
PHYSICAL REVIE% 8 VOLUME 37, NUMBER 4 1 FEBRUARY 1988

Generating-function approach to the resonating-bond state
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%e calculate the energy of a resonating-valence-bond (RVB) state for the Heisenberg antifer-

romagnet Hamiltonian on the triangular and square ladders as X~ ao. %'e take the RVB state to
be a linear combination of all states in which all spins are bonded pairwise into nearest-neighbor
singlets. The amplitude of each such state in the RVB wave function is proportional to y" ',
where y is a variational parameter, and n is the number of horizontal bonds in the state. The op-
timal y is very close to 1, when all states have equal amplitude. %'e compare our results to
Anderson's 6nite-size calculation for the triangular ladder and to spin-wave theory for the two-

dimensional lattices.

I. INTRODUCTION

The existence or nonexistence of long-ranged antifer-
romagnetic order (LRAO) has long been a fundamental
issue in condensed-matter physics. While there is no
rigorous proof of a 6nite sublattice magnetization in the
ground state of the Heisenberg antiferromagnet and, in
fact, the exact Bethe-ansatz solution in one dimension
says otherwise, it is widely believed that LRAO exists in
higher dimensions. This belief is based on the stability
of the Neel state with respect to spin-wave Iluctuations
for d~ l. However, Anderson has pointed out that the
Neel state may just be locally stable in frustrated lat-
tices. In particular, he suggests the resonating-valence-
bond (RVB) state as the ground state of the Heisenberg
antiferromagnet on the two-dimensional (20) triangular
lattice. The underlying structure of this state is that of
"resonating" local singlet pairs. Recently, Anderson has
further postulated the RVB state as the explanation of
high-T, superconductivity. '" To suppress the I.RAO on
the square lattices of these materials, Anderson invokes
possible frustration due to further-neighbor interactions
and/or additional quantum fluctuations due to a finite
Hubbard U (Ref. 5).

The intuition for RVB states comes from the fact that
on a chain the state with neighboring spins paired into

singlets has an energy per spin E, lower than that of the
Neel state E~;

lowered by forming the RVB state, a linear combination
of the different singlet states. Since Ett —Es on —the tri-
angular lattice, it is quite possible that E„vis&Et,F. The
problem is that while EAF is probably adequately ap-
proximated by ihe spin-wave theory, ERv p, is much
harder to calculate due to the nonorthogonality of the
singlet states. Fazekas and Anderson showed that the
ground state is a RVB-like state close to the Ising
(J«J, ) limit, and argued that it remains so for J=J, .
Also, Anderson, using a singlet-only basis, calculated
the lowest energies for %=2,4,6,8 on the triangular
ladder [Fig. 1(a)], and extrapolated these to N = ao, giv-
ing an energy per spin lower than the spin-wave theory
on the entire triangular lattice.

The rationale behind Anderson's extrapolation is not
entirely clear. Here we present a calculation for the
N = ao ladder. The price we pay is that we are restrict-
ed to a nearest-neighbor singlet basis and, more impor-
tantly, to assigning equal amplitude to all such singlet
states, except for one variational parameter. Thus the
energy obtained is not as good as the extrapolated one.
On the other hand, it is a real calculation and does give
an energy slightly better than the spin-wave energy for
the 2D triangular lattice.

2N-3 2N-1

E~ ———J/4, (a)

(1.2)

While E& is independent of the underlying lattice, Ez is

highly sensitive to it. On the 20 square and triangular
lattices, we have Ett ———J/2 and —3J/8, respectively,
the last being the classical energy of the well-known 120'
structure. The energy of the Neel state is lowered by
quantum Auctuations, assuming the antiferromagnetic
(AF) state remains stable. The singlet energy is also

(b)

FIG. 1. (a) Triangular and {b) square ladders with periodic
boundary conditions. Periodic boundary conditions were not
used in Anderson*s Snite-size calculation.
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II. PRELIMINARIES

In this section we introduce our wave function and
outline the approach. %e are interested in calculating
ERvz for the Heisenberg Hamiltonia, with the coupling
constant J equal to 1,

H = g S; Si ,
i,i &

v(x)= g x"=x/(1 —x),
n =1

h (x)= g (yx) "=(yx) /[1 —(yx) ] .
n=]

Their meaning will become clear belo~.

