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We have studied the kinetics of domain growth in the (4 1) uniaxial [or (2,2)] phase of the
two-dimensional anisotropic next-nearest-neighbor Ising (ANNNI) model with Monte Carlo
methods using Glauber dynamics. The growth is shown to be spatially anisotropic, with the an-
isotropy depending strongly on the anisotropy parameter a. In addition to this, a more abrupt
change is found as one crosses a wetting transition line in the model. Despite this a dynamical ex-
ponent n ~0.5 is obtained at low temperatures for all values of a. To explain these results, a phe-
nomenological theory of domain growth developed originally for the clock model is extended to
include the uniaxial (4 X 1) phase. In particular, it is demonstrated that the more abrupt change
near the wetting transition occurs due to the disappearance of a vertex-antivertex configuration
present in the dry region. Also, the ANNNI model with conserved dynamics is shown to belong
to a different universality class than a model with a symmetric p =4 phase studied recently.

I. INTRODUCTION

Systems far from equilibrium which undergo a dynam-
ical process of ordering form an important class of prob-
lems in nonequilibrium statistical mechanics.!™> Ac-
cording to the simplest theoretical models, the growth of
domains during the ordering process satisfies a power
law of the type

R(1)~t", t>1, (1

where n is the growth exponent and R (t) is a quantity
measuring the average size of the domains. The quantity
t, denotes an initial transient time after which (1) is
satisfied. Another important quantity in characterizing
the growth is the nonequilibrium structure factor S(k,¢)
which in almost all cases studied so far, satisfies the
time-dependent scaling relation

S(k,t)=R 4t)F(kR(1)), t>1, )

where d is the dimensionality and F is a scaling function.
The growth law (1) and the scaling property (2) indicate
that the system has a characteristic time-dependent
length and that the domain growth is self-similar. Fol-
lowing ideas developed for static critical phenomena, it
has been proposed that there exist dynamical universality
classes. These would be characterized in the simplest
case by a dynamical exponent, and possibly also a
universal form of the scaling function F(x). The univer-
sality classes would mainly be determined by a few key
features of the system, including the ground-state degen-
eracy p and the conservation laws for the system, includ-
ing the order parameter W. At the moment perhaps the
only universality class which has been firmly estab-
lished? 0 is that of the nonconserved p =2 Ising system
with n =1 for which derivations of the scaling function
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also exist.®~® In general, we have, at best, an incomplete
understanding of these universality classes at the present
time. Recent studies suggest’™!® that additional
features, such as topological defects and uniaxiality of
the ground state may play a role in determining the
dynamical behavior, and possibly universality. From a
theoretical point of view, a satisfactory determination of
the universality classes requires proper identification of
the underlying physical processes determining universal
behavior. This is largely missing, except for the curva-
ture driven p =2 Ising case mentioned above.

An additional interesting feature in the dynamics of
domain growth is the occurrence of a wetting or an in-
terfacial adsorption transition.!® These phase transitions
occur in a large class of lattice gas models, and in partic-
ular for (p X 1) uniaxial phases with p >3.2°~2® They in-
volve transitions between different types of domain walls,
and are thus expected to have some influence on the
domain growth, during which several types of walls can
exist. In our previous study'® in which the effects of a
wetting transition were briefly studied for the uniaxial
(2,2) phase with a conserved density, rather nontrivial
results were obtained. We will discuss these and more
recent results later in some detail.

In this paper we will determine the effects of a wetting
transition on the kinetics of domain growth in the p =4
phase of the two-dimensional anisotropic or axial next-
nearest-neighbor Ising (ANNNI) model®*~% with
Glauber dynamics. We will also discuss both our previ-
ous'1® and some new results for the conserved density
case and the common features shared by the Glauber
and Kawasaki models. To begin with, the Hamiltonian
for this model in spin representation is

H=— (2) (J18i58i 11, —J 25581 42,5 +08ijSij +1) (3)
i
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where J; >0, i =0,1,2, and the summation goes over all
sites of a square lattice with Ising spins s;; =*1. The in-
dices i and j correspond to the x and y directions, re-
spectively. Equation (3) can be transformed into lattice-
gas form by wusing the change of variables
¢;;=(1+s;;,)/2, where the quantities c;; are either 0 or 1,
corresponding to empty and occupied sites, respectively.
In this form the Hamiltonian becomes'®

H —uN,=— (2>(¢lcijci+l,j “¢20ijci+2,j+¢ocijci,j+x)
ij

(4)

with ¢,=4J;, i=0,1,2. The chemical potential is
p=¢;—d,+do, and the total lattice density is N,=N,,.
A modified form of the ANNNI model in an external
field with J, <0 has been extensively studied as a model
of O/Pd(110).1421:2%28 [This system has a (3 X 1) uniaxi-
al phase.] In Fig. 1 we show the phase diagram of the
ANNNI model obtained by using the standard parame-
trization’* a=J,/J, and J,=(1—a)J,. Figure 1 exhib-
its the three different ordered phases in the model: an
incommensurate (I) phase, a commensurate ferromag-
netic (F) phase, and a modulated (2,2) antiphase. Based
on well-known theoretical arguments,>? it is clear that
the domain growth in the ferromagnetic phase must be-
long to the p =2 universality class. However, the (2,2)
antiphase is a uniaxial (4X1) phase with a higher
ground-state degeneracy p =4. It consists of an alternat-
ing sequence of two ferromagnetic layers of up and down
spins in the x direction, as shown schematically in Fig.
1. For this ground state, the relevant order parameter
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FIG. 1. Schematic phase diagram of the two-dimensional
ANNNI model showing the disordered (D) phase, the com-
mensurate (2.2), ferromagnetic (F), and the incommensurate (/)
phase. The F-D line is from Ref. 35, and the (2.2)-I line from
Ref. 37. (Note that Ref. 32 has a new estimate for the latter
which is slightly below the result shown here.) The dashed line
denotes the approximate position of the wetting line within the
(2.2) antiphase (Ref. 32). The crosses depict the values of
kg T;/J, for which the quenches with Glauber dynamics were
performed.

