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Folarixation dependence of magnetic x-ray scattering
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%e calculate the polarization dependence of the x-ray scattering cross section, including mag-
netic terms, using the Poincare representation for the polarization. General expressions are given
for the polarization dependence of the cross section of the pure magnetic scattering and of the in-

terference between charge and magnetic scattering, and for the polarization of the scattered beam
in both cases. These expressions are compared to the equivalent results for magnetic neutron
scattering. The general results are then specialized to several typical cases, including the scatter-
ing of linearly and circularly polarized radiation from spiral, uniaxially modulated, and ferromag-
netic structures. It is shown that detailed magnetic-structure determinations are possible using
synchrotron radiation. It is further demonstrated that the orbital- and spin-angular-momentum
contributions of both ferromagnets and antiferromagnets may be separately measured in a variety
of simple geometries, It is found that, although the eSciency is very low, linearly polarized radia-
tion can be completely converted to circular polarization by scattering from a magnetic spiral. Fi-
nally, it is shown that, in addition to the interference between charge and magnetic scattering,
there is an interference involving the spin- and orbital-angular-momentum scattering, which can
couple moments in di8erent spatial directions.

I. INTRODUCTION

In the last several years magnetic x-ray experiments
using synchrotron radiation have been performed on a
steadily growing number of magnetic systems. These ex-
periments have included high-resolution studies of the
pure magnetic scattering in antiferromagnets' as well
as of the interference between charge and magnetic
scattering in bulk and thin-film ferromagnets. Spin-
dependent Compton- (Refs. 7 and 8) and resonance-
magnetic-scattering studies have been performed on a
variety of ferromagnets. The high brightness of syn-
chrotron radiation sources has been an important factor
in the success of many of these experiments. It has now
become apparent that the polarization dependence of the
magnetic cross section can also be exploited in even
more detailed studies. First, the use of the polarization
dependence provides a natural technique for determining
magnetic structures by x-ray scattering. Beyond this,
there are novel possibilities which arise from the well-
defined polarization characteristics of synchrotron radia-
tion. For example, using the high degree of linear polar-
ization of the incident beam it has been possible in syn-
chrotron experiments to distinguish between charge
peaks, arising from lattice modulations, and magnetic
peaks, in a spiral magnetic structure. ' This distinction
was crucial to the interpretation of the diffraction pat-
tern in recent studies of rare-earth metals. Furthermore,
it has been suggested that by analyzing the polarization
of the scattered beam, it shouM be possible to separately
measure the spin and orbital contributions to the cross
section. This separation is not directly possible by
neutron-scattering techmques and is important to a fun-
damental understanding of the electronic properties of
magnetic materials. Along these lines, we note the

elegant experiments of Brunel et aI. in which the
scattering of circularly polarized synchrotron radiation
was explicitly observed in a powdered ferrite.

In this paper we calculate the polarization dependence
of the x-ray scattering cross section, including magnetic
terms, using the Poincare representation for the polar-
ization. General expressions are given for the polariza-
tion dependence of the cross section of the pure magnet-
ic scattering and of the interference between charge and
magnetic scattering, and for the polarization of the scat-
tered beam in both cases. These expressions are com-
pared to the equivalent results for magnetic neutron
scattering. The general results are then specialized to
several typical cases, including the scattering of linearly
and circularly polarized radiation from spiral, uniaxially
modulated, and ferromagnetic structures. It is shown
that detailed magnetic-structure determinations are pos-
sible using synchrotron radiation by measuring the po-
larization dependence of the magnetic and interference
cross sections, and by analyzing the polarization of the
magnetically scattered beam. It is further demonstrated
that the orbital- and spin-angular-momentum contribu-
tions of both ferromagnets and antiferromagnets may be
separately measured in a variety of simple geometries. It
is found that, although the

efficiency

is very low
( & —10 ), linearly polarized radiation can be complete-
ly converted to circular polarization by scattering from a
magnetic spiral. Finally, we note that, in addition to the
interference between charge and magnetic scattering,
there is an interference involving the spin- and orbital-
angular-momentum scattering which can couple mo-
ments in dilerent spatial directions.

Although particular features of the polarization
dependence of the cross section have already appeared in
earlier papers, ' " * '" the general case, explicitly includ-
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ing the orbital angular momentum and the Anal polariza-
tion, has not been previously published. The present re-
sults are surprisingly simple and will be important for
their utility in suggesting and in analyzing the results of
synchrotron experiments. The general results for the x-
ray cross section are summarized in Eqs. (6), (7), and (9).
This expression is expanded using the Poincare represen-
tation in Eqs. (11), (12), (14), and (16). General expres-
sions for the 6nal polarization of the magnetic scattering
are given in Eq. (13).