III. CALCULATIONS

(2.4)

(2.5)

where the sum is over nearest-neighbor pairs. For two
spins the ground state is the singlet

I
«j)) =(1/&2)(

I
i &)

I
j~)—

I
i ~)

I
jl &) (2.2)

(2.3)

where the sum is over all NNSS's, and n is the number
of pairs of horizontal bonds. The inadequacy of this
wave function and possible improvement will be dis-
cussed with the results in Sec. V.

Our aim is to calculate and minimize
{0'~H ~%')/{'0

~

4). For convenience we will use a
periodic boundary condition (PBC). We will adopt a
convention such that if i,j forms a singlet, then it occurs
as (i,j) for i to the left or on top of j. A general NNSS
is composed of blocks of vertical bonds separated by
blocks of horizontal pairs. A sum over state index a
is equivalent to a sum over all possible bond
configurations. The total number of bonds is X& ——X, for
2% stains. Our approach is to sum over all X& and calcu-
late the matrix elements, which will serve as generating
functions. From these we can perform the appropriate
differentiation to obtain the physical (Xb=X) answers.
%'e now introduce the generating functions for repeated
vertical bonds and horizontal pairs„respectively,

To simplify the discussion let us first consider the square
ladder [Fig. 1(b)]. As a zeroth-order approximation, we
take a singlet state, in which all spins are bonded pair-
wise into a nearest-neighbor singlet. %'e call such states
nearest-neighbor singlet states (NNSS's), a subset of gen-
eral singlet states (SS's) where any spin forms a singlet
with some other (not necessarily nearest-neighbor) spin.
The definition of the RVB state is somewhat vague,
ranging from a linear combination of all SS's to just
NNSS's. In part, this is due to the lack of orthogonality
of such states. Since a SS which is not a NNSS has a
gap of at least —', J, it would seem that the more restric-

tive de6nition should suSce. This is partly borne out by
Anderson's finite-size calculation.

Restricting ourselves to NNSS's only, we still cannot
say what the ideal linear combination is. For a start we
can simply assign them all equal amplitude. Our ap-
proach allows a trivial improvement. First note that
horizontal bonds always occur in pairs, i.e., if
(2i+1, 2i+3), then also (2i, 2i +2). We introduce a
variational parameter y such that our RVB wave func-
tion 1s

A principal difFiculty in dealing with a RVB state is
the nonorthogonality of the

~

a)' s. Let us separate
{4

~

4) into diagonal, g {a
~
a), and off-diagonal,

&{a~
p), terms. For two difFerent states a and p,

some spins are bonded identically and some difFerently.
%e now introduce the concept of the diagonal block
(DB) and the off-diagonal loop (ODL). A diagonal block
is an uninterrupted sequence of spins identically bonded
in a and P. Similarly we can define the off-diagonal
block, where all bonds are difFerent. This last can be
subdivided into ODL's, a sequence of of-diagonal hor-
izontal pairs bounded by OD vertical bonds on both
sides (see Fig. 2). For example, if a = (1,2),(3,4),
(5,6), . . . , and p=(1,2),(3,5),(4,6), . . . , then 1,2 form a
DB and 3,4,5,6 an ODL. Between two consecutive
ODL's, there may or may not be a DB.

1. Diagonal overlap g {a
~
a)

d(x)=1+2 g (vh)"+(h+v) g (vh)"
n =1 n=0

=[I—x —(yx) ] (3.1)

where the 'second term, for example, indicates that the
rest of the spins cover the lattice by an arbitrary number
of repeated units of a vertical block followed by a hor-
izontal block, or the other way, around. The factor I

P e(.

FIG. 2. Some examples of diagonal blocks (DB's) and
ofMiagonal loops (QDL's). A bond is indicated by a line and a
or P denotes the state the band is in. From left to right, we
have ODL, ODL, DB, ODL, and DB.

