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The properties of a doubly degenerate Anderson impurity in an electron gas are studied using a
Monte Carlo simulation technique. The model is characterized by the intra-atomic Coulomb
repulsion U, the exchange integral J, the hybridization width 5, and the d electron energy level
E . The e8'ects of U and J on magnetic and orbital properties of the impurity are studied, and
significant differences with predictions of Hartree-Fock theory are found. In particular, the condi-
tion for quenching of the orbital moment is found to be much less stringent than predicted by
Hartree-Fock theory. The magnetic susceptibility is found to follow the universal Kondo behavior
for both J=0 and J&0. %e also study the effect of crystal-field splitting on the Kondo tempera-
tures, and 6nd a surprisingly small effect for large crystal fields, in agreement with recent theoreti-
cal calculations. Our results provide an explanation for the quenching of the orbital angular
momentum observed in transition metals and their alloys, and for the absence of magnetic order in
certain dense Kondo systems.

I. n TRODUCTIOX

The magnetic properties of dilute alloys with
transition-metal-atom impurities in s normal matrix
have been studied for many years. The localized
virtual-state picture presented by Friedel' have been
used to explain numerous experimental results qualita-
tively and sometimes quantitatively. Based on Friedel's
idea, Anderson proposed a celebrated model, the An-
derson model, for formulating the theory in a way that is
more convenient for quantitative calculations. In the ap-
pendix of his paper, Anderson generalized his model to
one wtih double degeneracy. %hilc the nondegenerate
Anderson model has been studied extensively by several
approaches and great success has been achieved, the
model with degeneracy is less well understood. Moriya
has studied a fivefold degenerate Anderson model for
one snd two impurities in the Hsrtree-Fock approxima-
tion scheme. Using the same approximation, Coqblin
and Blandin have studied the doubly degenerate Ander-
son model extensively. The effects of magnetic anisotro-
py on the model have been studied by Yosida et al. 5

with the same method. Like the nondegenerate Ander-
son model, a canonical transformation can also be used
to relate the degenerate Anderson model to the Kondo
model. The inhuence of the crystal field on the Kon-
do efFect hss been discussed by Cornut and Coqblin, by
Nozieres and Blandin, ' and by Yamsds et ah. " Other
approximate calculations have also been carried out like
perturbation theory in the Coulomb repulsion ener-
gy

' ' the Green's function approach of Lucss and
Mattis, ' and s charge-transfer method by Oles snd
Chao. ' All these studies are based on some kind of ap-
proximation. Although they sometimes give correct
answers in limiting cases, a nonperturbative study of the
degenerate Anderson model is desirable especially for
cases where various parameters of the model are of corn-
parable size and many body correlations play an impor-
tant role.

Computer simulations provide s wsy to study a model
Hamiltonian nonperturbatively. For the magnetic im-
purity problem an cScient simulation method has been
recently proposed. ' In this paper wc will study the
magnetic properties of the doubly degenerate Anderson
impurity model by Monte Carlo simulations. Although
in the transition metals the degeneracy is five instead of
two, the cubic symmetric crystal field can split the d-
electron energy into three and two degenerate levels (tzs
and e ). The efFects of degeneracy can be seen clearly
from the study of the doubly degenerate Anderson mod-
el so it is of great theoretical interests.

In the following section we define all the parameters
of the model Hamiltonian and discuss some previous re-
sults. In Scc. III we describe the simulation method we
use to study the degenerate Anderson model and com-
pare Monte Carlo results with exact disgonslization re-
sults to check their accuracy. %e study the role of
Hund's rule, the universal Kondo behavior, snd the
cfFects of crystalline potential in Sec. IV. Finally, we
summarize and discuss our results in Sec. V. In the Ap-
pendix, wc discuss the efFcct of a spin-Rip term in the
Hamiltonian.