II. CRGSS SECTION

The cross section for magnetic scattering of photons
by free charges and atoms has been discussed by a num-
ber of authors. ' *' ' ' ' '" In the following we repro-
duce the expression of 81ume" obtained by a nonrela-
tivistic calculation of the cross section using perturba-
tion theory. In the limit of high photon energy the cross
section for elastic scattering is

d 0

i-i. a-i (b ze 'ace'
J

2

iso iK.g l K + pJ'
b z e ' A+s 8 a) 5(E, E~ —(Rr—o„—Rru„')),

me~ AkJ

where A=a'Xe and

B=e'xe+(k'xe')(k' e) —(kxe)(k e')

—(k'xe') x(kxe) .

Here the sum is taken over all electrons j, K =k —k' is
the momentum transfer, %co (fico') is the incident (scat-
tered) photon energy„a (b) is the initial (final) state of
the scatterer, e (e ) is the initial (scattered) polarization,
and pJ is the electronic momentum. The geometry and
convections used here are illustrated in Fig. 1. The
modulus of the 6rst term on the right-hand side of the
equation gives the usual Thomson cross section for

DEFINITtONS AND CONVFNTIONS

t

charge scattering and depends on the Fourier transform
of the charge density. The modulus of the second term,
which is reduced from the first by (Ace/mc ), describes
the pure magnetic scattering and depends on the Fourier
transforms of the spin and orbital magnetization densi-
ties. In addition, there is an interference term propor-
tional to (i%co/cm ), involving the products of charge
and magnetic densities. %e first develop an expression
for the orbital momentum.

Rewriting the orbital term:

;K.&. i(KXpi) iKr. —g ~
ge

k
A-+ ye iK'xp . AxJ J

where A'= —(K /k )A= —4(sin 8)(e'Xe) and 28 is
the scattering angle. This expression is analogous to
that encountered in neutron scattering and for elastic
scattering may be rewritten as'

;g., (iKxp, )—a e ' ' a —,'Kx LKxK

where L(K) is the Fourier transform of the atomic-
orbital magnetization density. ' ' Explicitly, '

L(K)=—(a
~ g [f(K.r, )1, +1 f(K r, )] ~

a ),l

FIG. 1. The definitions and conventions used in this paper.
k and k' are the incident and scattered wavevectors and 28 is
the scattering angle. e& and eI~ are the components of the po-
larization perpendicular and parallel to the diffraction plane
(spanned by k and k'). The U, 's define a basis for the magnetic
structure which is expressed in terms of the incident and scat-

A A P A. P
tered wavevectors: U& ——(k+ k') /2 cos8, U2 ——k / k'/ sin2(9,

U3 ——(k —k') /2 sin8. By these conventions we also have

e& ———U2, e ', = —U2, e~~
——sinO Ul —cosO U3, and

e
~~

———(sinOU, + cosOU3).

(x)=2 (ix)"
„~o (n+2)n!

As a consequence of the vector product the contribution
of the orbital term in the direction of the momentum
transfer K is zero, just as with neutron scattering.
Through the use of simple vector identities,

kx(Lxk) A'=L. [A' —(A K)k]—=L A" (2)
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A"= A' —( A' K}K

=2(1—k.k')(e' X e }

—(k X e)(k e')+ (k'X e')(k'. e) .

Defining the Fourier transform of the spin density,

s(K)=(a ze 'a, a),

the magnetization-dependent part (M ) of the x-ray
cross section may be written explicitly in terms of L(K)
and S(K):

(M„)=-,'L(K) A"+S(K).B .

A" and B are given in Eqs. (1) and (2). It is clear that
the orbital and spin contributions to the x-ray cross sec-
tion are difFerent and so they may be distinguished by
analyzing the polarization of the scattered beam. This
difFerence does noi appear in neutron scattering, where
the interaction is purely magnetic in origin. Explicitly,
the expression for neutron magnetic scattering is"

(M„)=kx I [-,'L(K}+S(K}]XK).cr

=[—'L(K)+S(K)] C

f4 g J
A"= x'

k+k'
—(k+k')
2kxk' (4a)

~l j. ~j.
ll8=

krak'

k(1 —k k')

—k'(1 —k k')

krak' (4b)

This representation of the matrix B has been given by de
Bergevin and Brunel. ' (M ) may now be written as

where o is the neutron spin operator and C
=[KX(crXK)]. It is seen that the polarization depen-
dence of the spin magnetization density is identical to
that for the orbital magnetization density. The
difFerence in the cross sections for x-ray scattering and
neutron scattering arises because the x-ray interacts both
with the charge (through the electric field and its gra-
dients) and with the magnetic moment (through the
magnetic fields and their gradients). Thus, the Lorentz
force, for example, afFects only the orbital magnetic mo-
ment and not the spin, to first order in (fico/mc ).