The overlap between a singlet and itself is, of course,
1. On top of that we associate a factor x for each verti-
cal bond and a factor y x for each pair of horizontal
bonds. Consider the spins 1,2. They can be in the
configuration (1,2) or (1,3),(2,4) or (2N —1, 1),(2%,2),
contributing to the overlap x, y x, and y x, respec-
tively. These need to be multiplied by the sum of over-
laps between all possible DB's. This is easily seen to be
given by
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implies that there are no other spins in the system and
will give 0 upon differentiation, but it is included for
later convenienc. The diagonal contribution to the
overlap is

The significance of the 1 in d(x) is revealed here since
between two ODL's, there may or may not be a DB.

(b) Diagonal and not (1,2). The only difFerence is that
x in (3.4) should be replaced by 2y x,

(4
~
V)D ——W, (x)+ W„(x), Us(x)=2y x "d/C(x) . (3.5)

W, (x) =xd (x), Ws{x)=2a x d (x) . {3.2)

(c) Off diagonal. If this ODL contains 2n spins, 1,2
can be in one of the n positions. Thus this special loop
contributes

2. 0+dia-gonal overlap (a
~
P)

Off-diagonal overlaps are decoupled into overlaps of
DB's and of ODL's. The overlap of a DB has already
been obtained as d(x). The overlap of an ODL com-
posed of 2n spills caii be analyzed as follows (see Fig. 3):

(a) The n bonds from
~

a ) (or (P
~

) give x".
(b) The combined n —1 pairs of horizontal bonds give

yn —1

(c) The overlap is nonzero only if we decompose the
singlets into the alternating up-down-up-down
configuration as we go around the loop. This gives
2( —,')"=(—,

')" ', the factor 2 coming from an overall spin

Aip. In this decomposition a bond carries a positive
(negative) sign if its configuration is up-down (down-up}
from left to right or top to bottom. In any loop the
number of negative signs is even and so the overall sign
is always positive.

(d) A factor of 2 since the loop can arise from (a
~
P)

or &P~ a&.

Combining the above and summing over all possible loop
sizes implies that the ODL overlap is

L, (x)= g [2(y/2)" ']nx"
7l =2

= ( —2+ yx /2 )x /( 1 —yx /2 ) (3.6)

which implies a contribution to the overlap of the whole
lattice of

U, (x)=L,d g (dL)"
n=0

=[(2—yx/2)yx ]/[(1—yx/2)C(x)) . (3.7)

= 8,+ 8'b + U, + Ub + U, . (3.8)

More precisely, ( 4
~

0') is given by taking the coefficient
of x" of (3.8).

S. (+AH ie)
Again we separate out the diagonal

Combining the diagonal and ofMiagonal contributions,
we see that

&+~+&=(+(+&,+&+(+&,

L{x)= g [2(y/2)" ']x"=yx /(1 —yx/2) .
n=2

(3.3)
((H &D ——y &a

~

H
~

a&)

Again let us consider the configuration of spins 1,2.
The possibilities are the following.

(a) Diagonal and (1,2). The contribution is

U, (x)=xd L g (dL)"
n=0

=yx d/[1 —(1+y/2)x —(y +y/2)x +(yx) /2]

and ofF-diagonal

(&H)„= g (aiH ig))
~,P&~P

contributions. We also retain the definitions of DB and
ODL with respect to the a' s. First, consider matrix ele-
ments of the form C = (a

~
S; Sj ~

P), where both
~
a)

and
~
p) contain (i,m). If m =j, S; SJ(i,j)=——,'(i,j),

and so

—:yx d/C(x} . (3.4)
C= ——', (aiP) . (3.9)

If m~j, S; S changes (i, m) from a singlet into a triplet,
which is, of course, orthogonal to (i,m), and so

(3.10)

L 3 I

From Eq. (3.9),

l. (H)

(H )D————,'N[W, (x)+ Ws(x)] . (3.11)

FIG. 3. (a) One of two decompositions which contribute to
the overlap between states a and P in an ODL of eight spins.
The other decomposition is given by an inversion of all the
spins ia the loop. (b) Decomposition in an ODL of ten spins.