II. MODEL HAMILTONIAN

The model we study has the form '

8=H, +Hd+H, d,
where
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H,d =g g(V„C„C + V „C C„)
k, o m

in Eq. (1). m and m' are the indices of the degenerate
orbitals (1 or 2 here), E are the unperturbed d-level en-
ergies Ineasured from the Fermi surface, U and J are the
intra-atomic Coulomb repulsion energy and the ex-
change integral. For the transition metals the spin-orbit
interaction is small compared to each part of the Hamil-
tonian and the crystalline potential so that we neglect it,
and the impurity potential is assumed to be spherically
symmetric. The angular momentum of a conduction
electron is thus conserved and we can expand its wave
function in spherical harmonics YI . The matrix ele-
ment V& of the hybridization in the usual case of
2I+ 1-fold degeneracy is given by

V& —— —f e '" "V; ('r)Rd(r)YI (Q„)r dr dQ
klan QV

&6m
( i) Uk—/ Yl (Qs),

kR

where Rd(r) is the radial part of the d-electron wave
function and UkI 1s given by

Ul, &
&2/R k——f j&(kr)V; (r)Rd(r)rsp2dr .

For the doubly degenerate case we studied here, Vz is a
linear combination of YP's such that the average of
V„V„~ over azimuthal angle is proportional to 5
Let us define their phase factor such that

V~ ——VkR (8), rn =1,2
5 =(R (e)R (8)), .

This Hamiltonian has been studied extensively via a
set of Hartree-pock self-consistent equations. " %ithin
the Hartree-Fock approximation, the Hamiltonian for an
electron of spin o can be written as

If we assume that the impurity potential is spherically
symmetric then 6 ~ can be written as

G (E)=
E —E —I +id

with I and 5 independent of the orbital considered and
the energy E. Depending on the parameters U, J, 6,
and E, the ground state can have various kinds of or-
dering within the Hartree-Fock approximation. For
instance, there will be no ordered ground state if
U+J ~mA; whereas for U —J ~m.h& U+J, the ground
state will be spin ordered only, with orbital angular
momentum quenched, and for U —J &mh the ground
state will have both spin and orbital ordering. Although
the Hartree-Pock approximation can give various analyt-
ical conclusions, it is a bad approximation for studying
the magnetic properties of the transition metals. It
neglects the correlations between electrons, and overesti-
mates the tendency to magnetisrn. It is well known that
the ground state for the nondegenerate Anderson model
is a nonmagnetic singlet' for any finite of the Coulomb
repulsion U. For the degenerate case the ground will
also be a nonmagnetic singlet rather than a triplet as we
will see in the following.

Another way to study the Anderson impurity model is
perturbation theory, ' in which one takes the Coulomb
repulsion U or width of hybridization 5 as a perturba-
tion. Taking the interaction part of the Hamiltonian as
a perturbation in the degenerate impurity model, Shiba'
and Yoshimori' have derived a number of Ward identi-
ties satisfied by the various vertices, thus obtaining a re-
lation between the specific heat and susceptibilities in the
low-temperature limit. Resistivity was also discussed by
them in the case of half-filled localized electrons. How-
ever, all these analyses were made at and near T=O K,
hence the results are restricted. No discussion was given
on the change of the Kondo temperature Tz due to the
degeneracy,

Hu =g ~knto +g Emo "mu
k m

+Q(Vk C~ C +V kC Cs ),
km

(3)

III. SIMULATION METHOD

To investigate the properties of a magnetic impurity
with degenerate orbitals nonperturbatively we use a
Monte Carlo technique, following a recently developed
algorithm. ' %e write the partition function as

E =E~+ g (U J)n~ —+g Un~

The diagonal elements of the Green's function are sirn-

ply related to the density of states due to the mixture of
the

~
m, o ) state with the continuum states:

p (E)=——ImG (E) .1

pH
—5&HO{~I )+HI(v.( ) }L

Z=Tre =Tr e
1=1

—
A~HO ( v.