From the point of view of performing synchrotron ex-
periments it is convenient to express the vectors A" and
8 as 2)&2 matrices in a basis whose components are
parallel and perpendicular to the diffraction plane (see
Fig. 1). Then

(M)JJ(M)J S (kxk')

K —L(K)+S(K)2k'
~

L(K}k+ k'

L(K) S(K) ~k, L(K) ~k+ ' +

L(K)+S(K) ~ (k Xk')
2k

(5)

The diagonal matrix element involve magnetization density oriented only in the direction perpendicular to the
difFraction plane, while the off'-diagonal matrix elements involve magnetization density oriented only within the
difFraction plane. Further, (M )ii is independent of L(K). For general magnetic structures this same expression
holds with L(K) and S(K) representing the complex structure factors. Expressing the component of the magnetic
structure in the basis de6ned in Fig. 1 we have

( sin28)S2 —2(sin28)[(cos8)(L, +Si ) —(sin8)S1]

2(s111 8)[(cos8)(L +S )+(s1118)S ] (s11128)[2(slil 8)L2+S2]
~ ' 2 (6)

where 28 is the scattering angle and we have used
—,'(E/k) =2sin 8. In this basis we may also write the
interaction matrix describing the charge scattering:

1 0
(M, )-i(K)

O „,28

where p(K) is the Fourier transform of the electronic
charge density.

III. PGINCARK REPRESENTATION

Having general expressions for the matrices (M )
and (M, ), it is now possible to calculate the cross sec-
tion and the 6nal polarization for arbitrary incident po-
larization and for any magnetic structure. It is con-

venient to introduce the Poincare representation for the
polarization and the density matrix for the incident
beam. The Poincare representation is particularly useful

as it applies to both completely and partially polarized
incident radiation and involves only variables which are
measured in experiments. A general discussion of these
techniques has been given by Fano. ' A discussion of
their application to neutron scattering and to the
transmission of x-rays through matter has been given by
Blume and Kistner. ' The 6rst application of the Poin-
care representation to magnetic x-ray scattering was by
de Bergevin and Brunel. '

%'e write the expression for elastic scattering by ex-
plicitly introducing the initial k and 6nal A.

' polarizations
and taking the expectation value of M in the initial and
final state

~

a ) of the scatterer:
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r 2
2

tBC

&X'~ &M. &
~

X&=-,'I.(X) ~,",,+S(K) S,.,
Here pz is the probability for incident polarization k.
We next define the (2X2) density matrix p for the in-
cident beam by

where

(A, '~ (M, ) (1)=(a xe ' a)a~ k,

P= g I
~&P~&~

I

Evaluating, we obtain the general expression for the
equilibrium di8'erential cross section for elastic scatter-
ing:

e
tr M, —

PlC

h 2

l f26) ~ ~ loco ~m P e 2 m
PIC 010

t &M, &p&M, &
—', (&M &p&M, &

—&M, &p&M &)+, &M &p&M
NlC PtlC me

&Mt & is the Hermitian conjugate of &M &.

Following Fano, ' we now develop the expression for
the density matrix. Because the density matrix is the
averaged outer product of a two-dimensional vector, it is
Hermitian, and consequently may be expressed in terms
of the unit matrix and the Pauli matrices:

P=(P~, P„,Pg),
p= —,'(1+P cr ) where 0'

g,
0'

~~
0'

g
~

Here o represents the Pauli matrices, Io is the total in-

tensity, and P&, P„, and P& give the Poincare-Stokes rep-
resentation of the polarization. We write the com-
ponents of the Poincare vector P using Greek symbols to
emphasize that it is not a vector in real space. In the
usual Cartesian coordinate system we have

1+P( P~ —iP„
P(+iP„1—P(

where o'~=(~ o), oz=(; 0'), and o&——(0 &). Taking ei
and e~~ as two orthogonal unit vectors perpendicular to
the beam direction defined in Fig. 1 (with
E Ete'i+E2e'i), the components of P are defined as fol-
lows. Let Ii be the deference between the light intensity
with linear polarization parallel to a vector oriented 45'
to ej and the intensity with linear polarization parallel to
a vector oriented 45' to e~~. Then

fEi+E2 I' —fEi E2I'—
4(Ei I'+ IEz I')

Re(Ei Ei)
IE I'+ IE I'

Let I2 be the diS'erence between the light intensity with
left circular polarization and the intensity with right cir-
cular polarization. Then

I Ei+«z I

' —IEi «i I

'—
4( IEi I

'+ IEz I

')

Im(E

JEST

)

IEi I

'+
I
E21'

