, since V(x) is convex (and therefore unbound-
ed), the auerage lattice spacing (u„+,—u„) has to be
zero in the ground state. Hence, among states of finite
period X, we need only consider those that satisfy the
constraint

diagram of Ref. 14 reveals the existence of a superdegen-
erate point at the crossings of the 2/4, 3/4, 2/3, 1/2,
and 1/1 phases, whereas only triple points are found for
model 2 in this region. In a later publication (on magne-
toelastic problems) we will show that this superdegen-
erate point can "split" into triple points exactly when
the 1/2 phase boundary meets the superdegenerate point
and that the situation encountered in the XF model cor-
responds to a marginal case.
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5~ = g u„=o (u„=Q„+i—u„),
n=1

since a state of period N with nonzero 5z has an energy
that increases as

g V(J5~),
J'=1

where M is the number of segments of X atoms. This
rate of increase, as a function of M, is extremely large
when V(x} is convex but not when V(x) is nonconvex
and bounded as in the Frenkel-Kontorova model. In or-
der to show that E ~(N) &E,„;(N) for 5~=0, we only
need to prove that

N

g [IV(u„}—IV(0)]&0 for 5~=0 . (A5)

Recall that a convex function f (x) has, by definition, a
first derivative that increases monotonously at every x.
Construct the following positive convex function G (u„):

We now proceed to show that there is only one (un-
modulated) ground state when both IV (x ) and V (x ) are
convex (for any y}. To demonstrate this, we need to
prove that the energy E,~(N) of a sequence of N atoms
in any modulated state of period N (with N an arbitrary
integer) is always larger than the enregy E„„;(N}of these

same N atoms in the uniform state (all u„=o) when both

V(x) and IV(x) are convex. We have

E .,(&)= g [V(u„)+e (u„„—u„)]

with (uz+, ——u i ), (A 1)

G (u„)=—IV(u„)—[ IV(0) —u„W'(0) ],

where IV'(0) denotes the first derivative of IV(x) at
x =0. Then when 5& —0, (A5) can be written as

g G(u„)&0,
n=1

which is always satisfied for at least one nonzero U„,
since G(x) is positive. This completes the proof.
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