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As a hypothetical inhomogeneous quantum many-body model, we take a weakly interacting
Bose gas made inhomogeneous by the presence of a weak external field. The interaction is as-
sumed to be Fourier transformable and characterized by a strength parameter A, ; this is also true
for the external field, characterized by a strength parameter e.. The ground-state energy is calcu-
lated to order F k using three methods: diagrammatic perturbation theory, correlated basis func-
tions (CBF)„and density-functional theory (OFT). The diagrammatic perturbation theoretical cal-
culation is new. It dift'ers from our earlier approach for homogeneous Bose systems which evolved
from the Hugenholtz-Pines theory. %'e are able to reproduce the same results in an eScient
manner. For the inhomogeneous system, the results are used to measure CBF against OFT. It is
found that in their simplest forms CBF yields results which are better than the renormalized OFT
by Ebner and Saam. In particular, CBF is superior to OFT in the local-density approximation,
even though the latter was designed to take care of systems with slow and small density variations
such as the model considered here.

I. INTRODUCTION

The method of correlated basis functions (CBF) has
been applied to treating a wide variety of homogeneous
many-body systems, ' including liquid and solid heli-
um„nuclear matter, and Coulomb systems. That the
method could be successful for Bose and Fermi systems
alike has to do with its apparent ability to sum both ring
and ladder diagrams„as demonstrated in an analysis by
one of the authors and his collaborators in 1970. In
that work, the pair correlation function and ground-state
energy for a weakly interacting Bose gas were first calcu-
lated exactly in the perturbation theory using the for-
malism of Hugenholtz and Pines. The same quantities
were then obtained using the CBF approach. Results
from the two methods were compared order by order in
powers of the density and the interaction strength. This
helped determine what perturbative diagrams were
summed by the CBF. Indeed, from this analysis a sys-
tematic scheme was identified that enabled the authors
to use the Hugenholtz-Pines theory to suggest optimum
three-particle and higher-order factors for correlated
wave functions. ' Thus, diagrammatic perturbation
theory and CBF became intermingled.

We now have another opportunity to bring together
two distinct many-body formalisms —this time for inho-
mogeneous systems. Qn the one hand, we have the con-
ventional density-functional theory (DFT), invented and
popularized by Kohn and co-workers. Qn the other, we
have again the CBF—a late contender in the field of met-
al surfaces, but an early leader for inhomogeneous heli-
um systems. An interesting development is that
density-functional practitioners are now turning toward
employing the CBF for treating metal surfaces. '

Once again we return to a weakly interacting Bose
gas. The reason is that it is one of the few systems

which offer us exact solutions in the perturbation theory
against which approximate theories can be compared.
We recognize that the conclusions drawn from consider-
ing the weakly interacting Bose gas cannot be general-
ized to liquid-helium or metal surfaces. However, it
constitutes a first step and provides us with useful indi-
cations and directions for future analyses.

The system under consideration, being weakly in-
teracting, cannot be inhomogeneous in the ground state.
The inhomogeneity must be generated and maintained
by an external field. We introduce such a weak external
field, with a strength parameter c, to cause a weak inho-
mogeneity in the system of bosons whose interactions
are characterized by a Fourier-transformable potential
with a strength A, . As in Ref. 5, we now carry out calcu-
lations in powers of e and k. The external field is„of
course, an added complication. The density is now a
function and can no longer serve as an expansion param-
eter.

The calculation is carried out with three methods, per-
turbation, CBF, and DFT, rather than two. In the per-
turbation theory, we use a method somewhat different
from that used in Ref. S. In the CBF, we followed
essentially the patterns of Refs. 8 and 9. In the DFT, we
use first the local-density function (I.DF), which is sup-
posed to work well in the region of mild inhomo-
geneities; we then take into account the second-order
nonlocal density correction using the renormalized DFT
by Ebner and Saam.

The results of the three calculations are finally com-
pared.

II. PERTURBATION THEORY

Our system consists of X bosons interacting via a pair-
wise potential XU ( l r; —rj ~

), and placed under an exter-
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nal field e U,„,(r; } which has no efFect on the normalizing
volume Q. The Hamiltonian of the system is given by

H = g ——,
' V, + —,

' g A, u (
I r, —r, I

)

+ g sU, „,(r;),

where fi /m has been set to unity. In the second quan-
tized form, Eq. (1) becomes

8= —
—,
' f Vt(r)V'%(r)dr

+—f f ql (r')4 (r)u(
I
r —r'

I
)%(r)q/(r')drdr'

2

+e f '0 (r}U,„,(r)%(r)dr,

where 4 (r) and %(r) are, respectively, the creation and
annihilation operators of a boson at point r. Equation
(2) can be expressed in the momentum space representa-
tion by using the relation

eik r
%(r)=aD+ g', az .

( II )
i /2

The prime on the summation indicates that k=O is ex-
cluded.