Let I3 be the difference between the light intensity with
linear polarization parallel to ej and the intensity with
polarization parallel to e~~. Then

P( ——
I3 I El

I

' —
I E2 I

'

IEi I'+ IE2 I'

It follows that P&
—+1 ( —1) re—present linear polariza-

tion at angles +45' ( —45') to the Ui axis, P„=+1 ( —1)
represent left (right) circular polarization, and P& ——+1
( —1) represent linear polarization along the U2 (Ui)
axis, respectively (see Fig. 1). If

~
P

~

= 1, the beam is
completely polarized; if

~

P
~

&1, the beam is partially
polarized; and if

~

P
~

=0, the beam is unpolarized. The
vector P may simply be thought of as a vector in an
abstract space which is rotated upon scattering, as
shown in Fig. 2.

Once the Poincare vector P and the total intensity Io
are specified, the polarization is completely character-
ized in terms of measurable intensities. To calculate the
density matrix and 6nal polarization after scattering we
will require that'

P=tr(op),
p'=MpM (10b)

tr(p'),do e

7tlC
L

tr(crp')
tr(p')

(10c)
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terms multiplying I'& will be referred to as the linear
component. The terms not associated with a Poincare
coefBcient are referred to as the unpolarized component.

A. Charge scattering

This case is straightforward and gives the expected re-
sults. From Eq. (7) and (10) we write

tr(M, )p(M,')
PlC

—,
'

I
p(K)

I
[1+cos 28+P&(1 —cos 28)],

PlC

independent of P& and I'„. The components of the final
polarization P' may be found using Eq. (10d):

FIG. 2. The Poincare sphere. The polarization is complete-
ly characterized by the values of the Poincare coefFicients I'&,

P„, P&, and by the total intensity Io. By definition,
I P! ( 1.

In this section we calculate the general expressions for
the differential cross section and the final polarization
for each of the terms in Eq. (8), assuming arbitrary in-
cident polarization P=(P~,P„,P&). For the purpose of
discussion, the terms multiplying I'& will be referred to
as the 45'-linear component, the terms multiplying P„
will be referred to as the circular component, and the

I

2(cos28)P&
Pg 2 21+ cos 28+P&(1 —cos 28)

2(cos28)P„

1+ cos 28+P&(l —cos 28)

1 —cos 28+P&(1+ cos 28)
I'~ ——

1+ cos 28+P&(1—cos~28)

8. Pure magnetic scattering

From Eq. (9) we write

2
do' 8

mc2 trl(M. )i (M.') I
PlC

2 2
2

—,
' llI+Pg)(

I
m ii I

'+
I m2i I

')+(I —Pg)( I
m iz I

'+
I m&2 I

')
PIC f7lC

+2 Re[(Pr+iP„)(m *, im, ~+m 2, m ~q )]I, (12)

where we have left the result in terms of m;i, the elements of (M ). This form permits several general conclusions
to be drawn below, and makes writing the cross section for magnetic structures and orientations not considered in the
examples straightforward. Similarly, we expand Eq. (10d) to obtain

r

8

PlC
I (I+Pj)Re(m llm21)+( Pg )Re(m 12m22)+Re[(PJ+iPq)(m llm22 ™21m12)]l

l(1+P )Im(m i&m» )+-(1 P,.)Im(m &z zm)+2—I [(mP&+iP )(m timz2 —m atm i&)]), (13)
fPl C

2

d cT, l 8 'Ah)
l (1+P:)( I

m ii I

—
I

m zi! )+(I—P;)(
I

m tz I

—
I

m zz I
)

2 2 2 2

@le

+2 Re[(P;+iP„)(m;,m, z
—m z, m z~ )] I .
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In each of the expressions above the linear and unpolarized components and the circular and 45'-linear components
display a simple symmetry, involving the same products of matrix elements. If (M ) is diagonal, then there are no

contributions to the cross section from the 45'-linear or the circular components. If (M ) is nondiagonal, there are

again no contributions from the 45 -linear or circular components. Similarly, if (M ) is diagonal or nondiagonal and

P~ ——P„=O then P~ ——I'„' =0.
A feature of the cross section which is special to magnetic x-ray scattering is the existence of an interference be-

tween the spin and orbital angular momentum, which may couple moments in different spatial directions. These
terms arise in each of the matrix element products above, except

~
m»

~

. To illustrate, we write the general expres-
sion for the magnetic cross section by substituting Eq. (6) for (M ) in Eq. (12):

do 1 e

dQ 2, mcz
[(1+P )[(sin 28)[

/ Sz [
+(sin 8)

/
L, +S,

/
]+4(sin 8)

