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%'e describe theoretically how the shape of the coherent backscattering peak of photons in a
disordered dielectric medium is altered by Faraday rotation and natural optical activity. These
e8'ects break time-reversal and parity symmetries, respectively. The calculated line shapes are
qualitatively similar to those in the presence of con6ned geometry or in an absorptive medium:

The suppression of long scattering paths reduces the observed peak intensity. For incident light of
a given circular polarization, however, Faraday rotation suppresses only backscattered light of the
same helicity, whereas optical activity suppresses coherence in the opposite helicity channel and

leaves the helicity-preserving channel unafkcted. It is shown that the helicity-preserving com-
ponent of the backscattered peak for electromagnetic waves is quantitatively similar to the peak
calculated for scalar w'aves. This correspondence remains as a function of slab thickness and ab-

sorption, in agreement with recent experiments. In contrast, the peak line shapes for linearly po-
larized incident light exhibit quantitative difFerences in either linear polarization channel from sca-
lar waves. These results were obtained in the difFusion approximation„and for an uncorrelated
random medium.

I. INTRODUCTION

There has been much interest recently in the transport
properties of classical waves, such as light, in strongly
scattering disordered media. This interest has been
motivated in part by the quest1on of whether Anderson
localization of photons may be observed in such sys-
tems. ' So far only weak localization of light has been
conclusively observed in the phenomenon of coherent
backscattering. " This phenomenon has been discussed
in the context of electron localization by Khmel'nitskii
and developed further by Bergmann. It is the precur-
sor to true Anderson (strong) localization and gives rise
to the renormalization of the energy diffusion coefficient
for waves in a random medium as described by the scal-
ing theory of localization. ' Optical systems provide a
unique opportunity for the direct experimental observa-
tion of this effect. Golubentsev" has considered the al-
bedo for retroreffectance of scalar waves from a random
collection of pointlike scattering centers. Akkermans,
%olf, and Maynard' have extended these ideas to ob-
tain the actual line shape of coherent backscattering of
scalar waves from a disordered dielectric half-space. Al-
though the vector nature of the electromagnetic field
does not alter the localization critical point, polarization
effects are apparent in angle resolved studies of the back-
scattering intensity. Stephen and Cwilich' have
shown that for linearly polarized light incident on a
scattering medium, the backscattering peak consists of a
sharp narrow peak polarized parallel to the incident
light as well as a broader depolarized peak. This agrees
with recent experiments. ' * lt is the purpose of this
paper to recapture these formal results by means of sim-

pie physical arguments and to extend them to systems in
which time reversal and parity symmetries are broken.
These include magneto-optically active materials in
which this broken symmetry is manifest in unequal
propagation speed for right- and left-circularly-polarized
light parallel to a magnetic field. This is the familiar
Faraday effect. Qualitatively, the effect of broken time-
reversal symmetry is to round off the peak in the back-
scattering intensity due to the removal of long diffusion
paths from the coherent intensity. In particular, we find
that this decreases primarily the peak intensity of the
helicity preserving component of the backscattering sig-
nal. For incident light of a given circular polarization, it
is the scattered light of the same circular polarization
which is suppressed. An in situ monitoring of this cuto6'
in interfering difFusion paths as a function of external
field would be of particular interest near the mobility
edge where the absence of time-reversal symmetry can
lead to new critical exponents for the localization transi-
tion.

A less severe form of broken symmetry arises in natu-
rally optically active materials in which right- and left-
circularly-polarized photons experience difFerent dielec-
tric constants independent of their direction of propaga-
tion. In such materials time-reversal symmetry is main-
tained and the helicity-preserving component of the
backscattering peak remains unaffected. The breakdown
of parity, however, leads to a decrease in the opposite
helicity portion of the intensity.

In this paper we consider only the leading correction
to the classical difFusion propagator. In perturbation
theory, ordinary diffusion comes from the sum of /adder
diagrams, whereas the leading correction corresponds to
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the sum of the t7laxlffEQIIJ cI'0$$ed diagrams. This second
sum gives rise to a backscattering peak with angular
width proportional to the small parameter A, /2mI, where
k is the wavelength and I is the mean free path. In Sec.
II we present a simple physical picture of the e6ects of
broken time-reversal symmetry and parity nonconserva-
tion on this peak line shape. In Secs. III and IV these
arguments are supported by a detailed derivation of the
relevant Green's functions.

W —1,V —1

g cr, q k, =. q/ g cos8, ,
j=1 j=1

(2.1)

For small q, corresponding intermediate states di6'er
in energy by an amount Ez —E' =cfiq. kz
(j =I, . . . , X —1), where k~ j are unit vectors in the
direction of propagation of the intermediate plane-wave
states. The phase difference AP between paths is then

II. THE PHYSICAL PICTURE

The classical multiple-scattering treatment of wave
propagation ignores phase correlation on length scales
longer than the mean free path I. For elastic scattering
in macroscopic samples this treatment yields the
diffusion equation with constant D =/c/3, where c is the
wave velocity. For weak scattering (/ ~~A, ) this approxi-
mation is good except in the backward direction, where
phase correlation of even long paths cannot be ignored.
A variety of authors have discussed the significance of
this interference. ' ' Consider a half-space of randomly
placed scatterers and a typical path y shown as the solid
line in Fig. 1(a). Incident light with wave vector k;=ko
is scattered at points x,„.. . , x~ (N & 1) into intermedi-
ate states with wave vectors k, , . . . , kz, , and, finally,
to the state k& ——kf. For scalar waves undergoing an
identical set of wave-vector transfers, the scattering am-
plitudes at the points x1, . . . , xz are the same for the
path y and the time-reversed path —y (the dashed line).
The nature of the interference between these paths is
determined solely by their relative optical path
lengths —thus the relative phase is e ' ' " ' . Fori(k. +k. ) (x —x )

strict backward scattering (q=k;+kf ——0), the ampli-
tudes for the two paths are equal ( A r

——A ~ ) and hence
the intensity will have a contribution
—

~
&r+~ r ~

=4~ &r ~, which is twice the contri-
bution —

~

A r ~
+

~

A r ~

obtained when correlation
is ignored. Thus a peak of height twice the classical re-
sult is obtained in the backward direction.