I ) —h, ~HI {v.
I )

L
=Tr e ' 'e

/=1

where P=Lhr, HO=H HI, and HI is giv—en by

U U U
HI = ( 25 i t 1j i i —ll ) t

—n i i ) + ( 2 fl 2 t n 2 i —n i t
—n 2 ) ) + ( 2n ) t 1l 2 i

—fl ) t
—n 2 ( )

2 2 2

U (U —J) (U —J)+—(2n, in2t —n, )
—n2t)+ (2n)tnqt n, t n2t)—+ — (2n, in2i n, i n2() . ——

2 2 2
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The six terms in the interaction part HI all commute
with each other and for each one of them we can decou-
ple the interaction via a discrete Hubbard-Stratonovich
transformation, ' say, for the n»n» term

exp[ hr—(U/2)(n»+n» 2—n»nz& )]
= —,

' Tr exp[A, ( U)cr ( n» n—i & )],
where o is an auxiliary Ising variable and the couplings
A, ( U),A, ( U J) a—re given by the equation cosh(x)
=exp(6x/2). Taking the trace over fermion degrees
of freedom the partition function can be written as

0.2'

0.0q
1.0

where 0„ is an (%+2)LX(X+2)L matrix, with N the
number of k vectors for the conduction electrons. The
matrix elements of O„are

(9)

V/" A(n,——p) ( 1)(1+A(ni„)
~

2)(2
(

with

(10)

and [0„]&&

——0 otherwise. The matrix K corresponds to
the noninteracting part of the Hamiltonian and Vt' is a
diagonal matrix in space and time corresponding to the
potential due to the auxiliary Ising fields which acts only
at the two orbitals of the impurity site:

FIG. 1. Comparison of Monte Carlo (symbols) and exact di-
agonalization results (solid line) for (a) T Xorbital susceptibility

Xo and (b) T X spin susceptibility 7 as a function of J for a
single degenerate Anderson impurity with a two-site conduc-
tion electron lattice. U=4, T=0.125; and 6,~=0.25 (octa-
gon), hr =0.50 (diamond).

A(n, t )=A(U J)o i+iV U)rr3+—A(U)os,

A(n, ) )=A(U —J)o2 —A(U)cr3+A(U)os,

A(n2) )= —A(U —J)o, +A, (U)cr4 —A,(U)era,

A(n2& )= —A(U —J)o2—A(U)cr4 —A(U)mrs .

The Green's function matrix 6„=0„' satis5es the
Dyson equation:

6„' =6„+(6„I)(e" I )6—„'— 0.0
0.3

(a)

Our Monte Carlo strategy is simple: Srst we set both
U and J equal to zero and then calculate the nonin-
teracting Green s function, next we put in arbitrary ini-
tial Ising fields and obtain the d-electron Green's func-
tion by inverting a 2L)&2L matrix. The Metropolis al-
gorithm is used to determine whether an Ising spin tr J(I)
is Sipped and all the time components of the d-electron
Green's functions 6„(m,m '; I, l') are updated through
the Dyson equation. Along the Monte Carlo's updating,
we measure various interesting quantities such as the
magnetic susceptibility X, and study the properties of
the system nonperturbatively.

For the algorithm we use, the error only comes from
the breakup used in Eq. (6), which is proportional to
b,v . We can reduce the systematic error by reducing
h~, i.e., increasing the number of time slices L, but the
computer time increases as L and the smaller b,r is the
more Monte Carlo sweeps are needed to reach equilibri-

FIG. 2. Comparison of Monte Carlo (symbols) and exact di-
agonaltzation results (solid hne) for (a) (r, ), and (b) (5,') as a
function of J for a single degenerate Anderson impurity with a
two-site conduction electron lattice. U=4, T=0.125; and
hv =0.25 (octagon), hz=0. 50 (diamond).
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um. To test our program as well as to choose an ap-
propriate value of A~, in Figs. 1 and 2 we compare our
Monte Carlo results (symbols) of TX, TXO, &S, ), & v, ),
to be de6ned below, as function of J for U= 4.0,
T=0.125, with the results obtained from diagonalizing
the Hamiltonian exactly (solid lines) for a two-site
conduction-electron system. As we can see, the program
works very well snd for values of 5~=0.25, or even
5~=0.50, the systematic error is smaller than the sta-
tistical error. Most results presented in this paper were
obtained on the Cray X-MP at the San Diego Supercom-
puter Center. The code is very easy to vectorize and the
CPU time for a typical run of 10000 Monte Carlo

sweeps with L=16 time slices and 50% acceptance is
about 11 min.