/
S, f

PIC

+4(sin28)(sin 8)[(L I +S', )S3+(L", +S"
, )S,"] I

+(I—Pg) f (»n'28)[
)
2(»n'8)Lz+Sz

/

'+(sin'8)
/
L, +S,

/

']+4(sin68)
( S3 f

z

—4(sin28)(sin'8)[(L ', +S', )S,'+(L, "
, +S", )S', ] I

—SP&(sin28)(sin 8)(( co8s)I(L I +SI )[(sin 8)Lz'+Sz'] —(L ('+SI')[(sinz8)L' +S' ]I

+(sin 8)(S&Lz' S3'Lz))—

+&P&(sin28)(sin 8)((sin 8)(cos8)[(L', +S', )Lz+(L", +S", }L"]

+(sin8)IS3[(sin 8)Lz+Sz]+S3'[(sin 8)Lz'+Sz']] )) . (14)

In this expression prime and double pnme refer to the real and imaginary parts, respectively, of the generally complex
structure factors L and S. Unprimed variables I. and 5 refer to the jth components of the complex structure fac-
tors, L, =L, +iL, ' and S =S,'+S,", with E and j 'labeling different symmetry directions in the U basis (see Fig. 1).
When i&j and P&0 terms of the form L;S~, L;L~, and S;SJ occur. In many materials the components associated
with different symmetry directions are equal, so that S,S,~ ~

S;
~

. The magnetic structure of erbium, however, is an
example ~here for intermediate temperatures the c axis and basal plane magnetic structures are distinct —thereby giv-
ing rise to just this sort of interference in the pure magnetic scattering. It may also be seen from this expression that
for L and S purely real or imaginary, the cross section is independent of the circular component. For a structure fac-
tor whose spatial direction is parallel to a U-basis vector, the cross section is independent of both the circular and
45'-linear components.

C. Interference scattering

From Eq. (8) we write

e
t,r(&M )P&M,') —(M, )I (M.'))

'2
— [I (pm' »m+p" mzz cos28)+P&Im(p'm ~, p*mzz cos28)+—P, lm(p'm

&
+pz' mcozs28)

PlC

+P„Re(p'm, z
—p*mz, cos28)],

where we have substituted for (M, ) using Eq. (7) and m, represent the elements of (M ). When (M ) is diagonal
the interference term is independent of the circular and the 45 -linear components. When (M ) is off diagonal, the
only coupling is to the circular and the 45'-linear components.
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2 ((sin28)(1+P& )(p'Sz' —p"S2 )
@leAle

Substituting for (M ) from Eq. (6),
'2

8o' e

+ (sin28)(cos28)(1 P&—) [p'[2(sin 8)L z' +S&' ]—p"[2(sin 8)L 2+ST ] I

—Pz(sin8}I (1+ cos28){sin28)[p'(L
&
+S', ) p"(—L"

, +S &' )]—(1—cos28) (p'S& —p"S2' ) I

—P((sin8)I(1 —cos28)(sin28)[p'(L'('+S(') —p"(L I+S') )]

—(1+ cos28)(1 —cos28)(p'S&' —p"S& ) I ) .

In this expression p' and p" refer to the real and imaginary parts of the charge form factor, respectively. When P=0
the only contributions to the interference term come from magnetization density oriented perpendicular to the
difFraction plane. The interference term is considerably simplified for centrosymmetric systems (when LJ"=S,"=.0).
Then,

Gf O'

dQ 2
((sin28)(1+P&)p"S2'+(sin28)(cos28)(1 P&)p"[—2(sin 8)L&+S, ]

PIC AC

+4(sin 8)P„[(cos 8)p'(L, +S, ) —(sin 8)p'Si]

—4{sin 8}P&[(sin 8)(cos8)p"(L~+S, ) —(sin8)(cos 8)p"Sz]I .

It is seen in this case that the circular component cou-
ples to the real part of the electronic form factor, while
both linear components couple to the imaginary part of
the electronic form factor.

V. KXAMPI.ES

%e now apply the general formulas obtained above to
several simple examples of magnetic structures. %'e re-
call in this regard that synchrotron radiation is predom-
inantly linearly polarized within the median plane of the
storage ring (P&——kl, depending on the orientation of
the difFraction plane) and elliptically polarized above and
below the median plane' (P„,P&&0). The detailed po-
larization dependence of the incident beam depends on a
number of machine parameters including beam size,
magnet geometry, electron energy, etc.