We may also see that the angular width of this peak
should be roughly 38-(A, /2n/) since, for a larger angle
8, the argument of the phase q (x„—x, ) is greater than
(2m/A, )8/ ~ 1. Consider the case of a wave incident nor-
mal to the interface and xz —x, parallel to the interface.
If the angle between —k; and kf is 0, then the coher-
ence condition for small 0 becomes

q (x~ —x, )=2m8
~
x~ —x,

~

/X&1. In the diff'usion ap-
proximation

~
x~ —x,

~
=D(tz t, )=/L/3, where L is-

the total length of path y. Thus typical paths of length
L contribute only for angles less than
8 =A, /(2'&/L/3). To facilitate a generalization to a
propagating vector field it is useful to look at this in
another way. Consider the path in k space shown in
Fig. 1(b), with wave-vector transfers g~

=k, —kj
(j= 1, . . . , /t/). The reversed path is given by the
transfers gj in the reverse order: gz, . . . , g1. The inter-
Inediate states no longer lie on the energy shell which is
smeared by an amount fi/~, where ~=I/c is the mean
lifetime of a plane wave in the disordered medium.

where ~~ is the lifetime of the plane-wave state j. The
values of cos8 are random, and hence the sum corre-
sponds to a random walk. After averaging over all pos-
sible N step walks, the root-mean-square (rms) phase
difFerence (hP), is approximately &1/3'/, and the
condition for coherence is the same as above (with

Dielectric
~al f-Space

FICx. 1. (a) A typical scattering path (y) in real space and
the time reverse ( —y) with which it coherently interferes for
small 0. The phase dil'erence between y and —y is simply
proportional to the path length difterence I2 —I 1, where
I 1

——{xl—xpg ) k; and I2 ——(x~ —xl ).kf. (b) A typical path drawn
in momentum space. Equality of the scattering amplitudes re-
quires that the wave-vector transfers g, be the same but in the
reverse order for the time-reversed path. Corresponding states
difkr in energy by an amount Ez,- —E,'=—cd.k,-, which leads
to a phase difference (hP), ,=—&X/3q/.
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$(k, to) =—
1

D(k +I/g ) ito— (2.2)

L =N/). In particular, the observed cusp near 8=0 de-
pends on paths of arbitrary length. We thus expect that
if coherence were limited to paths shorter than some
maximum I m~ then thc peak should be rounded o~ for
angles less than A. /(2m +lL /3 ). Each of the
symmetry-breaking efkcts considered below corresponds
qualitatively to such a path length cutoF.

One such example has been considered by Stephen and
Cwilich' ' in which scattering is confined to a slab of
finite thickness 8'. In this case paths of length greater
than L~ =38' /I would have an appreciable probability
of ditfusing through the slab and being transmitted.
Hence, the portion of the reAected peak depending on
paths longer than L, would no longer be observed. The
calculation to be described in Sec. III gives the line
shapes shown in Fig. 2(a). These curves are consistent
both with experiments' and with the qualitative argu-
ments above. Small deviations from the calculated line
shapes are expected for large angles and for very thin
slabs, ~here only short random walks contribute. ' This
can be understood as a breakdown of the diffusion ap-
proximation for short paths (see Sec. III).

Consider now what happens in the presence of absorp-
tion. One would expect that only paths of length less
than the inelastic mean free path I, would contribute.
This is similar to the finite geometry case above with the
correspondence W~g=(ll, /3)'~ [see Fig. 2(b)]. A sub-
tle distinction between these two cases arises for large
angles as can be seen in the calculated line shapes. Short
paths will not reach the far side of the slab, but will still
be somewhat attenuated by absorption. Thus in the first
case, the curves for finite 8' approach very closely that
of 8' = ce for suSciently large angles —more so than the
curves for finite g. The length g may be viewed as the
mean depth into the medium which a photon difFuses be-
fore being absorbed. The value of this length may be
found as follows. Diffusion in the presence of absorption
is described by a momentum space propagator
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verse. The properties of these rotations have been de-
scribed by a number of authors. ' We may describe
these rotations of the polarization vectors e by matrices
M~+, which are real and symmetric. A sequence of
scattering events rotates eo by the product M& - . . M„
and the reverse sequence by the product
M, . M„=(M~ . M, ) for exact backward scatter-
ing. The matrices M do not commute for general k- in
three dimensions and only diagonal elements such as
(xlMx M, lx&=(xlM, Mw Ix& will remain

the steady-state (co=0) transform of which is

e
—~r I/

2)(r) =
4@Dr

(2.3)

Hence g has the interpretation of the mean penetration
depth described above. On the other hand, the time-
dependent transform of Eq. (2.2) is

—
I
r

~
/Dt

X)(r, t)= '
e

—D"& .
(4~Dt)'" (2.4)

Thus a typical photon travels for a time
t =g /D =3/ /Ic before being absorbed. It follows
that i, =3g'/1 and g= +11,/3.

For a vector field propagating in a random medium,
the condition that the optical path lengths be the same
for reversed paths is necessary but no longer sufticient
for constructive interference. For photons, scattering
produces a sequence of rotations of the polarization vec-
tor, which simply ensure that the wave remains trans-

0 I I i i i J i L I I I i I t i ! I I

I 0 I

FIG. 2. The calculated scalar coherent backscattering line
shapes. Ca) As the width 8' of the scattering medium is re-
duced the central portion of the peak is suppressed by the ter-
mination of scattering paths. (b) Similarly the peak is reduced
as absorption 4', with length I;) is introduced. These curves are
labeled by the mean penetration depth g= (Il; /3)', which de-
creases with stronger absorption. Curves I',a) and {b}are quite
similar, with the correspondence W~g. These curves
represent the coherent peak, from which the isotropic back-
ground has been subtracted. The curves have then been nor-
malized by the isotropic background intensity. Thus, the
coherent peak of unit relative intensity corresponds to an actu-
al enhancement factor of 2 in the total rejected intensity.
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coherent. Thus backscattered light polarized parallel to
the incident light will retain the sharp peak associated
with long paths, while the perpendicular component will
be suppressed. This suppression is apparent in the cen-
tral part of the peak where long scattering sequences are
important. The wings of the backscattering intensity, on
the other hand, are dominated by shorter random walks
where the noncommuting property of the rotation ma-
trices is less serious. For example, backscattering from
k; to —k; by an X =2 step process can always be drawn
in a single plane. Since rotations in this plane commute,
coherence is maintained. If one considers, rather, the
scattering of circularly polarized states, the amplitudes
relating incoming and outgoing right-hand 8 and left-
hand L states involve phase factors which express the
non-Abelian nature of the rotation group in three dimen-
sions. For example, consider incident circularly-
polarized light traveling along the z axis which is scat-
tered into a state along the axis z ' given by polar and
azimuthal angles 8 and P. If we describe the outgoing
states in the basis t x ', y ', z 'I obtained from the original
basis by the rotation through angle 8 about the axis
parallel to zg z', then these amplitudes are given by the
matrix

along the direction of the wave will introduce a radial
force on the electron. Depending on the sense of polar-
ization of the wave, the orbit will either be increased or
decreased —changing the dipole moment of the electron.
Thus the e8'ective dielectric constants for the two polar-
izations will differ. It is known that the refractive in-
dices for the two polarizations are given by
nazi n-c Tg.k/2nc, where k is the wave vector, g=fB
is the gyration vector, and f is the Faraday constant. 2