IV. RESULTS FAR THE DOUBLY DEGENERATE
ANDKRSQN IMPURITY

In this section we present our Monte Carlo simulation
results for the doubly degenerate Anderson impurity
model. %e will discuss the formation of the local mo-
ment, and the effect of crystal-6eld splitting. First we
define the quantities to be studied. %e de6ne the mag-
netic susceptibility X snd the orbital susceptibility Pp
by

P
dr& [n, t (r)+n» (r) —n» (r) n2) —(r)][n»(0)+ n2t (0)—n, i(0) n» (—0)]),

0
P

dr& [n „(r)+n„(r)—n„(r)—n„(r)][n „(0)+n„(0)—n2t(0) —n„(0)]& .

The spin-spin and orbital-orbital correlation functions
are de6ned by

G (1,l') = T g e " G(iso„,),
(12)

&

'rig�

'rig ) =
4 & ( a i t ii 2 t )(—5 i i —pf 2 i ) )

G (ice„)=—5 ~ iso„E—
k lNn ek

where cu„=(2n+1)m/P. In the following subsections
we discuss the effect of U and J on spin and orbital
magnetism, the universal Kondo behavior, snd finally
the effect of crystal-6eld splitting.

The magnetic local moment &S, ) defined above is for
the single orbital and the total moment is just twice of
&S, ) + & S„,S2, ). Similarly, the total orbital moment is
2 (&r, )+&~„r ) ). For the Hamiltonian, Eq. (1), there
exist certain kinds of symmetries. For the case of no
crystalline field, E i Ez, it can ——be shown that
& r„rz, ) =0 identically by a canonical transforma-

~C, &, C2&~C2&. If the exchange integral J=0, the
system is rotationally invariant in spin space snd it is
easy to show that X =X,, &S,') = & v ), and
&Si,S2, ) =&xi,~z, &=0 by a canonical transformation:
R, (e)Cii ~R2(e)C2t, 82(e)C2t ~R, (e)Cii, C, t

+C] f y C2$ +CpJ ~

The system we are studying has a quite large parame-
ter space. Throughout this paper we chose s Hat density
of states with an in6nite bandwidth and we set the
widths of the hybridization to be the same for both or-
bitals h=n V p(EF)=0 5, where p(EF) is. the density of
state at the Fermi level. The properties of the system
depend on the Coulomb repulsion energy U, the ex-
change integral J, the d-level energy Ei snd E2, and the
temperature T. The Green's functions for U and J equal
to zero are

A. Spin and orbital magnetism

%'e consider the half-filled band case, i.e.,
E, =E2 ——(3U —J)/2 so that &n, ) =1, independent
of temperature because of particle-hole symmetry. Re-
sults for U =4 as a function of J are shown in Fig. 3 at
temperature T=0.125. %e see that the magnetic sus-
ceptibility X and the magnetic local moment &S, ) and
spin-spin correlation &S»sz, ) increases as J increases
while the orbital susceptibility Xo and the orbital-local
moment & 2 ) behave in an opposite way, in accordance
with Hund's rule and in qualitative agreement with
Hartree-Fock solutions. In Figs. 4 and 5 we show re-
sults as a function of U for J=O, snd 0.5 at the same
temperature. They do not depend on U as strongly as
for the nondegenerate case. As a matter of fact, when
J=0, the magnetic local moment &S, ) varies from its
noninteracting value 0.125 to —,. at the atomic limit,
U~ Dc, whereas it goes to 0.25 at the atomic limit in the
nondegenerste case. For J=0, both the orbital and
magnetic moments are very slowly increasing functions
of U, for finite value of J (=0.5 in Fig. 5), however, the
effect of U is quite difrerent: it enhances the Insgnetic
moment much more strongly, while it suppresses the or-
bital moment; in contrast, within the Hartree-Fock ap-



l868

1.Q,

(a) yy

'Q. LIN AND J E

O.P

0.0
a

0.3

t

0

M O1O

V

(d) & ~ a )
O.o
O.R

oo+ I,
0

J

FIG. 3. (a} T&(s in&( spin susceptib&l&ty g
() ti Iocal mome t (S,')

d (d) orbit l Io„,S2, an
' a ocal moment (r')8 oc as a

~=0.25.