A. Ferromagnets

In ferromagnets the magnetic and charge scattering
are coincident in reciprocal space. Since the magnetic
scattering is typically reduced from the charge scattering
by ~ —10 it is diScult to measure the magnetic

scattering from ferromagnets directly. One method to
over come this limitation is to introduce a magnetic field
and measure the ffipping ratio, thereby isolating the in-
terference term in the cross section. ' As will be seen, it
is also possible to isolate the interference term by "Rip-
ping" the incident polarization. In addition, because
the magnetic scattering also Hips the incident polariza-
tion (for some geometries), it is in principle possible to
measure the pure magnetic scattering from a ferromag-
net by analyzing the polarization of the scattered beam.
Experiments performed to analyze the polarization of
the magnetically scattered beam are described in refer-
ences 10 and 20. In the Appendix we develop a formal-
ism for these experimental schemes by introducing the D
matrix for detection eSciency. For written simplicity
we assume below that the spin- and orbital-angular-
momentum densities are collinear.

(i) If I. and S are perpendicular to the diffraction plane
(parallel to Ui ), then

S 0
(M ) = sin(28) . z

4

and the interference term is

(sin28)((1+P&)(p'S" —p
"S'}

P7lC

+(1 P&)(cos28) Ip'[2{sin—8)L "+S"]—p"[2(sin 8)L'+S'] I ),
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independent of P& and P„. In this case the real and imaginary parts of the charge form factor multiply the imaginary
and real parts of the magnetic structure factor, respectively. The interference cross sections for purely circular and
45 -linear incident polarizations are identical and equal to the result for P=0. Note that for purely linear incident po-
larization (P& ——+1) it is possible to separate L and S by alternately scattering in the horizontal and vertical planes.
For centrosymmetric systems with P&

——1 we recover the simple result '

2
2

mc z
(sin28}p"S .

PtlC

The magnetic scattering for L and S along U2 is
'2 ' '2

—(»n'28)[(1+P, ) [
S

f
'+(1-P, ) ]

2(sin'8)L, +S
~

'j,
7nC PIC 2

independent of P& and I'„. The final polarizations are

P& ——(P&IS'[2(sin 8)L'+S']+S "[2(sin 8)L "+S"] j

P„[S'—[2(sin 8)L "+S"]—S"[2(sin 8)L'+S']J)/ —,'[(I+P&)
(
S

~
+(1 P&)

~

2—(sin 8)L+S
( ],

P„'=(—P&IS"[2(sin 8)L'+S'] —S'[2(sin 8)L"+S"]j
+P„IS'[2(sin'8)L'+S']+S"[2(sin'8)L" +S"]J )l—,'[(1+P&)

~

S
~

'+(1 P&)
~

2(—sin'8}L+S
~

'],
(1+P&) )

S [
—(1 P&) ]

2(s—in 8)L +S
)

'

(I+P&}(
S

(
+(1 P&) ]

2(s—in 8)L+S
(

For noncentrosymmetric systems the magnetic scattering
mixes the 45'-linear and circular components. Note also
that for L=O,

ing Ripping ratios in a magnetic field) as has been
demonstrated in a powdered ferrite.

The magnetic scattering is given by
'2 .

22

(sin 28)
(
S ~, P'=P .

pile Nlc
PIC

'
2sin 28sin 8

~
L+S

~

NlC

2

P7lC
(sin 28)(cos8)P„

x [p'(L. '+S') p"(L "+S")]. —

In contrast to the last example, the interference scatter-
ing now depends on the product of the real parts of the
charge and magnetic structure factors, on the product of
the imaginary parts of the charge and magnetic struc-
ture factors, on the degree of circular polarization, and
on the sum (L+S). Because of the linear dependence on

P„ it is possible to isolate the interference term by tak-
ing the di8'erence in intensities above and below the
median plane of the storage ring {as well as by measur-

Thus, in this configuration it is the orbital magnetization
density which introduces the polarization dependence
into the magnetic cross section. Finally, we point out
that for unpolarized incident radiation (P=0) and L=O,
the magnetic scattering is also unpolarized, P'=0.

(ii) If L and S are in the diffraction plane and parallel
to UI, then

(M }= —i(sin28)(sin8)(L +S)cr„,
where o„ is the Pauli matrix defined above. Setting
P& ——0, the interference term is

independent of incident polarization. The final polariza-
tion is

e

mc

2

4/S
/

sin 8,

independent of the incident polarization and orbital-
angular-momentum density. In contrast to neutron
scattering, the cross' section for magnetic x-ray scatter-
ing is nonzero when the momentum transfer and the
magnetization are collinear. The final polarization is

P'=(P~, P„, P() . ——

P'=(Pt, P„, P;) . — —

The magnetic scattering Aips the linear and 45'-linear
components, but not the circular component. This
suggests that for purely linear incident polarization
P&

——1 the magnetic scattering may be directly measured
by analyzing the rotated linear component.