has two components?®

Y,=(1/NM)'* 3 s,,.expli (Qy1,, )], a=1,2 (5)
n,m

where Q,=(27/a)(4,0) and Q,=(27/a)(—},0) are the
two positions of the Bragg peaks and N and M are the
number of sites in the x and y directions, respectively.
Due to the high degeneracy of the (2,2) antiphase, a non-
trivial wetting transition occurs which divides the phase
diagram into a dry and a wet region. The position of
this line is indicated by the dashed line in Fig. 1. This
wetting transition takes place when a soft superheavy
(superlight) wall decays to three heavy (light) walls.
Symbolically, 4 | D — A |B | C | D, i.e., the two phases
B and C “wet” A4 and D (see Fig. 2). The properties of
this wetting transition have been studied in detail.?>?
At T =0, the wetting occurs at a=1. We note that the
parametrization used here has the advantage that a=1
is a special decoupling point in which the ANNNI model
becomes equivalent to two uncoupled layered antiferro-
magnetic Ising models.?® Consequently, there is no non-
trivial wetting transition at ¢ =1; also the melting point
is exactly known at this point.

In this paper we employ a comprehensive Monte Car-
lo study to determine the dynamical growth exponent n
for the ANNNI model. We find n ~0.5 holds to a good
degree of accuracy at low temperatures everywhere
within the (2,2) phase. Also, the growth proceeds aniso-
tropically between the x and y directions, and general-
ized anisotropic scaling is found to hold to a good de-
gree of accuracy. However, we find an abrupt change in
this anisotropic growth mode as the wetting transition
takes place. Namely, everywhere in the dry region the x
direction grows faster than the y direction, but immedi-
ately after wetting the opposite occurs. To explain these
rather unexpected results, we invoke theoretical argu-
ments developed originally by Kawasaki'""!? for the p-
state clock model (p > 3) and extend these to include the
uniaxial (4X 1) phase. In particular, both the universal
growth exponent n =1 and the sudden nonuniversal
change in the anisotropic growth mode can be explained
by the existence of a vertex-antivertex configuration
which becomes unfavorable due to the wetting transi-
tion. This demonstrates the striking effect of a wetting
transition on the growth of domains in a system with
uniaxiality. Since phases of this type are often encoun-
tered in physisorbed and chemisorbed systems, such as
for example in O/Pd(110), we expect our results to have
relevance in corresponding experiments where phenome-
na of the type we describe here may be observed.!*
From another point of view, we also expect our results
to have some relevance in clarifying the physical mecha-
nisms behind the dynamical universality classes. Name-
ly, in an earlier study'® we have also found that the
ANNNI model with conserved (Kawasaki) dynamics has
a growth exponent n ~0.5 (at least in the dry region) in
contrast to an earlier work by Sadiq and Binder!* who
suggested n =1 in a model with a symmetric p =4
phase. As discussed later, we believe this to be an indi-
cation of different physical growth mechanisms in these
two models, and possibly to signify that uniaxiality is a
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relevant parameter in determining the dynamical univer-
sality classes.

II. MONTE CARLO RESULTS
FOR THE GLAUBER MODEL

We have studied the kinetics of the domain growth in
the ANNNI model by quenching instantaneously from a
high-temperature (kT /Jy= o) disordered phase to
several temperatures, as well as for various values of a
below the phase-transition line of the (2,2) antiphase.
These points for the Glauber “spin-flip” dynamics are
indicated in Fig. 1 with crosses. For an adsorbate sys-
tem, these dynamics would correspond to random ad-
sorption and desorption events, which occur with a con-
stant rate. Square lattices of sizes 12060, 128 128,
100X 200, 128 X 140, and 140X 140 were used, with fully
periodic boundary conditions to study the effects of finite
size. Usually we have performed a minimum of 400
quenches for each system to obtain reliable ensemble
averages and compensate for the lack of “self-averaging”
far from equilibrium? which was evident during our
simulations. Also, in order to avoid spurious percolation
effects, time sampling of the data was stopped when R (¢)
became about one-fifth of the maximum possible value
(i.e., the linear size of the system). Our results have very
good statistics and show no systematic finite-size effects.