B. Univ'vere@ Kondo behavior

For a nonde eneregenerate Anderson
'

emperatures, the
n impurity at sul

e Kondo effect leadea s to the spi

0.4

0.1

FIG. 4.
U

(a} T&spin su ', andsusceptibility g, andsu ', and (b} T~orbital

&=0.25.
or T=0.125, J=0.0,0.5;

proximation the efF
dieted

ee ectof Uint
d b q

1' i 1d
'

a ively the same as for J=or =0, in partic-
ays enhanced by U.

cg O1

l

0

U

FIG. 5. (a} Magnetic loc
h o ( „) and spin-spin

2, , an a ocal moment ( r'
=0.0,0.5' 6==0.5, hv =0.25.

the localizeized moment bein
spins of a cloud

eing totally corn en
d t' 1

w1 c orbital an-
eing scattered by th

be totally screened b

Several aut ors ha
same orbital angular m

nduction
momentum.

n - (S
s ormat1 c e degenerate And

each
t ough theod 1

' Al h
hat the rc 1

omic part of theom e Ham-

d 1 d
s o not

y ri izatiotion part so

e irectly. %it
e degenerate A

Bethe ansatz
Anderson

r t Anderson m d lr t e degenerate
a z one can et

ard to get theut it is h
o e with an infinit

e correlations s function

1 f
local moments.

c present

xpects, that the nd, as one ex ve ops a lo-

For th c Qondc c

c eads to the com-
ure 1s lowered.e tcmpcratu

er
'

ri y it is shown
c 1c su follows 88 Un1vcrsal

rl CI son IIIl
or the doudoubly dcgcn-

we show the

n that the ma nc
ows the univcrs

gnctic sus-

1 fT+
vers . n ig. 6

universal

ve or t c cases of
1ncs ther'c are the

crnpcratures indicated



37 MAGNETIC PROPERTIES OF A DEGENERATE ANDERSON IMPURITY

O:U=4
a:U=3
e: U=8
a:U= 1

and 10 for the same parameters used for the susceptibili-
ty. The local moment forms at temperature T=d, and
slightly decreases at lower temperatures. According to
the Hartree-Fock solutions, the ground state will be
magnetic if U +J/mh & 1. Although results based on
the Hartree-Fock approximation are incorrect in most
cases, this criterion seems approximately true if used for
judging the appearance of the susceptibility peak at in-
termediate temperatures. %e can see from Figs. 6 and 7
that TX increases 6rst as the temperature is lowered,
indicating that the system develops a localized magnetic
moment, for the cases J=0, U =2, 3,4; J =0.25, U =2;
and J =0.5, U =1,2, and then drops to zero as the tern-
perature goes to zero due to the Kondo compensation,

0.0

FIG. 6. Tgspin susceptibility 7 for U=1,2, 3,4, and
J =0; the solid lines are the universal Kondo curves for the
four values of T~ given in the text and indicated by arrows.
6 =0.5, hz=0. 25.

by the arrows in the figure and given by the following
formula:

—(aU/SlLM }
sc

= o~ (13)

where M is degeneracy number, which is 2 in our case.
The Kondo temperatures for the cases studied are
T~ ——0.2503, U = 1; T~ ——0. 1897, U =2; T~ ——0.1413,
U =3; and T& ——0. 1039, U =4. %'e see that the Kondo
temperatures for the degenerate case are much higher
than for the nondegenerate case. Our estimated Kondo
temperatures fit Eq. (13) within an uncertainty

I
~Tx/Tx

I
&5%. The exponential dependence, i.e.,

the factor 1/M in Eq. (13) can be obtained via a SW
transformation. The prefactor Do used in Eq. (13) is as-
sumed to be the same as in the nondegenerate case. %e
don't have an analytical solution here to justify this as-
sumption. The correction to the prefactor, if this as-
sumption is wrong, will be very small according to our
numerical calculation.