Consider a path contributing to the helicity preserving
channel (Fig. 4) with intermediate wave vectors kj and
helicities aj (+1 for R and —1 for I.), where for simpli-
city we have let Beck,. The helicities (aIv =a, ) for

1.0

«~

C

C

0.5
~~

4l
K

For an entering right-hand photon which executes a ran-
dom walk and is backscattered into a left-hand helicity
state there is a substantial reduction in the peak intensi-
ty due to the noncommutativity of these matrices. As in
the case of parallel polarized light, however, the coher-
ence of reversed paths is not destroyed for scattering
into ihe same helicity state. This corresponds to the ex-
perimental configuration used to remove single-
scattering events (which necessarily flip the helicity)
from the observed intensity. ' The incident light was
circularly polarized and only scattered light of the same
polarization was monitored. It should be noted that the
backscattering peak in this channel closely resembles the
calculated peak for scalar waves. [Compare Figs. 2(b)
and 3(a) for example. j This similarity remains true in
the presence of both con6ned geometry and absorption,
for which we have also calculated the line shapes in the
helicity-preserving channel. %'e also show in Sec. IV
that due to the elimination of single-scattering contribu-
tions, the peak height in the helicity-preserving channel
is exactly twice the (classical) isotropic background
intensity —as is the case for scalar waves. In contrast,
these similarities to the scalar line shapes do not hold in
the parallel hnearly polarized channel. '

Associated with the polarization of the electromagnet-
ic field are additional eftects which break time-reversal
symmetry in the absence of dissipation. One of these is
the Faraday effect. The origin of this e8'ect can be seen
in a simple classical picture. %'hen subject to a circular-
Iy polarized electromagnetic wave, the bound electrons
execute circular orbits. A strong magnetic field (8)

0 I i I I I I I i I t I j I l I I I I I

I 0 I

I .0 r s i ~ i i i i ~ l ~ r i i l ~ i r

(b)
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FIG. 3. I,a} The effect of Faraday rotation on the peak line
shape, where g=f8 is the gyration vector. The curves shown
are for incident and rejected light of the same circular polar-
ization. The opposite helicity channel is unaffected by Faraday
rotation. (b) The suppression of the intensity in the opposite
helicity channel due to natural optical activity. The gyration
vector g= fk is proportional to the propagation direction.
The helicity-preserving channel is unaffected since time-
reversal symmetry is retained. Both curves have been normal-
ized by the isotropic background intensity in the helicity-
preserving channel.
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PIG. 4. Typical paths contributing to the two helicity chan-
nels. The helicities of the reversed path are labeled both for
the Helicity-preserving channel as well as for the opposite heli-

city channel {in parentheses).

the reversed path are chosen such that the amplitudes of
Eq. (2.5) associated with each momentum transfer are
the same. There is, however, an optical path length
difference between the two paths with the introduction
of a magnetic f][eld. This phase difference is

gk g( —k)
b,g=cko g r a, ' a, —

=kogl g a, cosHJ, (2.6)

where ko =co/c. For large E, a, and cosHJ are uncorre-
lated. Hence, this is again a random-walk problem, so
that (bg)„m, =kogl[(l/3)N]' . Thus a magnetic field

destroys coherence for such paths longer than
I. = 1/1 ( kog ) . This appears as a field-dependent
rounding oS' of the backscattering peak. On the other
hand, for paths related by kIv ———k and aN ~

= —aJ
(helicities shown in parentheses in Fig. 4), the optical
path lengths are the same. Hence, Faraday rotation
does not affect the opposite helicity channel. As we
shall show by a detailed derivation (Sec. IV), the effect of
Faraday rotation on the helicity-preserving portion of
the backscattering peak is similar to that of absorption
with the correspondence g~l/gko. We also find that
the reversed helicity channel is virtually unafFected by
Faraday rotation, as the above argument suggests. The
results of this calculation are shown in Fig. 3(a) for the
helicity-preserving channel.

Natural optical activity provides a further example of
a broken symmetry not previously considered in the con-
text of localization: parity nonconservation. Microscop-
ically there is a difference in the dielectric constants for
ihe two helicity states due to the electromagnetic
response of helical molecules within the medium. ' In
contrast with Faraday rotation, the dielectric constants
are independent of' the direction of propagation. Some

III. SCALAR WAVES: LINK SHAPES
FOR CONFINED GKOMKTRIKS AND ABSORPTION

We begin by comparing the effects of confined
geometries and absorption on the coherent backscatter-
ing of scalar waves. When the scattering medium is
confined to a slab of finite width IV, long diffusion paths
can no longer contribute to the reflected intensity. Simi-
larly, in an absorbing medium, paths longer than the in-
elastic mean free path l, will be greatly attenuated. The
peak line shapes for various slab thicknesses and for ab-
sorption are plotted in Figs. 2(a) and 2(b). We have ex-
tended the results of Stephen and Cwilich' ' to a larger
variety of slab thicknesses and absorption coe%cients.
These curves were obtained by considering Green's func-
tions for the scalar wave equation with source j:

2

7'(t+
~ [e(r)P(r)]=j(r) . (3.1)

Here a=i+@'+is" is the dielectric constant, the real
part of which fluctuates randomly about unity and the
constant imaginary part leads to absorption with length
I;=I/e"ko. For simplicity we consider a white-noise
distribution for e'

ko(e'(r)e'(r') ),„„„„=y5(r —r') . (3.2)

This is valid provided that the scale of the scattering mi-
crostructures is small compared with the wavelength of
the excitation. Near a mobility edge, ~here these scales
are expected to be comparable, ' a more detailed analysis
of the spatial correlations would be required. In the
coherent potential approximation (CPA) and in the ab-
sence of dissipation (e"=0), the averaged Green's func-
tions in the medium are given by the Fourier transforms

examples of optically active media are sugar, turpentine,
selenium, tellurium, AgGaS2, TeO& and quartz. The in-

duced dipole moment p=aE —PH has the usual part
proportional to thc applied electric field E as well as a
part opposite to the rate of change of the applied mag-
netic field H. The latter contribution arises from elec-
tromotive forces in the helix given by Faraday's law of
induction. The resulting constitutive relation for an op-
tically active material yields an electric displacementA
vector D=eE+ig XE, where g=fk is the gyration vec-
tor parallel to the direction of photon propagation. For
small f, the refractive indices for right- and left-hand
polarizations are na&I -no T-f /2nD. For the path
shown in Fig. 4 in which a& ~