A. Dynamical behavior of the domain
walls and excitations

After the system is quenched to an unstable low-
temperature state, domains form as the symmetry of the
order parameter is broken and grow in time. This
growth far from equilibrium occurs via a competition
between the randomly chosen degenerate ground-state
phases A4, B, C, and D. In Fig. 2 we depict all the ener-
getically different domain walls possible in the (2,2) anti-
phase.!® During the growth all of these are in principle
present, although the energetically most favorable ones
are expected to dominate at late times. There are also
defects present for which the “phase-shift” condition is
not fulfilled. In Fig. 2 we show two of the most impor-
tant types of excitations encountered in the system,
namely lattice defects and ““soft heavy-light” excitations.
We have followed the statistics and the role of all these
distinct domain walls and excitations in detail during
growth. Besides yielding detailed information about the
behavior of the system, this data can also be used to
define a measure of length separately for the x and y
directions.!>16 Namely, effective domain areas A4,(t)
and A,(z) for the two axial directions can be defined
through

R2) o« 4;(1) < [N()=N;(0)]7% i=x,p 6)

where N;(t) is the number of domain walls at time ¢ and
N,;(0) is the equilibrium value of N; at a given tempera-
ture for a given value of a. This definition is less sensi-
tive to the choice of N;( ) than that obtained by com-
puting the excess energy AE, and also gives information

about the anisotropy of the growth between the two axi-
al directions.

1. Growth in the dry region

In Fig. 3 we show a series of typical domain
configurations for the ANNNI model at the decoupling
point a=1. Typically, the growth of domains is quite
rapid, as in the p =2 nonconserved case.!® It is evident
from these figures that two types of walls, the heavy-
light (4 |B) and soft superheavy-light (A4 |D) walls
dominate the configurations after an initial transient
time. In addition, an anisotropy in the domain growth is
clearly visible. The domains percolate more rapidly in
the x direction than in the y direction, which indicates
an anisotropic growth mode. In Figs. 4(a) and 4(b) we
depict both the absolute and relative amounts of walls
and excitations as a function of time for a=1 and
kpT/Jy=0.2 for a 128X 128 system. These figures
confirm our observation that after a short transient time
only the 4 |D and A | B walls are present in the sys-
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FIG. 2. All the energetically different types of domain walls
in the ANNNI model which have been followed during the
growth: (i) heavy-light (wet 4 | B) wall, (ii) soft superheavy-
light (dry A4 | D) wall, (iii) superheavy-light wall, and (iv) medi-
um wall. (v) and (vi) indicate the two most important low-
energy excitations encountered in the configurations, the soft
heavy-light excitations and the lattice defects, respectively. Ex-
citations consisting of combinations of some of these domain
walls and defects are also encountered during domain growth.
(vii) and (viii) show the two possible antiphase boundaries in
the y direction, of which (vii) is energetically more favorable.
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tem. They occur in equal amounts within the accuracy As a becomes less than one, the degeneracy of the two
of our results. This is another indication that the solid-  walls is broken. The A4 |B walls become energetically
on-solid calculation, which was performed in an earlier = more favorable than the single 4 |D walls and a
study?? of the wetting transition, correctly predicts a de- suppression of the latter should occur. To study this
generacy of the two free energies 0 4 5 and o, p at quantitatively, we have followed the domain growth at
this special point. the same low temperature as before (kz T /J,=0.2) for
@ (b

FIG. 3. Figures of typical configurations for a 100? system at the decoupling point a=1.0, kg T;/Jy=0.2: (a) 10 Monte Carlo
steps (MCS)/site, (b) 20 MCS/site, and (c) 60 MCS/site. At this special point there is an exact degeneracy between the heavy-light
and soft superheavy-light walls which are depicted by straight lines and squares, respectively. Other types of walls and excitations
are also shown: triangles correspond to superheavy-light walls, diamonds to medium walls, crosses to heavy-light excitations, and
circles to lattice defects.
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the two values of @=0.8 and a=0.55. In Figs 4(c) and
4(d) we display the statistics of domain walls for a
140X 140 system at a=0.8. As expected, a suppression
of the soft superheavy-light walls is encountered. We
have also studied the 128 x 128 system very close to the
wetting line at @=0.55. The results in this case are very
similar to the previous statistics, except that a further
reduction of the 4 | D walls is seen.

We have not tried to perform a systematic study of
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the temperature dependence of growth in the dry region,
since the theory in this case is not completely under-
stood. Instead, in order to qualitatively see the effect of
a high temperature we have quenched a 140X 140 sys-
tem at a=0.9 to kzT/Jy=1.9 which is a point very
close to the commensurate-incommensurate transition
line of the ANNNI model. In Fig. 5 we display
snapshots of typical configurations (for a smaller system)
encountered at this high temperature. The domain
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FIG. 4. Statistics of domain walls and excitations for the kinetic ANNNI Glauber model in the dry region of the phase diagram:
(a) absolute and (b) relative amounts of walls and excitations at the decoupling point a=1.0, k5T /J,=0.2 for a 1282 system; (c) ab-
solute and (d) relative amounts of walls and excitations for a=0.8, k3 T, /J,=0.2 in the case of a 140? system.
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growth seems to proceed in a similar fashion as at lower  they seem to break down the domain boundaries to some
temperatures, except that a very large number of defects  extent and make them effectively rough. We have also
appear in the system. These defects are now thermally  determined the domain-wall statistics for a 140Xx 140
generated and seem to persist throughout the growth. system. The number of lattice defects is very large and
Their amount seems to equilibrate to a constant value of  almost independent of time. We expect the presence of
about 2.4% of the number of total lattice sites. Also, these excitations and the domain-wall roughness to have
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FIG. 5. Some of the typical configurations for a 100% system at a high temperature with a=0.9, kzT;/J,=1.9: (a) 10
MCS/site, (b) 40 MCS/site, and (c) 100 MCS/site. Symbols correspond to those in Fig. 3.
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some effect on the growth law, as we will later discuss.  discussed above. This is expected to take place during
As far as other excitations are concerned, their amounts the early stages of the domain formation, where soft

remain below 10% even at these high temperatures. superheavy-light or dry walls decay to heavy-light or wet
walls. This change, in the nature of the domain walls in

the system, is expected to affect the growth law. In Fig.
6 we show a typical set of domain configurations at