Because of the periodic boundary condition, we need
only N ( S, S2 )oo and 2N ( S,.S3 )OD. The matrix ele-
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M, (x)= ——,
' U, (x), (3.12)

where U, is given by (3.4).
(b) 1,2 diagonal and unpaired. This gives zero accord-

ing to (3.10).
(c) 1,2 off diagonal. This gives

M, (x)= ——„'U, (x) . (3.13)

To obtain this it sumces to show that Si Sz, acting on
the ODL that 1,2 are in, just gives ——,'. Recall that in

calculating ODL's only a decomposition of the singlets
into alternating 1'll& (or ltll ) configurations
contributes. It is clear that for any loop containing 1,2
such a decomposition always leads to 1,2 having oppo-
site spins. Thus,

By symmetry,

&Si S2&oD.= —l& &oDi. .

ments depend on the bonding situation of 1,2 for the
former and 1,2,3,4 for the latter. Below we state the
diff'erent cases and the answers.

For case (i), S, S2, we have the following.

(a) 1,2 diagonal and paired. Using (3.9), calculating
this is no difkrent from calculating the overlap for the
same condition:

&8) =ZV( —-,'(e
i
e&+-,'P, ) . (3.17)

IV. GROUND-STATE AND RKSONANCK ENERGY

Before we use the results from Sec. III to obtain the
energy, we show how the corresponding expressions for
the triangular ladder can be obtained with minor
modifications. On the triangular ladder there are two
types of "vertical" bonds, the 60' bonds [e.q. , (1,2)] or
the 120' bonds [e.g. , (1,4)]. It is easy to see that no
NNSS can contain both 60' and 120' bonds. Further-
more the overlap between a NNSS containing 60' bonds
and one containing 120' bonds is at most ( —,') . Thus,
in spite of the PBC, it is possible to include only one
type of vertical bond; choosing the 60' one makes the
notation consistent with the square ladder. Calculations
of the various matrix elements are identical except now
we have to include the term S, S4 in the Hamiltonian.
The only place this has a nonzero contribution is (c) of
Sec. IIIB2, giving a value equal to —(S, Si). So for
this case (3.16) becomes

(d) 1,2 and 3,4 belong to different ODL's. This gives
zero. To see this it is simplest to consider the action of
S,+53 . This operator Aips spin 1 from down to up in
the ket without affecting any other spins in the ODL
that it is in. This forces an up-up-up configuration in
the ODL decomposition which is nonexistent.

(e) 1,2 diagonal and 3,4 off diagonal or vice versa.
This also gives zero. The tota1 is

P, (x)= —(-', yx ') /[(1 —yx /2)C (x) i . (3.16')
For case (ii), 2S, S&, we have the following.
(a) 1,2,3,4 diagonal and paired as (1,3),(2,4). Again

from (3.9) this is not any different from calculating the
overlap,

P, (x)= —
—,'Ui, (x) . (3.14)

L,'(x)= g [2(y/2)" '](n —1)x"

=yx /(1 —yx/2) (3.15)

Taking the factor ——,
' and the rest of the spins into ac-

count, we have

(b) 1,2,3,4 diagonal, but 1,3 are not bonded. From
(3.10), this gives zero.

(c) 1,2,3,4 are part of the same ODL. In this case 1,3
is either bonded in the bra or in the ket. 2S, -S3 acting
on this bond gives —

—,'. If this loop contains 2n spins,
1,2,3,4 can be in any n —1 position [cf. the analysis
above Eq. (3.5)). Thus this special loop contributes:

To obtain ( 4
~

4 ) and ( H ), we should take the
coefficient of x in (3.8) and (3.17). The easiest way to
do this is to use partial fractions and take the Taylor ex-
pansion. %hen X= w, only the root with the smallest
magnitude survives. %e first formally write

(e~H ~e)
2X
:——', ( 8'g + Wi, + U, + Ui, + U, ) + ,'P,:—

:8', + Wt, + U, + U~ + U, :

(4. 1)

where:: denotes taking the coefFicient of x, The first
term is just the singlet energy ——„thus identifying the
second term as the resonance energy AE. Note that
bE(square) =2bE(triangle). b,E should be minimized
with respect to y.