——o,j, the optical path
lengths for y and —y are the same. Consequently,
coherent backscattering into a helicity-preserving state is
unaffected by natural optical activity. The same argu-
ment however does not hold for backscattering into a re-
versed helicity state, as in Fig. 4 with helicities shown in
parentheses. In this latter case, we arrive at a phase
difference (AP), ,=kof1[(1/3)N]'~, which diminishes
the backscattering intensity as the rotatory power f in-
creases. This is illustrated in Fig. 3(b). We now proceed
to derive the backscattering line shapes by evaluating the
relevant photon Green's functions.
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&6"'"(k))=,
k() k—kiko/I

(3.3)

where l =4m/y is the elastic mean free path. Here the
superscripts 8 and A denote retarded and advanced
propagators, respectively. %e have used the symbol

) in Eq. (3.3) and below to denote the average over
all possible realizations of the disorder consistent with
the statistics of Eq. (3.2). To simplify notation, explicit
reference to this averaging of single-particle Green's
functions will be omitted: In absence of the & ) sym-
bol, the Green's functions are to be interpreted as the
single-particle averages given by Eq. (3.3). In an infinite
medium, the Green's functions 6"~"(r,r') depend only
on the spatial separation (r —r'), since the average over
the disorder e' restores translational symmetry. The
coherent propagation of the field P is described by the

I

retarded Green's function

GA(r re) f eii(. (r —r')GR(k)
(2m )

exp[(iko —1/2i)
~

r —r'
~ j

4~f r —r'
f

with source j
(3.4)

&(((r))= f d'r'6 (r —r')j(r') . (3.5)

The exponential decay of 6 rejects the fact that the
plane-wave states have a finite lifetime v=i/c due to
elastic scattering. Hereafter, unless otherwise stated, we
abbreviate the real-space and wave-vector integrals byI—:f d R and I K

——I d K/(2m) . The averaged in-

tensity at R is then

I( R)= &(I(()R) ()e) (R)) = f &6 (R Ri)6 (Ri,R) )j(R))J (R2) . (3.6)
1' 2

If ()I) describes a field propagating with wave vector k, then P(R+5R)=(()(R)e " . Thus the specific intensity at R of
radiation with wave vector k is given by

J(R,)e):—f e 'e'(P R+ —()" R——
e

I

e '"'e'"' G" R~ —,R'+ —G R' ——,R ——)J (R', )e'),
R', r, r', k' 2' 2 2' 2

(3.7)

where J is the incident specific intensity. [It is obtained from the product of sources
j (R, =R'+r'/2)j '(R2 ——R' —r'/2) in Eq. (3.6) by transforming in the relative coordinate r', in the same way that J is
obtained from the product PP in the first line of Eq. (3.7).] This interpretation is valid in the case of weak scattering,
for which ko

~

R—R'
~

&&1. The correlation I = &6"6") is the quantity which we must calculate. It is given in real
space by the integral equation

I

I (R,R', r, r')= 6" R+ —,R'+ —6" R' ——,R——2' 2 2' 2

1-0+ f I (R,R„r,r, )A(R, , R2, r, ,r2)I (R2, R', r2, r'),R),R2, r), r2
(3.8)

where I' = &
6") &

6") is just the product of averaged
Green's functions and describes the intensity of the
coherent field. %e approximate I in the integrand of
Eq. (3.8) by this coherent part of the field. The correla-
tion j. is most easily calculated in momentum space.
We perform the transformations indicated in Eq. (3.7) as
well as a transformation in the separation R—R'

f —iK (k —R') —i)( reik r'.
R—R', r„r'

x 6 R+ —,R'+—I2' 2

I

xG R ——,R——r r
2' 2

(3.9)

The vertex A(K, k, k') may be approximated by the sum

of ladder diagrams, denoted by L(K,k, k'). The sum
of these diagrams may be written as a geometric series in
the variable

Q(K)=y f 6" q+ —6' q ——=1—
—,)i'I(.'.

q

(3.10)

This sum yields the diffusion propagator of Eq. (2.2)
(without absorption)

& (K kk') = = = +2)(KO) . (311)y 3y
1 —Q(K)

Keeping only terms quadratic in K in Eqs. (3.10) and
(3.11) corresponds to the diff'usion approximation. For
short difFusion paths (or equivalently, for large E), this
approximation will cease to be valid. Higher-order
terms lead to small but observable corrections, for exam-
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C(K,k, k') =L(k+k', K+k —k', K—k+k')

3y
I'{k+ k')' (3.12)

pie, at large angles in the backscsttering peak. ' For a
time-reversal-invariant medium, the sum of maximally
crossed diagrams (obtained from the ladder diagrams by
a time-reversal operation ) is related to the ladder sum
by

For brevity, we will use s to denote k+ k' below.
Whereas the specific intensity is isotropic in the classical
diffusion approximation„ the maximally crossed diagrams
lead to a coherent contribution which is singular in the
backward direction (s=k+k -=0). It is this singularity
which leads to the sharp peak of height twice the classi-
cal incoherent intensity in the backward direction.

In recent experiments ' ' ' ' what has been mea-
sured is the reflection from a half-space or slab of finite
width 8'. This reflection is described by the specific in-
tensity with wave-vector k& exiting the medium at R

J(R,k,)= f I (R—R, ,k, k, )[L(R,, R,,k„k )+C(R„R,k, , k )] f I'(R, —R', k„k, )J'(R', k, ),
R) R~ k) if.2

1 R'CS

(3.13)

where J represents the light incident on the medium at R'. For simplicity we have assumed a plane wave with
wave-vector k; incident on the surface of the medium. The integral over R is restricted to this surface (S) and simply
yields the coherent radiation at R2. This radiation is described by

rl 2 g r2 1I (b„k,„kz)= f e ' 'e ' 'G" R, +—,R2+ —6" R2 ——,Ri ——
rlr&2

( 2ir ) 5(k, —k Oh )5(k~ —k Oh )
(4n

/
dEi )

in the approximation that r „rz &&
~

4 ~, where
5=—R& —R2. The boundary conditions on the di8'usion

propagator S have been studied in various confined
geometries in the context of classical transport theory.
It is known that for a semi-in6nite medium of point
scatterers, the propagator vanishes on a trapping plane
located a distance zs ~0.7I outside of the medium. We
have imposed this same condition at both boundaries of
the slab. %e may expect this to be valid only so long as
the width W~gl, since the diiTusion approximation is
not a good description of very short random walks,
which will dominate for small fK Our calculations
based on these boundary conditions, however, appear to
be consistent with recent experiments' for widths as
small as %=1.51. These boundary conditions may be
satis6ed by the familiar method of images, e.g, ,
L (RR ,k&',kz), (y=/r)2)(RR ),, w'here

(3.14)

Q(K)=1 ————I K&22
I, 3

(3.16)

and thus the singular behavior of L and C in Eqs. (3.11)
and (3.12) is removed

3y(1 I /I; )—L= C=
I k +I /g Is +I /g

(3.17)