(iii) If L and S are in the difFraction plane' ' parallel
to —U3, then

(M ) =2(sin 8)SO.&,

where o.
&

is the Pauli matrix defined above. The mag-
netic scattering is
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The magnetic scattering Aips the initial circular and
linear polarizations, again suggesting the possibility of
measuring it directly by analyzing the polarization of the
scattered beam. Setting I'& ——0, the interference term is

2
do' e 4(sin'8)P„(p'S' —p"S") .

8. Antiferromagnets

In the following we make an analogy to the rare-earth
elements and write the structure factors for L(K) and
S(K) in terms of a single quantum J=L+S. Thus,

The interference term is again linear in P„and indepen-
dent of the orbital-angular-rnomenturn density.

%'e remark that, in principle, the spin and orbital
magnetic-moment contributions to the cross section may
each be separately measured in ferromagnets. For exam-
ple, in cases (ii) and (iii) above (and assuming a centro-
symmetric system), by rotating the moments from U, to
U3 and measuring flipping ratios in each direction, the
interference scattering is first proportional to I. +S and
then to S. The directions U& and U3 are particularly
convenient as the ratio 8 of the two cross sections is also
simple,

(sin8)' S
cosO 1.+S

Similarly, by analyzing the 6nal polarization for two
directions of the moment, the pure magnetic scattering
may also be used to separate I. and S. Provided the in-
cident polarization is well characterized, these same
techniques apply to the directions U& and U2.

It is also worth commenting that the angular and po-
larization dependence of the magnetic and interference
scattering and the final polarization of the scattered
beam may all be used to determine unknown ferrornag-
netic structures. For example, the existence of interfer-
ence or magnetic scattering at chemical Bragg positions
for linearly polarized incident radiation requires a com-
ponent of the moment paraHel to Ui. Similarly, the ex-
istence of magnetic or interference scattering for circu-
larly polarized incident radiation requires that magneti-
zation density lie in the U, -U3 plane. These directions
may be distinguished by studying the angular depen-
dence of the cross section for several different reflections
or by analyzing the 6nal polarization. A general tech-
nique for determining unknown magnetic structures by
x-ray scattering is to study the angular dependence of
the magnetic or interference cross sections, Eq. (14) and
(16), for rotations of the sample about the momentum
transfer. Although these last remarks have been made
in a discussion of ferromagnetic structures, similar state-
ments are possible for antiferromagnetic structures, and
particularly for uniaxially modulated structures.

cell

S(K)=(t, (K) g J„(0)e'
n atoms

(t)((K)=

to—a J z [L,(0)f(K r, )+f(K r))L, (0)j a)
J

( —,'L J+S.J)

In these expressions n is the vector giving the position of
the nth atom in a magnetic unit cell, v is the modulation
wavevector, g; gives the ith component of the magneti-
zation in the U basis, and U„(i) specifies the direction of
the ith component of the magnetization of the nth atom.
()I),(K) and (I)1(K) are the ionic form factors for the spin-
and orbital-angular-rnomenturn densities, respective-

&5, 22

(i) For uniaxially modulated systems, J„=Jg(~ n)U,
(g periodic) and all the results derived above for fer-
romagnets apply by introducing the prefactor

yg(~. n)ei(K ~) n J2

J„=[cos(r n)x+ sin(v" n)y]

where U+ ——U, +iUz and U =U, —iU2. Then
M ~M +M, giving magnetic scattering at satellites
split symmetrically about each chemical Brag g peak
along the direction of U3. Thus

and by making the replacements S, ~P, and L, ~()I),. In
contrast to the case for ferromagnets, the magnetic
scattering is now located at positions distinct from the
charge scattering and so may be directly measured. It
follows, of course, that the interference scattering is
zero. By measuring the cross section of the magnetic
scattering for suitable orientations of the moments (for
example, by rotation of the sample about the momentum
transfer or by use of a magnetic field), detailed
magnetic-structure determinations and separation of the
orbital and spin form factors are possible in a manner
analogous to that in ferromagnets.

(ii) The final example we consider is that of a simple
basal plane spiral with modulation wavevector v oriented
along U3, v= vU3. In that case we have

L(K) =(t.1(K) g J„(0)e' +i/, —sinO(((t I + (I), )

(sinO)($1+(t, ) i[2(sin 8)()I), +P, ]
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i(K+ri.s

x(sin 28)(1$,
1

+
I
gi+(('i,

I
sin 8)

and the final polarization is

0.5

p( 0

For simplicity we specialize to the case of linear polar-
ization with I'& 1——and assume ((), and Pi are real. Then
the magnetic scattering may be written

i

do. e J
mc' mc' 2

+2(sin8)(|i, (gi+il), )
I'„' =

I ((), I

'+
I @i+0, I

'»n'8

I'g ——
14, I

' —1&i+4. I

'»n'8

14, I

'+ IVi+0, I

'»n'8

From this result it is apparent that the term in the cross
section proportional to 1$, I

is the probability for po-
larization parallel to e~ in Fig. 1, while the term propor-
tional to