When the anisotropy parameter a becomes less than 1  a=0.5, kz T /J,=0.2, which is in the immediate vicini-
(at T =0), the system undergoes a wetting transition as  ty of the wetting line. As expected, practically all dry

2. Growth in the wet region
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FIG. 6. Time evolution of domains for a 100> wet system in the immediate vicinity of the wetting line (@ =0.5, kg T;/Jy=0.2):

(a) 10 MCS/site, (b) 40 MCS/site, and (c) 100 MCS/site. The dry soft superheavy-light walls have now disappeared almost com-
pletely, but seem to persist at the vertex junctions. A change in the anisotropic growth mode is clearly visible in these figures.
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walls have disappeared from the system. There is also
an apparent change in the anisotropic growth mode.
The growth seems to proceed more quickly in the y
direction, which is opposite to what was observed in the
dry region. In Figs. 7(a) and 7(b) we depict the statistics
of domain walls and excitations for a 140X 140 system at
a=0.5, kgT /J;3=0.2. The effect of the wetting transi-
tion is now evident in the lack of dry walls at later times.
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To follow the behavior of the domain walls as a de-
creases towards %, we have quenched systems at low
temperature kzT/J,=0.2 for a=0.45, 0.4, and 0.35.
In Figs. 7(c) and 7(d) we show the statistics of walls and
excitations for a 128 X 128 system at ¢=0.45. There is a
strong increase in the number of superheavy-light walls
which eventually disappear from the systems. The result
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FIG. 7. Statistics of domain walls and excitations for the kinetic ANNNI Glauber model in the wet region of the phase diagram:
(a) absolute and (b) relative amounts of domain walls and excitations for a 140? system at a=0.5, k3 T, /J,=0.2; (c) absolute and
(d) relative amounts of walls and excitations for a 128% system at a=0.45, k3 T, /J,=0.2.
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snapshots of configurations encountered in a smaller sys-

of this is a slowing down effect, especially in the x direc-

tem in this case. The number of heavy-light clusters is
very large, and there is a strong slowing down effect.

We have also studied the domain wall statistics for the

tion where these walls exist. This is clearly seen in the

Similar results are

0.4. Finally, we have quenched a 128X 140

figures of the domain-wall statistics.
system very close to the ferromagnetic phase boundary

found at a

large system. There is an overwhelming abundance of

light clusters as we have predicted, but at very

heavy

0.35, kg T /J;=0.2. In Fig. 8 we show a series of
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FIG. 8. Series of typical domain configurations for a 100? system close to the (2,2)-incommensurate phase boundary at
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dramatic slowing-down effect caused by the appearance of heavy-light clusters (denoted by triangles) in the system. Also, the an-

isotropy of the domains is very pronounced.
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late times the system still equilibrates.

An interesting feature of the statistics of walls men-
tioned above is that the number of superheavy-light
A | C walls has increased strongly. Far from equilibri-
um these walls which must decay to heavy-light walls at
finite temperatures, can obviously be present and should
indeed become more common as «a is decreased towards
1. Namely, as was mentioned in an earlier study?? of the
wetting  transition, in addition to the A4 |D
— A | B | C | D equilibrium wetting transition, there is a
competing transition which occurs only at the point
T =0, a=4. In this transition, one heavy-light and one
superheavy-light wall emerge, i.e., 4 |D—4 |C |D.
At low temperatures this will still compete with the
equilibrium transition, and far from equilibrium the re-
sulting A | C walls will exist for a finite time. Indeed, at
zero temperature there exists an infinite but countable
sequence of wetting transitions of this type, which are of
“higher order” in the sense that they do not persist for
T >0. Namely, the phase-shift condition can be fulfilled
in several different ways. In the most general case this
can be done by introducing (2n —1) 4 |C walls and
(3m —2) A | B walls between the dry A4 and D phases,
where m and n are arbitrary positive integers. The se-
quence of points where these transitions take place is
given by the condition

UA~D=(2n——1)aA]C+(3m~—2)aA}B. (7)

Inserting the corresponding values from Ref. 22 gives

a=(3m +4n —3)/(9m +12n —13), m,n=1,2,3,... .

(8)

For m =n =1, the simple 4 |D— A |C | D transition
point at a=1 is recovered. Also, for either m or n fixed
the phase-boundary point a =1 is exactly obtained when
the infinite limit is taken for the variable which is not
fixed. In the case m =1 and for increasing n the se-
quence of transition points goes as {1, 2=0.4, $=0.375,
+=~0.364, 2~0.357,...}]. On the other hand, for
n=1 and increasing m the corresponding set is

1, £=~0.412, 5~0.385, £~0.371, %=0.364,...].
Another way of satisfying the phase-shift condition is to
introduce n(2m +1) AB walls, where again n and m are
positive integers. This condition gives only one new se-
quence which goes as {3, $~0.429, £=0.4, 3 ~0.385,
$~0.375,...} for n=1 and m increasing. Although
these transitions do not persist at finite temperatures in
equilibrium, they offer an alternative route to the forma-
tion of large clusters of adatoms or vacancies as a is re-
duced. Of course, this argument is just a way of point-
ing out that an increased stability of heavy-light clusters
is really expected as one approaches a— 1.