When J~O, the system is not rotationally invariant in
spin space and some equalities like X =go showed be-
fore do not hold. The magnetic susceptibility 7, how-

ever, still follows the universal curve as shown in Fig. 7,
where the parameters and the corresponding Kondo
temperatures are (a) U = 1, Tz —0. 157; U =2,
Tx ——0.0973 for J =0.25, and (b) U=1, Tr ——0.0907;
U =2, Tz ——0.0408 for J =0.05. These Kondo tempera-
tures are much lower than that of the J=0 case because
of the Hund's coupling. In Fig. 8 we show the tempera-
ture dependence of the orbital susceptibility go for
J =0.25„U = 1 and 2. It depends on U weakly, is small-
er than the magnetic susceptibility 7 and decreases
somewhat more slowly with temperature.

%'e also show results for the magnetic local moments
(S, ) and the spin-spin correlation (S„S2,} in Figs. 9

I I I I

I

I I I I

I

I I I I

I

I

(b)

0.4—

s

—4 —2 0 2

FIG. 7. (a) Tgspin susceptibility 7 for U =1,2, and
J=0.25; the solid lines are the universal Kondo curves for the
two values of Tz given in the text and indicated by arrows.
5=0.5, 4~=0.25. (b) TXspin susceptibility g for U=1,2,
and J =0.5; the solid lines are the universal Kondo curves for
the two values of T& given in the text and indicated by arrows.
5=0.5, 6~=0.25.
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G: U = 3 J = 0.35

a:U=1J=025

ota+' ' ' t
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V a

0.14—

O. 12

I
M a M

—4 2 0 2 I

I

I I 1 1 1 I

FEG. 8. Tg orbital susceptibility +0 for U = 1,2, and
J =0.25; 6=0.5, Dr=0. 25,

while for the cases U =1,J =0 and 0.25, TX decreases
to zero monotonically, showing that the system is com-
pensated before it develops the local moment. Nate that
the number 1 used in the above criterion should not be
taken too seriously. The results for the orbital local mo-
ment (r, ) are shown in Fig. 11. Unlike the magnetic
case, the orbital local moment increases somewhat as the
temperature approaches zero, Our results agree with the
Hartree-Fock prediction that the orbital local moment is
an increasing function of i'J —J, they show that J
suppresses the orbital moment rapidly, while U can ei-
ther enhance or suppress it depending on the value of J.
It is obvious that the disagreement between our results
and the Hartree-Fock solutions does not come from
symmetry breaking because the Hartree-Pock approxi-
mation starts from breaking the symmetry, even the up-
down symmetry in the z direction. In fact, as mentioned
by Coqblin and Blandin, the set of Hartree-Fock self-
consistent equations does not change at all when includ-
ing the spin-Hip term for preserving the rotational sym-
metry in spin space.

O.O6 — a; U = 2 J = 0.25

a:U 1J-025
O ; U = 8 J = 0.5

~:U-1J 05

C
A

Q.04—
Ol

N

N

V 0
0.08—

ooo I

4

I
, I, II i hi

FIG. 10. (a) Magnetic local moment ($2) for U =1,2, and
X =0.25,0.5; the arrow indicates the high-temperature limit.
6=0.5, b r =0 25 (b) S.pin. -spin correlation (S„Sz,) for
U =1,2, and J =0.25,0.5; the high-temperature limit is zero.
5=0.5, Dr=0. 25.

C. Crystal-field splitting

One important feature about transition-metal ions is
that the unpaired electrons lie in the outermost shell of
the ion. Therefore they are easily infiuenced by the
external charge distribution of their neighboring ions so

Q. t8 + i I

I
1 I

O. U
0.14—

o:U 8J 025 x:U-2J-05
o: U = 1 J = 0.25 o: U = 1 J = 0.5

0

{3.14—

I

—p 0 2

FIG. 9. Magnetic and orbital local moment (S, ) = (r, ) for
U = 1,2, 3,4, and J =0; the arrow indicates the high-
temperature limit. 5=0.5, dr=0. 25.