As discussed in Sec. II the di6'usion propagator acquires
an exponential decay with length g—:(II;/3)' . The
function 2) in Eq. (3.15) must then be modified by

I

semi-infinite medium, only the n =0 term is required.
(By application of the Poisson resummation formula the
sum over the infinite set of images leads to an equivalent
expression for 2) in which the integral f is replaced by
a discrete sum in the direction perpendicular to the
slab. ) In an absorbing medium, Eq. (3.10) becomes

2)(R,R')—:f g (e " —e " )2){K,O)
K„

e
—~R —R')/g

(3.18)

1

4mD

1

/

R —R'„f
1

/R —R„'
/

For a slab of width 8' bounded at z =0 and z = $V, the
images are located at R„' =R'+ 2n ( W+ 2z& )z and
R„*=R' —2(R'.z+zI, )z+2n ( W+2z~ )z. In the case of a

The vertex part C(R, , R2, r„rz) describes the interfer-
ence of multiple-scattering paths between points
R,+r, /2 and Rzkrz/2, which must lie within the
scattering medium (denoted by 0). In the diff'usion ap-
proximation, and with the boundary conditions of the
slab, this scattering is described by the propagator X) in
Eq. (3.15). Thus from Eq. (3.12) we are lead to the fol-
lowing identification:"

—(~, +k, ) r r rC(R„R2,k„k2)=5(R,—R2) e ' ' S R, + —,R, ——
'r r

{3.19)

where the integral over r is restricted so that R,kr/2 lies within the medium. The 5 function comes from the in-



COHERENT BACKSCATTERING OF LIGHT IN THE PRESENCE. . . 1891

dependence of C on K. Assuming normal incidence (k;=z), and for backscattering into a wave-vector k& diS'ering by

a small angle 0 from —k;, the refiected intensity as a function of 8 becomes

J(8)-I(0,$}+(1—i/i; )I(8,(), (3.20)

( 2+ 2)1/2

2, 2 )1/2/g

I(8,()—: J dz+ I dz e 'e ' I d pe
2ml o o P

( 2+ g 2
)

I /2/g
8

( 2+b2)I/2
(3.21)

1 1 1———+—
I, I I,

(3.22)

We have made a change of variables to z~=z, +z/2,
and p=(x,y), where R, =(x»y»z, ) and r=(x,y, z) In

Eqs. (3.13) and (3.19). This allows both the isotropic and
coherent portions of Eq. (3.20) to be described by the
same function I (8,$). For small 8, we may write q=ko
sin 8x without loss of generality. The sum over images
requires that a„=z+ —z+2n( W+2zb ) and b„=z+
+z +2zb+2n( W'+2zl, ). Evaluation of the integrals
(3.21) is described in Appendix B. The resulting line
shapes for various values of the width W and absorption
parameter g are depicted in Figs. 2(a) and 2(b).

Here, q:—k;+k&. The mean free path I, accounts for
elastic as well as inelastic scattering

We assume no dissipation (e"=0) and that the disorder
is in the diagonal part of e

eij (1+6 }5ij leijkgk (4.3)

Gl (k) = g Ppj(k)G (k), (4.4}

where e' Auctuates randomly with mean 0 and distribu-
tion given by Eq. (3.2) and e;jk denotes the antisym-
metric tensor. The vector g is the gyration vector,
which in the presence of the Faraday effect is propor-
tional to the magnetic field ( g =f8), while in the case of
natural optical activity it is directed along the photon
wave vector (g=fk). The averaged one-photon retard-
ed Green's function is given by

IV. ELECTROMAGNETIC %AVES:
THE EFFECTS OF FARADAY ROTATION

AND NATURAL OPTICAL ACTIVITY

%e now extend the scalar calculation to include polar-
ization eff'ects, "' The electric vector field F.; satisfies
the wave equation and transversality condition

2

V E;+ 2(D;)=j;, V E=O.
C

(4. 1)

The displacement vector 0 is related to E by the dielec-
tric tensor e

Pj~(k) = —,'(5;j.—k;k +ie; k )

are projection matrices onto right- and left-hand
circularly-polarized components which ensure that the
wave is transverse. Also [G —(k)] '=(1+k g)ko
—k +iko/I includes the different indices of refraction
for R and I. polarizations. %e again denote the two cir-
cular polarizations by greek indices o;=+1. The propa-
gation of the field is described as before:

&~;(r) & = J G;k(r r')jk(r') .— (4.5)
r

0=@K=ed;, E+ig&E . (4.2)
Similarly the specific intensity at R with wave-vector k
is

z„iR,t)=—I e-"'{z, R+ —' z; R ——,
'

)r

where JI,I is the incident intensity. The correlation I, .k, is now tensor valued

R A 0 0
~ijkl (GikGlj ~ =~ijkl+ fiji'j '+i *j 'k'I'~k'I'I IRl, R2, r l, r2

where repeated indices are summed over, and where we
have omitted the spatial arguments, which are the same
as 111 Eq. (3.8). We pel'for111 tile tl'a11sfoI'111atlo11s of Eq.
(3.9) and approximate the vertex as before:

&;,kl(K, k, k') =L,,„,(K,k, k')+ C,,„,(K,k, k'), (4.g)

l

where L and C refer to the ladder and maximally
crossed sums, respectively. These diagrams are shown in
Fig. 5(b). The solid lines refer to the Green's functions6, and the dashed lines denote scattering events.
For disorder characterized by Eq. (3.2}, these dashed
lines contribute a (constant) factor of y in momentum
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I I

l

+
I I

y f IG(q}l'=-', .

Upon performing the average over q, we have

Qgi(0) = .'. I:—65;k5ji+(I+&~p}5J5bi

(4.13)

i =
g k

/
)

j

+(1—5aP)5;i5, i,. ] . (4.14)

The nine eigenvectors of Q (0) are independent of a
and p and are the same as those of Q in Ref. 13

(bj l

]

1

v'3

I
kl ) 5 +i(l —i)2mls

2 3 klev'3

1
I
kl &4, s,b=

2
(5k.5lb+5kb5lo }

1
I
kl &7,s, 9=

2
(5ka5ib —5kb5i. }

(4.15)

FIG. 5. The correlation I,,« —(G;kGij") can be evaluated

by the sum of diagrams in (a). The solid lines denote the
Green's functions 6" " with the labeled indices and the
dashed lines represent scattering. In the white-noise approxi-
mation of the disorder, these dashed lines carry a constant fac-
tor (y) in momentum space. The principal contributions for
kol gp 1 to I involve the ladder L and maximally crossed dia-

grams C, which may be evaluated by the sums in I,'b). The first
term in the sum for L corresponds to single scattering and does
not contribute to the helicity-preserving intensity.