Similarly, to the dry region we have performed only
one quench at high temperatures in the wet region. This
was done at the point where a=0.5, k3T /J;=1.0, for a
128128 system. The results are very similar to lower
temperatures, Figs. 7(a) and 7(b). There is, however, a
slight increase in the number of lattice defects, as well as

some additional domain-wall roughness in the

configurations.

B. The growth law

In order to reliably analyze the underlying growth law
of the domains we have studied the behavior of several
definitions for the characteristic length R (). A measure
of the long-range correlations in the system can be ob-
tained by using the anisotropic (unnormalized) structure
factor S (k,t) which is defined as

Sa(k,t)=< S sumexpli[(Q,+k)-1,, 1} I2> )

n,m

a=12 (9

where k is the deviation from the Bragg positions. Here
we limit ourselves to the case k,,k, >0 for which we
compute S(k,?) as discussed later. The peak of this
structure function S (0,¢) defines a length via'?

R(1)*=S(0,1)/¥% . (10)

Here ¥, denotes the equilibrium value of the order pa-
rameter. At low temperatures, such as at kT, /J;,=0.2
which we have mainly studied, it is expected that
¥, ~1. In other words, fluctuations in long-range order
should be very small at low T. At higher temperatures
this is not necessarily true. However, we have not tried
to estimate W for high values of T. The other measures
of length we have used are the effective domain areas
defined in Eq. (6). For this case we have also set
N;()=0.

To test the underlying growth law we have assumed
that it can be described with a simple power law of the
form (1). We have performed standard numerical least-
squares fitting of our data to the expression

Y () —p(ty)=D,(t —tx)™, i=x,p (11)

where y (1)=R (t). There are two main reasons for us-
ing this type of fitting procedure. First, we expect an in-
itial transient time ¢, to be present in the system before
the actual universal growth law takes over. Second, (11)
is less sensitive to the (nonuniversal) initial part of the
data than logarithmic fitting functions, which are often
used to obtain an estimate for n.

In Table I we show the results of our fitting to S(0,¢)
for all the quenches performed in the dry and wet re-
gions. At low temperatures the results clearly indicate
an average exponent of 2n ~1.0 independent of the an-
isotropy parameter a. Even very close to the ferromag-
netic boundary this result holds to a very good degree of
accuracy. This is a strong indication that a universal
growth mechanism governs the system and that the
growth law is very well described by a simple power law
of the type (1). From Table I it is also evident that the
average, overall growth rate is largest at a=1.0. There
is indeed a monotonic decrease in the value of the pre-
factor D as a decreases. In Fig. 9 we display the unnor-
malized data for S(0,¢t) at a=1.0, 0.5, 0.45, and 0.4.
These lines are linear to a good degree of accuracy, and



37 DOMAIN GROWTH AND TOPOLOGICAL DEFECTS IN AN . .. 189

TABLE 1. Numerical least-squares fits to the expression y —yo,=D (t —t,)*" using the peak of the structure function S(0,t) to
define a squared length for the kinetic Glauber ANNNI model. The values of S(0,7) were normalized to a maximum value of 1.
In some cases two different time regimes have been studied to check the consistency of the fits. The error A is based on the central

limit theorem. MCS represents the Monte Carlo steps per site.

System size keT; /o a At'Y'/MCS 10-*x D'V 2n'V AtP/MCS 10~ 4xD? 2n? +A
128 128 0.2 1.0 30-400 6.41 1.00 60-400 6.41 1.00 0.05
60 120 0.2 0.8 20-200 2.35 1.0 0.1
140 140 0.2 0.8 40-200 2.90 1.06 0.05
128 x 128 0.2 0.55 60-200 3.33 1.05 120-400 4.07 1.02 0.05
140 140 0.2 0.5 40-200 2.31 0.97 0.05
128 x 128 0.2 0.45 30-300 0.654 1.09 120-600 0.869 1.05 0.05
128 128 0.2 0.4 60-600 0.275 1.05 0.05
128 X 128 1.0 0.5 20-400 1.52 0.94 200-400 1.31 0.95 0.05
128 X 140 0.2 0.35 5003400 0.066 1.0 0.1
140 140 1.9 0.9 40-200 3.09 0.96 0.05

also the drop in growth rate is evident. An interesting
feature of this variation of the growth rate is that it does
not seem to vary linearly with a, but the value of D de-
creases more steeply near the wetting line as it is ap-
proached from the dry region.

Table II shows the results of numerical fitting to the
effective domain areas A,(¢). Again, independent of «,
the previous result 2n ~1.0 is recovered for both the x
and y directions. Thus the anisotropy in the system
manifests itself through the prefactors D, and D), but
leaves the dynamical exponent intact. In the dry region
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FIG. 9. The time development of the peak of the anisotrop-
ic structure function S(0,¢) as a function of the anisotropy pa-
rameter a. All results are for 1282 systems at kg T;/Jy=0.2.
There is an overall slowing-down effect in the growth rate as a
decreases and also a more abrupt change near a=0.5. Howev-
er, the dynamical exponents remain the same, as indicated by
the straightness of these lines.

the growth rate is larger in the x direction than in the y
direction. At a=1.0, the ratio D, /D, is largest, and
has the value of about 3.5. When a decreases the ratio
also decreases to about 1.4 just before the wetting line.
Immediately in the wet region the ratio becomes less
than one, as the domain configurations in Fig. 6 indicate.
As a is reduced further, the domain growth becomes ex-
tremely anisotropic due to the appearance of
superheavy-light clusters in the x direction. Indeed, at
a=0.35 the growth rate in the y direction is about 500
times faster than in the x direction. Despite this the
dynamical exponents remain the same.