FIG. 11. Orbital-local moment ( r, ) for U = 1,2, and
J=0.25,0.5; the arrow indicates the high-temperature limit.
d =0.5, hr=0. 25.
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that the crystal-fIeld term should be included in the
Hamiltonian even though it is quite smaller than the
atomic part of the Hamiltonian. We can simply lump
the crystal-field sp1itting efFect into the unperturbed d-
electron energy level E such that E&&E2, where the
only changes made are the representations of the wave
functions for impurity and conduction electrons if we
consider a cubic symmetry case. %'hen taking the crys-
talline potential into account the system might be quite
complicated the Fermi surface of the host may be-
come anisotropic, the widths of the hybridization will be
difFerent in difFerent orbitals and depend on energy, etc.
%e will neglect these efFects assuming they are not very
important, especially in the low-temperature regime.
The noninteracting Green s functions, i.e., the inputs in
the Monte Carlo simulations are obtained from the same
expression as before [Eq. (12)]. The crystal-field (CF)
splitting effect are measured by AEd ——E2 —E&. In Fig.
12 we show the results of Tg versus lnT for the case of
U =2, J =0, and AEd ——0, 1, and 2. The solid line is the
universal Kondo curve with TK ——0.333+0.017 corre-
spoildlllg to no CF case Ei =Ei = —U/2. (For the case
of U= I, 3, and 4, we found the same results, i.e., the
magnetic susceptibility X following the universal Kon-
do curve. ) As we can see from the figure, above the
Kondo temperature the magnetic susceptibility is
suppressed as the crystal field increases. However, as
the temperature drops below the Kondo temperature
they become more or less identical. As pointed out by
Cornut and Coqblin, there exists a ln T high-
temperature behavior, a lnT low-temperature behavior,
and an intermediate lnT behavior in the presence of the
crystalline field. So they do not follow the universal
Kondo curve for higher temperature as in the case
without the crystal field. Another point worth mention-
ing is the importance of the two d-level mixing. Qne at
first nught think that as one of the d levels move far

I I t i I i I

o:U 2J~OAE 0

o: U=R J=OM= I

o:U=QJ=OhE=2
x: U ~ 8 J 0 hE 8 Decoupled

Oo i i ti

FIG. 12. Tg spin susceptibility g for U =2, J =0,
AEd ——0.0 {octagon), 1.0 {diamond), 2.0 {square), and decoupled
two degenerate levels {cross). The solid line is the universal
Kondo curve for the case of AEd ——0 anth Tz ——0.333+0.017.
5=0.5, hz=0. 25.

apart from the other one the result mill be close to that
of the nondegenerate impurity. This is incorrect as
shown in Fig. 12. However, if we decouple the two d
levels by setting U and J equal to zero for electrons in
different orbitals in the Hamiltonian then the results be-
come identical to the nondegenerate case as one expects.
We also show this result in Fig. 12 (crosses), with Kondo
temperature Tz ——0.0865. Our results show that the
participation of the other level, though it is small
{( n i ) =0. 14 for b Ez ——U), is important for increasing
the Kondo temperature, in agreement with the result ob-
tained by Yamada et al. " using scaling theory for the
dense Kondo system.

V. CONCI. USION AND DISCUSSION

%e have studied magnetic properties of a doubly de-
generate Anderson impurity model using a Monte Carlo
simulation technique. Our results for the model are
essentially exact, as demonstrated by the agreement of
Monte Carlo and exact diagonalization results for a par-
ticular case (Sec. III).

Just as in the nondegenerate case, the model displays
no sharp phase transition as a function of the parame-
ters, as one expects. Still, it is of interest to compare its
properties qualitatively with the predictions of Hartree-
Fock (HF) theory, because previous studies are mostly
based on it. For the properties related to spin magne-
tism (spin magnetic moment and susceptibility} Hartree-
Fock gives roughly qualitatively correct answers: they
are enhanced by both U and J. However, contrary to
HF predictions it is not the condition (U+ J)/mh that is
relevant, since the effect of J is markedly more pro-
nounced than that of U; in neglecting the effect of corre-
lations between electrons of opposite spin, HF overesti-
mates the effect of U. The discrepancy becomes more
pronounced for the orbital properties (orbital magnetic
moment and susceptibility}. Here, HF predicts that the
relevant parameter is (U —J)/mh, and orbital magne-
tism should be zero or monotonically increasing with
U —J. In contrast, we found that the orbital moment
and susceptibility are slightly enhanced by U for J =0
but suppressed by U for J =0.5 as shown in Figs. 4(b)
and 5{b). Thus our results have shown that to have the
orbital angular momentum quenched the condition
U —J ~mt is not required. The fact that in transition
metals and their alloys the orbital angular momentum is
found to be always quenched, even in cases where U is
expected to be substantially larger than J, is qualitatively
explained by our observations, while one needs consider-
able fine tuning of the parameters within the Hartree-
Fock approximation.