For the final six eigenvectors the spatial indices (a, b)
take on the values (1,2), (1,3), and (2,3). The eigenvalues

(m = 1, . . . , 9) of Q may be found by expanding the
Green's functions about K =0. %e show in Appendix A
that these eigenvalues„ for g =0, are given by

Pig where

l 1 aP—+ K
4 3 3

space. 2~ The second term of the ladder sum in Fig. 5(b),
for example, represents the integral yQ;jbi(K), where

Q jki«) =y f G~b q+ —Gij" q ——

2, 3
aP 7

40
I 7
4 30

(4.16)

and

= QQfi«)
a,P

(4.9) K — (K, +Kb) (K +2K—, )

(c&a,b},

Q;gi«)=—y f l"bl'PjG q+—
1 aP

7gSy9 8 8

I 3 2 2

4 10 10

(4.10)

The ladder diagrams then take the form of a geometric
series in the matrix Q,jki(K). The sum is simply given

by the inverse of the matrix (1—Q),,ki, where (ij) and

(kl) are composite indices, and l,jk,
——5,k5ji is the identi-

ty

Loki«)=yI(I —Q«}] 'l jki . (4.1 1)

The inverse is obtained by first diagonalizing Q as fol-
lows.

For K =g =0, the matrix Q ~ becomes

Qgi(0)=(&;k(q)&tj'(q)&-y f I
G(q) I', (4.12)

where ( ) denotes the average over the unit vector q
on the unit sphere. The integral over q has been evalu-
ated in Appendix A with the result

+ P(K' —2K,'. )
10

Here the indices a and b are distinct from each other
and from c, which takes on the values 3, 2, and 1. Eq.
(4.11) then becomes

9
1Ljki(K)=y Q Iij ) (kl

m=1 Pl

(4.17)

We note that A, ,(K)=1 ,'l E corresponds to a—G—old-

stone mode since 1 —A, ,(0)=0. This is the origin of
long-range diffusion.

The sum of maximally crossed diagrams may be
found, as in the scalar case, by reversing the advanced
Green's functions. This transformation exchanges the
indices j and I and requires time-reversal symmetry
fG ( —q}=G (q)], which is violated by the Faraday
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effect. In fact G'( —q)=G (q} in this case. This is
equivalent to the observation of Sec. II that, to ensure
the equality of the optical path lengths of a given path
and its reverse, the helicities of corresponding intermedi-
ate states in Fig. 4 must be chosen to be opposite for
Faraday rotation, and must be chosen to be equal in the
case of optical activity. The geometric series for C is ob-
tained in this manner. The first term for C in Fig. 5(b),
for example, represents the integral yQ(((,j(s},where

Q;(k, (s) = &Q (Pkj(s)
a,P

(4.18}

Q ((j(s)=1' f P'kPIjG q+ —[G* (q —s»'2)1" .
q

(4.19)

The "+ " and "—"superscripts refer to the relevant in-
terference diagrams for optical activity and Faraday ro-
tation, respectively. In Appendix A it is shown that if
a=p, then Q ~ is independent of the gyration vector g
through order g . For a&p however, g enters via the
substitution K~K+akog in Eq. (4.10). In particular,
the eigenvalue A, i of Q is unaffected by both Faraday ro-
tation and optical activity. Hence the long-range
di6'usion is maintained in the ladder contribution. From
Eqs. (4.10) and (4.19), we see that Qg~&(s)=Q ((j(s) in

the absence of Faraday rotation. Thus the eigenvalues
of Q ~ [denoted by x~{s)] are precisely those of Eq.

(4.16), with the correspondence K~s. In the presence
of Faraday rotation, the previous analysis regarding Q ~

leads us to conclude that the eigenvalues x~ are
unaffected for a~P, and are modified by s~s+akog for
a=p. After summing over a and p we obtain the eigen-
values

s, = 1 —I —,'(s+g ko ),
(r2 z

———,
' —I —,

' (7s +g ko)

IC4 $6 (() I [ 70(23$ +3g ko )

——,', ( 10s2+ 10s„+2g,2k o2 )],
(r7 s 9

———,
' —I [,~(3s +g ko) —

—,'o(s, +s(, )],

(4.20)

a (0)
1 —Km s

(4.21)

The backscattered intensity may be found by general-
izing Eq. (3.13}

where again {a,b, c) represent permutations of the spatial
indices (1,2,3). The elimination of the zero eigenvalue
[1—(ri(s)] of (1—Q} has the effect of rounding off the
sharp backscattering peak, which comes from long
diffusion paths. The sum C,"„,(s) is then obtained as for
the ladder diagrams

C;jk((s) = Y Q Ikj'[(1—Q ) ]„;.„

Jj(R,kr)= f I ~j( j (R Riykfyk&)[L;»'k ( (R»Rz, k&, k2)+C(» p ( (R&,Rz, k(, kz)]I) Rl R2 kI kz I)g)

x f I k(k((R~ —R', k2, k;)Jk((R', k;),R'ES
(4.22)

where Jk(-Ek(E() is the incident light with polarization vector E . The reffected light then has polarization vector

E, where J,"-E;(E )'. The generalization of Eq. (3.14) is just

I;p((R, k, k') = Q Pk(k)Pt'(k}I (R,k, k')=5 k(k)5(»(k)I (R,k, k'),
a,P

(4.23)

where 5,»(k) =5;» —k, k».
Recently experiments have been carried out in which circularly-polarized light is incident (say along k;=z), and

only light of the same polarization (say along k(- —k;} is observed. ' This is what we refer to as the helicity-
preserving channel. It may be obtained from Eq. (4.22) with E =(1/&2)( l, i, 0), and by projecting out the right-hand
portion of J. Since E,.E» Pj+(k) for a rig——ht-hand wave traveling in the k direction, and since P+P;,+' '= l(0), this
projection may be obtained with I'+

J+(kr) =Pj+(kr)Jj(kr) .