The last two entries in Tables I and II yield the results
of numerical fits at high temperatures. In both cases
there is-an overall reduction in the growth rate. Howev-
er, within the accuracy of our results there is also a
reduction in the value of the dynamical exponent. In the
case of the effective domain areas this may be an indica-
tion of the breakdown of the approximation A4;( 0 )=0.
However, the results for S(0,7) also indicate this change
in n, although S(0,¢) should be less sensitive to changes
in temperature.

C. Structure functions
and dynamical scaling

The anisotropic growth mode manifests itself not only
through the prefactors D, and D, but also in the shape
of the structure function S(k,z). This can be made
quantitative by defining generalized directional moments

in the (k,,k,) plane as'>'¢
k(‘ kl'

k,(0,)= 3 k(0)"S(k(0),t)/ 3 S(k(0),t), (12)
k=0 K=0

where 6 is the angle between k(6) and the k, direction
and k, is an ultraviolet cutoff parameter. Thus 6=0 and
6=m/2 correspond to the mth moments in the x and y
directions, respectively. Using this definition the scaling
ansatz can also be generalized to include anisotropy, as
we will discuss below.

To study the nature of the anisotropic structure func-
tion we have computed S,(k,?) in the plane k,,k, >0
both in the dry and wet regions. In Figs. 10(a) and 10(b)
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TABLE II. Power-law fits to (10) using the normalized inverse squared perimeter lengths A;(¢) (i =x,y) to define effective
domain areas in the x and y directions. Note the excellent agreement with the dynamical exponents of Table I. The ratios of the
prefactors D, and D, have also been computed to obtain quantitative information about the axial anisotropy of the growth. Error

is the same as in Table I.

D D D?  p@  p,pm
x x x x 'y
System size kT, /J, a AtV/MCS D" 2n{V  At'Y/MCS D/” 2n¥  D?/D? +A
128 x 128 0.2 1.0 30-200 12.45 1.01 3.50 0.05
3.56 0.99
60x% 120 0.2 0.8 20-200 7.29 0.99 2.08 0.06
3.51 0.98
140X 140 0.2 0.8 40-200 5.90 1.03 1.75 0.05
3.37 1.00
128128 0.2 0.55 60-200 5.30 0.98 120-400 4.60 1.01 1.38 0.05
2.85 0.98 3.42 1.01 1.35
140x 140 0.2 0.5 40-200 2.06 0.94 0.47 0.05
4.41 1.05
128 x 128 0.2 0.45 30-300 0.66 0.91 120-600(x) 0.42 0.98 0.28 0.05
2.38 1.11 120-300() 3.26 1.07 0.13
128 128 0.2 0.4 30-300(x) 0.85 0.97 0.80 0.05
30-200(p)  1.31 1.06
140X 140 0.2 0.35 50-200 0.003 1.09 150-200 0.005 1.01 0.002 0.05
1.56 0.83 0.57 0.98 0.009
128 < 140 0.2 0.35 1000-4000 4.94x10°3 1.0 50-1500 0.33 0.1 1.5%x1073 0.1
128128 1.0 0.5 20-400 1.80 0.82 200-400 0.71 0.94 0.45 0.05
3.84 0.78 1.17 0.94 0.61
140X 140 1.9 0.9 40-200 5.40 0.79 100-200 2.57 0.89 6.97 0.05
0.77 0.71 0.26 0.86 9.96

we depict S(k,?) along the directions k, and k, as a
function of time for a 120X 60 system at a=0.8,
kgT;/Jy=0.2. The structure function is narrowest in
the x direction, consistent with the anisotropic growth
mode. We have also computed the inverses of the gen-
eralized second moments for the directions k, =0,
k,=0, 2k, =k,, together with a circularly averaged total
second moment. Although these quantities also define
R %(t), we have not used them for determining the
growth exponent due to their dependence on k.

The corresponding results for S(k,?) in the case of a
128128 system in the wet region at a=0.4,
kgT;/Jy=0.2 are similar to Fig. 10, except that in this
case the structure function is narrowest in the y direc-
tion, since a change in the anisotropic growth mode has
occurred. For a finite system S (kx,ky=0,t) remains
very broad for a long time due to the presence of a large
number of domain walls in the x direction.

To test the anisotropic scaling we have calculated
scaling functions with several definitions of the length
scale. First, using the generalized second moments, a
scaling function

F(x)=k,(8,)S(k(8),t),
(13)
x =k (6)/[k,(0,t)]'?

can be defined. This function is also going to depend
somewhat on the direction 6. Second, we have also cal-

culated the scaling function
F(x)=S(k(6),t)/5(0,1),

(14)
x=k(0)[S(0,1]'%.