I
it'ii+P,

I

sin 8 is that for polarization parallel
to a~I. Thus, by analyzing the degree of linear polariza-
tion in the scattered beam it is possible to separately
measure the real form factors Pi(K) and ((i, (K) in a
magnetic spiral (see Fig. 3). Provided there is a single
spiral domain of well-de6ned helicity, then the circular
components of the positive and negative satellites will
have opposite helicity, as shown in Fig. 3. It follows
that by adding a circularly polarized component to the
incident beam and measuring the degree of linear polar-
ization for the two satellites, the helicity of the spiral
may be determined (see Fig. 4). Finally, note that if

-0.5—
S=0

I

0.2

s(Ki = 4

I 1

0.6 0.8 I.O
sing

sin 8=
I
iIii(K)+P, (K)

I

'

then the scattering is totally circular. Although the
efficiency is very low ( & 10 ), it is therefore possible to
completely convert linearly polarized radiation to circu-

—SATELLITE

0.5

P 01

+ SATELLi TE- 0.5

0.2 0.4 0.6
sing

0.8 I.0

05—
FIG. 3. K dependence of the scattered linear and circular

Poincare coeScients for linearly polarized radiation (P& ——1)
incident upon a magnetic spiral. Upper: %'hen L=O, then

P& ——[(1—sin'8)/(1+ sin 8}) is positive definite and decreases
from 1 to 0 with increasing momentum transfer K. %&en
S=O (and 0&0), then P& ———1. The dashed lines illustrate the
general behavior for two simple cases when the ratio of orbital
to spin form factor is constant. Lower: %hen L=o the scat-
tered circular Poincare coe%cient for the positive satellite is
negative de6nite and decreases from 0 to —1

[P'„=—2sin8/(1+ sin'8)]. When S=O, then P'„=0. The be-
havior for the negative satellite mirrors that for the positive sa-
tellite. For nonzero spin there is always a value of 0 for which
the scattered beam may be totally circular.

-l 0
0.2

l

0,4
sin8

0.8

FIG. 4. Linear Poincare coefBcient for scattering from a
magnetic spiral for the case L(E)/S{E)=3. The solid line
shows P& for incident Poincare vector P; =1 and P„=O.
There is no difference between positive and negative satellites.
The dashed lines illustrate the change when a small component
of circular polarization is introduced in the incident beam

(Pg ——0.90 and Pq ——0.43}.
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lar by scattering from a magnetic spiral. From theoreti-
cal calculations of the form factors for Pi and P„ it
turns out that this condition is approximately satisfied
for the (002—,') satellite of holmium with -10 keV in-
cident photon energy.

In this paper we have derived general expressions for
the polarization dependence of magnetic x-ray scattering
for high photon energies and indicated a variety of direc-
tions for new kinds of synchrotron experiments. The ex-
tension of this work into the resonant regime, when the
photon energy is near an excitation energy of the solid,
will likely produce novel e8'ects and remains to be car-
ried out. Finally, it is worth mentioning that while
polarization-dependent magnetic x-ray scattering experi-
ments are possible with present-day synchrotron sources,
reliable intensity measurements of the sort required for
some of these experiments are still diScult. This class of
experiment will clearly benefit from the next generation
of synchrotron sources, and particularly by the develop-
ment of beamlines or insertion devices with tunable po-
larization characteristics.¹te added in proof Afte.r completion of this
manuscript, we received a copy of this work by S.
Lovesy [J. Phys. C (in press)].
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APPENDIX D MATRIX
FC)R DETECTION EFFICIENCY

Quantitative polarization analysis may be included in

the formalism by defining a matrix D which represents
the detection e%ciency and polarization sensitivity of the
detector assembly:

e2
tr(DMpM ) .

2 e2 2

2
(1+ cos 28)1+ (1 —cos 28)tT&,

Z

where e2 is the analyzer reAectivity and 20 its Bragg an-

gle, The D matrix for a linear polarization analyzer
oriented at P' to the scattering plane' ' is

cosp 0
D3 ——e 0 sin P

. z —— [1+cos(2$)o -],

where e3 is the analyzer crystal reAectivity. Operation-
ally, the D matrix for the linear polarization analyzer
simply multiplies m» and m, z by cosP and multiplies
m 22 and m 2i by sing.

In this formalism an open detector has the D matrix

D) ——e)1,
where e, is the quantum efficiency for the detector. A

simple analyzing crystal diffracting within the scattering
plans has the D matrix

1 0
D =e

0 cos 20
L
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