%e evaluate the coherent backscattering portion of this in Appendix B. The result is

(4.24)

(Ikog ) I 8, +—' 1—
3

'
kog

(Ik )og I el 7

9+(Ikog )

r

(Ikog )
5 I I 8, 1

5+(Ikog)
(4.25)
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where I(8,$} is defined in Eq. (3.21). In this channel,
the incoherent portion of the scattered light should have
no contributions from single pointlike scattering events,
since such would necessarily Aip the helicity. If one
writes 1/(1 —A, ) in Eq. (4.17) as 1+A, j(l —A, ), then
the leading 1 corresponds to single-scattering events.
Thcsc ai'c I'cprcscIltcd by tl1c fli'st tcl'II1 II1 Fig. 5(b). Onc
finds that, indeed, in the helicity-preserving channel, the
terms in the intensity arising from such events cancel ex-
actly. Because of this elimination of single-scattering
terms, the resulting peak has a height at 8=0 of exactly
twice the incoherent background —as is true for scalar
waves. "' This is in contrast with the parallel polarized
case, where this ratio is somewhat less than two. '

Furthermore, the approximate cancellation between the
second and third terms in Eq. (4.25) leads to the fact
that the backscattering peak in this channel closely
resembles the calculated scalar line shape. This similari-
ty persists in the presence of absorption and Faraday ro-
tation, since the first term in Eq. (4.25) is precisely the
coherent portion of the scalar result of Eq. (3.20) with
the correspondence g~(gko) ' —compare Figs. 2(b) and
3(a). At this point, another claim made in Sec. II may
be clarified. Consider the paths shown in Fig. 4 (in the
absence of Faraday rotation). The path shown contrib-
uting to the helicity-preserving channel corresponds to a

product Q
' '

Q ",while the path (with helicities
labeled in parentheses} contributing to the opposite heli-
city channel corresponds to a product

a), -u)
Q

' '
Q

'
. Long paths are associated with

the eigenvalue A, I (the Goldstone mode). Thus, since
'=0„long paths of the second type are suppressed.

Only short paths, corresponding to eigenvalues i' 9,
contribute to the opposite helicity channel.

In an optically active medium, the rotatory power f
afFects only the eigenvalues A,

' '(K) and ~ ' (s), since
time-reversal symmetry is maintained. (These eigenval-
ues are, in fact, equal with the identification K~s.) The
eigenvalues II (s) are derived in Appendix A

light of a given circular polarization, we have shown
that the intensity of scattered light of the same circular
polarization yields an angular profile closely resembling
the calculated scalar 1ine shape. This has been seen re-
cently in experimental line shapes obtained by Etemad
et al. , in which precisely this helicity-preserving channel
was monitored. These line shapes are consistent with
the scalar calculations depicted in Figs. 2(a) and 2(b).
This is in contrast with the case of parallel linearly po-
larized light, for which the intensity dift'ers from the sca-
lar result by a rather large correction term' —compare
Figs. 2(b} and 6. The intensity in the helicity-preserving
channel given by Eq. (4.25), however, involves a destruc-
tive interference between correction terms which are
added to the scalar line shape.

%e have demonstrated an exact factor of 2 enhance-
ment of the backscattering peak in the helicity-
preserving channel, which is the same as for scalar
waves. This factor of 2 enhancement is a consequence of
time-reversal symmetry relating the ladder diagrams
(contributing to the incoherent intensity) to the maxi-
mally crossed diagrams (contributing to the coherent
peak). This symmetry, in fact, relates arbitrary diagrams
contributing to the coherent and incoherent portions of
the scattered light —with the exception of the single-
scattering (ladder) diagram of Fig. 5(b). For scalar
waves, the singular nature of the ladder and maximally
crossed sums makes this 6rst diagram irrelevant for
small K and k+k' [see Eq (3.12)]. In the helicity-
preserving channel for vector waves, the contributions
from this first diagram cancel. (This is equivalent to the
observation that single-scattering events do not preserve
helicity. '

) Thus, in the helicity-preserving channel, as
for scalar waves, an exact factor of 2 enhancement is ob-
tained. For parallel polarized light, however, the single-

0,8

~I s= —,', —1 —,', (7s +lgf ko),
II'q s 6= I7O

—l [~~~(23s +42f ko)

—
—,', (10s, +10si, )],

x789———,
' —I f —,', s —

—,', (s, +si, )] .

We see that Goldstone mode is preserved. Hence, the
sharp backscattering peak in the helicity-preserving
channel remains. It is the opposite helicity channel
which is suppressed by the optical activity [see Fig. 3(b)].

Py 0.6
C"

0.2

a s s s E

V. DISCUSSIQN

Previous discussions of the polar lzatlo11 effects in
coherent backscattering have dealt with linearly polar-
ized light. ' In this presence of Faraday rotation or
optical activity it is c1early more natural to consider
circularly-polarized light. Furthermore, for incident

FIG. 6. The eAect of Faraday rotation on the peak intensity
of light polarized parallel to the incident wave. In the pres-
ence of time-reversal symmetry, the enhancement factor at
8=0 is somewhat less than 1.9—we have normalized by the
isotropic background in this channel. Also, the suppression of
the peak due to time-reversal symmetry breaking is less severe
than in the helicity-preserving channel or for scalar ~aves.
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scattering diagram increases the incoherent portion of
the scattered light —reducing the enhancement factor to
about 1.87, as seen in recent experiments.

By examining the effects of Faraday rotation on the
coherent bsckscattering peak, one sees more clearly the
role of time-reversal symmetry. Geometric constraints
and absorption lead simply to s truncation of long
diffusion paths —suppressing both the coherent peak and
the incoherent portions of the rejected intensity. Fara-
day rotation, on the other hand, suppresses only the
peak portion of the reflected light in the helicity-
preserving channel. Parity nonconservation hss not pre-
viously been examined in the context of locahzation. We
have shown that parity nonconservstion due to optical
activity has no discernible effect on the helicity-
preserving component of the peak intensity, but rather
suppresses only the broader reversed helicity component.
In terms of the parameters in Figs. 3(a) and 3(b), —,'gkol
and —,'fkol describe the amount of rotation (in radians) of
the plane of polarization over one mean free path. Thus
for a mean free path of about 20 pm, a rotation of as
much as 500' per mm is required for the effects of Fara-
day rotation and optical activity on the line shape to be
observable. In real materials, such strong Faraday rota-
tion will be accompanied by absorption. Thus, in experi-
ments care must be taken to distinguish between these
effects, which have similar consequences for the
helicity-preserving channel. Such rotatory powers are
more easily attainable, however, in some optically active
materials. ' The breakdown of both time-reversal and
parity symmetries msy have interesting consequences in
the localization critical region. Faraday rotation and
optical activity provide possible probes with which the
roles of these symmetries may be studied in photon lo-
calizing systems.

In this work we have assumed a white-noise approxi-
mation, in which the disorder is spatially uncorrelated.
This suSces to describe well the features so far observed
in coherent backscattering experiments. This approxi-
mation, however, will cease to be valid near scattering
resonances due to large particles or near a mobility edge.
The importance of spatial correlations has been observed
experimentally in titania microstructures for which

I

Thus, we cannot expect the model of uncorrelated
disorder to yield a suScient description of the strong lo-
calization of photons. It has been suggested recently
that large scale geometric resonances may play an im-
portant role in observing strong localization of light.
In particular, in suitably prepared dielectric superlattices
with moderate disorder, photons may become localized
within a narrow frequency range. Due to Bragg reso-
nances of the underlying lattice, the allowed wave-
vectors k for photon propagation may be severely re-
stricted for frequencies near a band edge. Thus inter-
mediate states in coherent backscattering paths will be
restricted —perhaps leading to observable features in the
coherent line shape. To understand quantitatively any
of the effects of spatially correlated disorder on the local-
ization of photons, however, it will be necessary to go
beyond the approximations of the present work. '
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APPENDIX A

In the foBowing we describe the evaluation of Q,gi(K)
and the eigenvalues A,;~ 9(K). This is done first in the
absence of Faraday rotation and optical activity. Then
we show how the matrices Q ~ and Q ~ are altered in
the presence of these effects.