In some cases we also tested scaling using definitions of
length involving A4,(z). In the dry region scaling was
found to hold to a very good degree of accuracy with all
these definitions for the case a=0.8, kzT,/J;=0.2.
Thus, all length scales studied are essentially equivalent.
In Figs. 11(a)-11(c) we show some of the scaling func-
tions calculated in this case. In Figs. 12(a)-12(c), scal-
ing results are depicted in the wet region for the struc-
ture function calculated at a=0.4, kgT,/J;=0.2.
Again, scaling was found to hold to a good degree of ac-
curacy. However, due to the broadness of the peak in
the x direction scaling was not as good along the &, axis
as in other directions, as Fig. 12(c) indicates. In this
case it obviously takes a longer time to reach the true
asymptotic scaling regime than in the dry region.

III. PHENOMENOLOGICAL THEORY
OF DOMAIN GROWTH
IN THE ANNNI MODEL

The characteristic feature of the kinetic ANNNI
Glauber model at low temperatures is that a simple
power growth law seems to be valid to a very good de-



37 DOMAIN GROWTH AND TOPOLOGICAL DEFECTS IN AN . .. 191

gree of accuracy. Also, the growth exponents estimated
from various definitions of a length have values very
close to n =1, almost independent of the anisotropy pa-
rameter a. This suggests very strongly that there exists
an underlying universal growth mechanism in this model
which governs the growth law at late times. Indeed, the
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FIG. 10. Time development of the anisotropic structure
function S(k,?) for a 120X 60 system in the dry region at
a=0.8, kyT;/Jy=0.2: (a) S(k.,k,=0,t) and (b) S(k,,k,
=0,¢). This function is about a factor of 2 narrower in the x
direction than in the y direction, which reflects the anisotropic
growth mode.

domain configurations encountered during growth (see
Figs. 3, 6, and 8) suggest that there are two main in-
gredients in the growth process of the kinetic ANNNI
model. First, the reduction in curvature of domain walls
is clearly visible as a function of time. This feature is
typical of the Allen-Cahn mechanism,*~¢ where the
motion of the interfaces is diffusively driven by the cur-
vature. In the well-known p =2 nonconserved case with
a scalar order parameter and a double-well potential, it
has been shown by several authors*~® that a ¢!/ growth
law follows from this mechanism. In the case of the
ANNNI model we can write the time-dependent
Langevin equation as>*

oV /ot=—L 8H /8¥ +&(r,t) , (15)

where H is the Landau-Ginzburg-Wilson (LGW) Hamil-
tonian’® of the model, £ is a random noise term, and L is
the kinetic matrix. The order parameter ¥=(¢,¥,)7 is
now a two-component quantity so that the equations of
motion for ¥, and ¢, are of the form

3v, /3t =—L, 8H /8, —L,, 8H /8¢, +£ ,

(16)

where the L, are matrix elements of L. The explicit
coupling of ¥, and ¥, makes it nontrivial to generalize
the standard Allen-Cahn derivation for the case of a
two-component order parameter. However, along any
direction of the order parameter space (where ¥, x ),
this derivation can be formally done. Thus, if we imag-
ine performing an “averaging” over all of the (¢,,1,)
space, the ¢'/? growth law may remain unchanged. Due
to the high degeneracy of the ground state there are re-
strictions on the possible domain configurations in the
system. In particular, there is a large number of vertices
present during the growth (see Figs. 3, 6, and 8). This
was already pointed out in an earlier study of the mod-
el.!® The presence of these vertices sets restrictions on
the motion of the interfaces since the latter are coupled
to these defects. Indeed, the Monte Carlo configurations
suggest that an argument of the Allen-Cahn type is not
sufficient to obtain the universal growth mechanism be-
cause the vertices are present even at late times. To in-
clude the constraints due to the vertices, we consider a
theory due to Kawasaki,'""!?> who has derived equations
of motions for a different system, the p-state clock model
(p > 3) which is similar to our system in that the inter-
faces and vertices are coupled. These equations have
been derived from the general Langevin equation (14) us-
ing the idea of virtual displacements. Indeed, the ex-
istence of vertices for the p-state clock models has been
demonstrated in computer simulations.!” Analogous
four-rayed vertices are encountered in the ANNNI mod-
el during the domain growth as well. There are also
three-rayed vertices but for simplicity we shall omit
them here. If we assume the validity of these equations
for the kinetic ANNNI model (which is reasonable given
the similarities of the topologies during domain growth
between these two models) we can write them as

3¢ /3t =L (V2 —Hf:VV)é , (17a)
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4
L~ 'elr,1)-3q(r,1)/3t= 3 o;(H;X7), (17b)
j=1

for four-rayed vertices of the type shown in Fig. 13(a).
The first equation is written for a phase variable ¢ which
is singular along the interfaces, with Ai=Ved/|Vé|.