Our results also showed that the Kondo compensation
occurs similarly in the orbitally degenerate case as in the
nondegenerate case. For J =0, the magnetic susceptibil-
ity g is the same as the orbital susceptibility go and
they follow the universal Kondo curve with the Kondo
temperature given by Eq. (13). For J&0, the magnetic
susceptibility g was again found to follow the universal
Kondo curve, with a substantially reduced Kondo tem-
perature. Finally, we have studied the effect of crystal-
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line potential on the Kondo temperature. In agreement
with recent calculations, our results showed that the
efIect of a crystal field is much smaller than one might
have expected, in that the Kondo temperature T~ is not
affected much by the presence of a crystal 6eld AE& even
for AEd «~Tz. As discussed by previous authors,
this provides an explanation for the absence of magnetic
ordering in dense cerium compounds.

As emphasized by Coqblin and Blandin, the Hartree-
Fock approximation sufFers from two defects: it neglects
correlations of electrons of opposite spin, and it breaks
the spin-rotational invariance, In the present calcula-
tions we have remedied the first defect, but only partially
the second; while our Hamiltonian does not break the
up-down spin symmetry, it does break the full rotational
symmetry in spin space for J&0. This can be corrected,
as described by Caroli et a/. , Dworin and Narath,
and Parmenter. ~ The additional term to Eq. (1) is

——,J+ g C C C . C + —,J+gn n

(14)

It appears to be possible to include this term in a Monte
Carlo calculation, although it becomes considerably
more complicated. In the Appendix we discuss some ex-
act results including this spin-Hip term in the Hamiltoni-
ane

An important question in the theory of magnetism is
whether band degeneracy is essential for metallic fer-
romagnetism in transition metals and their alloys. Re-
cently we have studied the nature of the magnetic in-
teraction between two nondegenerate magnetic impuri-
ties in a metal that are coupled through a direct transfer
integral. is We found that the impurities never display
ferromagnetic correlations, in contradiction with previ-
ous results based on the Hartree-Fock approximation.
Ferromagnetic correlations may appear when there are
degenerate orbitals, and we are currently investigating
this question by studying a pair of degenerate Ander-
son impurities.

APPENDIX

As we discussed in the conclusion, to have a rotation-
ally invariant Hamiltonian the spin-flip term Eq. (14)
should be included. To obtain a qualitative idea of the
effect of this term we have studied the degenerate impur-
ity with a two-site conduction electron system by exact
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FIG. 13. (a) TXspin susceptibility 7, {b) T)&orbital sus-
ceptibility Xo, (c) total magnetic moment (S,'), and (d) total or-
bital moment (r, ) as function of U for I=0.5 and J~ =0
(solid lines), J=0.5 and J+ ——J (octagon); T=0.125, d =0.5,
hz=0, 25.
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diagonalization with and without the spin-Hip term.
Figure 13 shows results for various quantities at P=8 for
J =0.5, J+ ——0 and J+ ——0.5. The dependence on U does
not change qualitatively when the spin-Hip term is in-
cluded: the spin-spin correlation and susceptibility are
enhanced by U, while ihe orbital-orbital correlation and
susceptibility are suppressed. The effect of J+ is to
suppress the spin and orbital susceptibilities with respect
to the case Jz ——0. The spin-spin correlation is
suppressed while the orbital-orbital correlation is
enhanced. %e expect the same qualitative features for
the case of an infinite conduction band.
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