We begin with Eq. (4.10)

Q,',t', (K)=y J ~,', ZPG q+ GP q ——K K

(Al)

%e separate the integral over q into an integral over
q=

~ q ~

and an average over q. It is sufficient to find
the eigenvalues for K/ &&1. Since 1 &&kol -ql, we may
take q as the argument of the projection matrices P and
pP

gji(K(=4wy(pg(q)pP(ql, J q'dq G q+—

An expansion of the Green's functions about K =0 yields the following integrsnd:

q 6 q+ —6' q ——=q GG' 1+(q K) [6 +(6') —66"],+ [6+6']2
2 2

where the argument (q) of the 6's has been omitted.
For K =0, Eq. (Al) reduces to Eq. (4.12), and the in-
tegral over q may be evaluated as follows. '3 For weak
scattering, the self-energy X=yTr J 6, =—'y J 6,
where Im(X)= —Im[6 '(q)]. From this, we obtain

Im(X)=-', ylm J 6(q) ~' =yim(X)-', f ~
6(q) ~',

6*(q)
(A4)

and Eq. (4.13)
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G q
2 dq q2G q Gk q

(2m)'

The mean free path 1 is related to y by

The other integrals over q, in the expansion, may be
done by contour integration. For example, the term [ ]z
leads to the integral

dqq6qG q 6 I+6 q(2~)' Sko

(A7)

Since kol ««1, however, this term leads to a contribution
of lower order in 1/kol. Thus, the term [ 12 in Eq. (A3)
may be dropped. Evaluation of the integral associated
with [ ], leads to

Q;g~(K)= —,'&P;„(q)PP(q)(1 —q q„l(' i()„))

from which we obtain the eigenvalues in Eq. (4.16) to
leading order in K

kf=&ij
~ Q;g((K)

~

kl) (A9)

To find the modification of Q ~(K) and Q ~(s) due to
Faraday rotation, we simply write (to leading order in

1/k()l )

6 (q+ —,'K)[6~(q ——,'K)]'=
k 2 —q

2 —ag qk (~) K—q+

it�

() /l k () q P—g qk—
() +K.q —ik() /l

If a=P, the g may be absorbed into a redefinition of the integration variable q. Thus Q and Q ', in Eqs. (Al)
and (4.19) are unaltered. For (x&P, we see that Eq. (A10) is equivalent to Eq. (A3) with a redefinition:
K q~K q+ag qko. This leads to the substitution K~K+akog in Eq. (AS), since the poles are near q =+ko. The
matrix Q ~ is obtained similarly:

Q;g, (s) =—', &P,'„(q)Pt,'(q)[l —q q„(s +uk g )(s„+akog„)]) (Al 1)

After summing over a,P and averaging over q, we ob-
tain the eigenvalues of Eq. (4.20):

(A12)
rn =1

X I C R&R2k&kz 1"

In the case of optical activity, both Q' and Q are
unafkcted, since the Green's functions are shifted equal-
ly in frequency. On the other hand, for a+P, we see
[from Eq. (A10), with g=fq] that Q'~ and Q ~ must be
modified by q K~q K+afko and q s~q s+afko.
Thus, for example, the eigenvalues )r (s) in Eq. (4.26)
are obtained from

C (R„R2,it„it2)=5(R) —Ri)
7"

—i & k 1+k2).r
e

R1+r/26 0
r

r rx2) R, + —,R, —— (83)

The functions C are obtained in the same way as was C
in Eq. (3.19)

—q q„s s„)) (A13)

APPENDIX 8

PJ+("r) f I'~~/"[L "k(+C'1 k i ]I k (i(Pk((lt )

= f I'P,+( —z)[L.„„,+C,...]P„+(z)l',

for normal incidence along z, and for small backscatter-
ing angle I9. %e have omitted the arguments of I, L,
and C as well as the limits of integration, all of which
are the same as in Eqs. (3.13) and (4.22). Consider just
the coherent contribution

We evaluate the integral (4.22) in the helicity-
preserving channel. By the discussion leading up to Eq.
(4.24), we may express the intensity in this channel as

& „2+„2/ 2)1/2g(
e

2+ 2 / 2)(/2 (85)

(8'(R —R ) (S (R —it ) K~ (s)
1 —)r (s)

(84)
The locations of the images, R„' and R„', are the same as
for Eq. (3.15). (~ is the mean free time. )

The eigenvalues A, (K) and (r (s) are, in general, an-
isotropic in the variables K and s. For example, the
coefticient of s, divers from that of s, & in x~ 9. %e
may write a general eigenvalue a. (s) =)( —((" (s,
+cr si)l, where si=(s„,sb). By a change of variables
(s) ~(Ts) ), the transform X), in an infinite medium, be-
comes

0
.8 (r)=r e ' 'e ''

S 1 )( +~"(s,2+o si)l—
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where g:—l(x." /1 —a. )' . With the boundary condi-
tions of a slab, Xl~ (R,R') is obtained from this by sum-

ming over the images. The only surviving projections in

Eq. (82) are

(86)

where I(8,g) is given in Eq. (3.21). We have written this
result in Eq. (4.25), for the case of Faraday rotation.

m=1

P,+, ( —"*)
~
l).&kj ~.P„+,(")=,—,'„=2,3

rrI, =7

where we associate m =7 with a = 1, b =2, and c =3 in
Eq. (4.15). By letting p=r~/tr in Eq. (83), the expres-
sion for the intensity as a function of 8 becomes

J+„(8)-—,
' „ I(8,(,)+—,

' „ I (8,$2)

I (8,$7), (87)
Kq

The integrals over z+ in Eq. (3.21) are easily evalu-

ated, after completing the integral over p. The general
form of this integral over p is

f
( 2+ 2) l /2/g ( 2+ 2 }1/2/g

( 2+ 2)1/2 o ( 2+a 2)l/2d2p e 'q'~y = dp p

&& f dy
—iqPcostt

0

(88)

The integral over ((1 simply yields the Bessel function Jo

e '@'"@=2mJO qp (89)
0

And by a change of variables [r =(p +a )'/ ], Eq. (88)
becomes' ' 2

—(q +1/( }
I
a I

2n e "/&Jo[q(r a)'/ 'jdr—=2m.
(q 2+ I /g2 )

1/2

(810)
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