The polynomials that appear in the denominators of
the various '

generating functions are f, (x)=1—x
—y x, f2(x)=1—yx/2, and C(x). Superficially
(4

~

0') contains all three, while P, (x) only has the last
two. However, the various terms in Eq. (3.8) for
( 4

~
4 ) can actually be organized to give

P, (x)= —', L,'d g (dL)"—
n=0

= —( —,'yx )/[(1 —yx /2)C (x)] . (3.16)

yx (2—yx/2) (x+2y x )(1—yx/2)
(1—yx/2)C(x) C(x)

(3.8')
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V. DISCUSSIQN

FIG. 4. The Hamiltonian causes a resonance between these
two degenerate states.

which indicates that f, is absent from ('P
~

qi) also.
The root off2 is

xi ———2/y . (4.2)

1 d~
N„,=, ~ [ W, (x)+ Wb (x)]„p&! dx~

1 d x +2x
&! dx~ 1 —x —x'

where x+ ——2/(1+&5) are the roots of f, (x) with

y =1.

Let xp be the smallest root of C(x). We find that
~
xp

~
(

~

x i ~

~ The result for the energy is the follow-
ing.

(a) y=0. Only the NNSS's with all vertical bonds
remain. AE=O.

(b) y & 0. This is the situation of antiresonance. Reso-
nant states are out of phase with each other and b,E~ 0.

(c) y&0. Here the resonant states are in phase and
for all ygO and AERO. For y=1, with all NNSS's
given equal amplitude, the resonant energy on the tri-
angular ladder is b E= —0.0905 (twice that on the
square ladder). Slight improvement is obtained by tak-
ing the optimal y =1.17, with AE = —0.0912.

A by-product of this calculation is the total number of
NNSS's. This is just given by the diagonal overlap with

For the triangular ladder the present result gives
AE = —0.0912 and a ground-state energy per spin of
ERv~ ———0.466. This is equal to or slightly better than
spin-wave approximation for the entire 2D triangular
lattice [Esw ———0.463+0.007 (Ref. 2)], and is also equal
to or slightly better than Anderson*s result for eight
spins. It is not comparable to Anderson's extrapolated
value, with its questionable validity. Since our answer is
variational for the 2D lattice, we do support the RVB
state as being more stable than the antiferromagnetic
state.

For the square ladder this calculation gives
hE= —0.182 and ERva ———0.557. This is better than
spin-wave theory for the ladder [Esw ———0.553 (Ref. 8)],
but not for the 2D square lattice [Esw = —0.66 (Ref. 9)].
Of course, this is mainly due to the Neel energy being so
much lower than the singlet energy. The prevailing view
seems to be that for 2D systems the RVB state is unlike-
ly to be more stable than the AF state without the aid of
frustration.

A brief discussion on how to improve on this calcula-
tion is in order. First, let us point out why within the
present calculation the optimum y cannot be very
dift'erent from 1. The underlying physics behind RVB is
that the Hamiltonian allows a transition from a pair of
horizontal bonds to a pair of vertical bonds (see Fig. 4).
Thus it is important that one takes a linear combination
that includes a NNSS and its resonant state with similar
amplitude. ' For this reason vertical bonds and horizon-
tal bonds cannot have very diferent weights. Most of
the e8'ort in taking a linear combination, however, mere-
ly serves to increase the overlap, and is counterproduc-
tive. This can be reduced by perhaps adjusting the
phase of the difkrent NNSS's, which brings us to the
question of phase coherence. Anderson has raised the
question of whether the RVB states in fact exhibit o6'-

diagonal long-range order (ODLRO) in the form of
long-range phase coherence (this is diferent from the su-
perconducting RVB state recently proposed ). Our con-
cept of the off-diagonal loop seems to be a useful way to
think about this. %e are currently investigating this as-
pect.
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