The second equation describes explicitly the motion of
four-rayed vertices, where q denotes the position of the
defect line where four interfaces forming the vertex
meet, and 7 is the unit vector parametrizing this line.
Again, L is the kinetic coefficient, o is the anisotropic
surface tension, and € denotes the mass density tensor
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associated with the defect line. (We have also subsumed
the anisotropy of L in €.) The right-hand side of (17b)
can be considered to be the net surface tension force act-
ing on the defect tube, while the left-hand side is the
friction force due to the motion of the defect tube. Us-
ing (17) and averaging over anisotropies, Kawasaki'? has
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shown that the problem can be reduced to the dissipa-
tive dynamics of opposite “Coulomb charges” from
which a #!/? growth law follows both in d =2 and d =3
using dimensional arguments. This result is consistent
with our simulations and the value n =0.5 which we
have obtained.
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FIG. 13. (a) A schematic four-rayed vertex. Dashed circle
encloses the tube core C from which four interfaces separating
the four degenerate ground states 1, 2, 3, and 4 emerge. (b) A
dominant vertex-antivertex configuration in the ANNNI model
shown here in a quadrupole configuration. There are two
vertex-antivertex pairs consisting of a heavy (A4 |B), light
(C | D), soft superheavy (D |C), and soft superlight (C | D)
walls. The energies of the vertex interfaces are 0.5/, and
0.5aJ, in the y and x directions, respectively. After the wet-
ting transition this configuration becomes unfavorable due to
the instability of the soft superheavy-light walls. (c) A vertex
configuration consisting of (wet) heavy-light walls only.
Three-rayed vertices consisting of combinations of heavy-light
and superheavy-light walls are also possible.

Equations (17) neglect thermal noise. In Kawasaki’s
original derivation there were two additional terms
present in (17b). Namely, there is a contribution arising
from the finite radius of the vertex core C in Fig. 13(a),
which may in most cases be safely neglected. More im-
portantly, Kawasaki’s derivation also included a term
arising from the misfit parameter § in the chiral clock
model.?® This term vanishes for the ordinary clock mod-
el. However, for the ANNNI model a similar term
should be present, because the anisotropy parameter a

plays a role analogous to 8, with 6 ~(1—a). Thus this
term is identically zero only at the decoupling point
a=1, where there is an exact energetic degeneracy be-
tween the relevant walls in the model (as mentioned be-
fore). It is then easy to see intuitively from (16) how the
anisotropy arises in the ANNNI model. Namely, even
at a=1 the microscopic structures of the domain walls
in the x and y directions are different. Thus, the coupled
equations of motion arising from (17) are expected to
reflect this anisotropy. In addition to this, as a <1 the
uniaxial chirality (1—a) along x axis couples to the
equations of motion and changes the anisotropy.

We conclude this section by noting that a more quan-
titative version of the above argument can be made,’!
based on a decoupling approximation for (17b). This
leads to an Allen-Cahn-type growth law in both the x
and y directions. In addition, predictions are obtained
for the ratio of the amplitudes D, /D, of these growth
laws which are in reasonable agreement with the Monte
Carlo results shown in Table II. The interested reader is
referred to Ref. 31 for more details.

IV. SUMMARY AND DISCUSSION

In this paper we have performed an extensive Monte
Carlo study of the anisotropic growth of the (2.2) anti-
phase in the two-dimensional ANNNI model, and, in
particular, determined quantitatively the effect of the
wetting transition on the domain growth. To explain the
results obtained we have proposed that a phenomenolog-
ical theory based on the existence of vertex-antivertex
pairs is relevant for the model and leads to a universal
t'/? behavior. Also, we have estimated the anisotropy
from this theory and obtained a good agreement between
this estimate and the Monte Carlo results. In particular,
we have been able to explain the rather sudden change
in the anisotropic growth mode as one crosses the wet-
ting line by invoking an argument based on an alteration
in the vertex mechanism as one of the relevant walls be-
comes unstable.

As we have mentioned in the introduction, the previ-
ous results obtained for the ANNNI model with con-
served (Kawasaki) dynamics suggest'® that an exponent
n ~0.5 is obtained in the limit of large systems and long
times. Our new simulations at a=1 also support this re-
sult. This suggests that the vertex-interface mechanism
is valid for this case as well, which raised an interesting
question about the role of uniaxiality in possible dynami-
cal universality classes. Namely, in contrast to our re-
sults, in a study of the nearest-neighbor-next-nearest-
neighbor (NN-NNN) Ising model which has a sym-
metric p =4 phase Sadiq and Binder!® (SB) suggested a

1

universal exponent n =1 associated with a long-range

diffusion process with conserved dynamics. This model
1

has no vertex-antivertex formation and thus n =3 may

become impossible. A similar conclusion seems to apply
to the (3 1) phase in a model of H/Fe(110) studies by
Vinils and Gunton,*? who obtained an effective exponent
n ~0.14-0.25 with conserved dynamics. However, with
nonconserved dynamics SB obtained the result n =1.

This is actually not a trivial result due to the high degen-



37 DOMAIN GROWTH AND TOPOLOGICAL DEFECTS IN AN . .. 195

eracy of the ground state but may indicate the dominant
role of curvature in such a two-component order param-
eter system, as we have briefly discussed in Sec. III. The
role of uniaxiality is also supported by our new results
on the domain growth in a model of O/Pd(110), which
has a uniaxial (3 1) phase.'* In this case, an exponent
n ~0.5 is again obtained for both Glauber and Kawasaki
dynamics. This system has a natural vertex-antivertex
formation with three-rayed vertices, similar to the
three-state clock model.

Finally, we want to speculate about the nature of the
scaling functions for the ANNNI model. Namely, it
would be of great interest to generalize the derivation of
the nonconserved Ising scaling function®’ to include a
spatially anisotropic domain distribution. This deriva-

tion together with a careful Monte Carlo study would be
needed to further clarify the nature of the dynamical
universality classes for the uniaxial Ising models. This
work is currently underway.
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