Since the noninteracting ground state of N bosons is a
state of total condensation, i.e., a state in which all N
particles are at zero momentum, Wick's theorem, usual-
ly used to find the ground state or Green's functions via
the perturbation method, does not apply. " One way
to overcome this di%cult~ is to replace the zero-momen-
tum operators aD and aD by a c-number (nD}, where1/2

n D
=XD /0, and XD is the true ground-state zero-

momenturn condensate. The replacement of ao and ao11

by (nD)' in Eq. (3) gives a particle number nonconserv-
ing Hamiltonian in Eq. (2). Using the Legendre trans-
formation, the system can be described by the Hermitian
operator

(4)

where p, the Lagrange multiplier, is the chemical poten-
tial and 8' the particle number operator

R=ND+ g'ataq . (&)
k

Explicitly, Eq. (4) has the form

E= —pX D'+OnDAu(0)+ g'( —,'k —p)alai, +AV+eU,

with

V = V]+ V2+ V3+ V4+ V5+ V6,

U = U1+ U2+ U3

1 g

V, = g' [u(k, —k, )+u(k, —k, )]a„a„a„a„
k k k

I 2 3 4
kl, k2, k3, k4

X5(k, +k2 —k, —k4),

)
1/2

[u(k, )+u(k, )]
kl, k2, k3

Xa„a„a„S(k,+k, —k, ),

[u(k2)+u(ki)]
kl, k2, k3

Xak ai, a~ 5(ki —ki —ki),
1 2 3

0
V4 = g™u(k)ai,a

k

No
Vs —— g' u(k)ai, a

k

No
V6= g' [u(k)+u(0)]aiaz,0

)
i /2

0 g' O,„i(—k)ag,

)1/2

U2 —— g' 0,„,(k)ai, ,2 ~ ext

s A
Ui ———g' u,„,(q)a &+qa&',

kq

where

u(k)= f e '"" ''u( Ir r'I )d—(r —r')

For any given mean particle density n =X/0, the
ground state of the original system, Eq. (2), can be ob-
tained by the following procedure.

(i) KD is obtained, using Goldstone's theorem, from

0,„,(k)= f e '"'U,„,(r)dr .

We have assumed 0,„,(0)=0 without losing generality.
Since U,„,(r) is real, we have

, „,(k ) =~;„,( —k ) .

The quantities I V, I and [ U, I can be represented by dia-
grams as shown in Fig. 1.

The normalized ground state of E in Eq. (6),
I QD(p, ED)&, can be obtained by using the Gell-Mann

and Low theorem. The condensate Xo is determined at
the value which minimizes the thermodynamic potential
at zero temperature,

&D=&ID(I »D) I& I ID(P»D}& .

This condition gives

BE (TD=0, 0, P, XD ) =0.
8%0
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k, k,

4 [v(k, k, )
+ v(k, -k,)]

V, V,
k,~ k,

2' [v(k, )+v(k, )] z [v(k, )+v(k, )]

functions only of N, i.e., p, (n ), no(n ). Substituting these
functions into Eq. (12) we finally obtain the energy densi-
ty E/0 as a function only of the mean density n.

The method used here to calculate E/0 and p, differs
from the method used by Sim et a/. The latter called
upon the following relations for E/0 and p in the
homogeneous interacting case (a=0),

V,

-k
2 v(k)

V,

-2 v(k)

V,

v(k) + v(o)
po=Xii(0 0)—Xo2(0 0) (14)

where G(k, eo) is the time Fourier transform of the
time-ordered Green's function

' = n»+ ' I dk I d~o-'(eo+-'k')G(k, ~o),2 2

(13)
and

U,

U,„,(-k) ,
'

U,

,: U.„,(k)
I

k

U,

~
u, „,(q)

ll
k+q k

FIG. 1. Diagrams for vertices V and U.

Eq. (6):

Ko = @No+ no—k—v(0)+, ~o(p, No),

with

G(k;r, t')

i(po—(p, ,N, )1T[a„(r)a„(r')]1/,(p, ,N, )), (15)

and the operator az(i) is shown in the Heisenberg repre-
sentation. The contour C in Eq. (13) closes in the upper
half-plane. X»(0,0) and Xo2(0,0) are the self-energies at
zero energy and momentum arguments. ""

In the presence of an external field (a&0), it can be
shown that an additional term

( «2 ) ( it'o(v»o )
1

U
I Po(p»o ) )

~&o= 0 V+«
m=o

X
k

X(AV+eU) o)

has to appear on the right-hand side of Eq. (13). Equa-
tion (14) remains valid, except that X„and Xo2 now in-

clude additional diagrams which contain U vertices.
The method used here, Eqs. (8)—(12), is much simpler. It
recovers the results of Sim et al. ' to 0(A, ) when applied
to the homogeneous case, as will be seen below.

A. Homogeneous case

where
~

0) denotes the noninteracting ground state
(A, =O, e=O). Only connected diagrams are taken on the
right-hand side of Eq. (9). We expand b,Ko in order of
the external-field strength c.

(ii) Equations (7) and (8) give

BbKo(p, , No)
p=noku(0)+

0 p

(iii) From Eq. (5) we have

N—:(P (p„,N )18
~ g (pN ))

=N + g'(g, (p, ,N, )1 „„1g(p, N, )) .
k

(iv) Using Eqs. (4) and (8) the ground-state energy E is
obtained:

Consider c=0. The nonvanishing connected diagrams
which contribute to Io in Eq. (9) are given in Fig. 2 for
m =0, 1, 2, and 3. These diagrams are evaluated using
the [V, U] defined in Eq. (6) and Fig. 1. The following
results are obtained:

2f

F: =K, +I N =I (N N, )+ n,'—Xv(0)+~—,(I,N, ) .
2

(12)

From Eqs. (10) and (11), we are able to express p and No

2I 2]
FIG. 2. Nonvanishing connected

geneoos system.
diagrams for the homo-
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Io —~ "o u (k) ~ "o fu(k)+u(0)]u (k)dk , + , dk
2(2m)3 k~ —2y, (2m)' (k —2y, )

o f f &(k)&(p)&(k+p) ~ "o f dk f d f d u(k)u(q)u(k+p)u(q+p)
2(2m )6 (k' —2y)(p' —2y) 2(2m )' (k —2y)(p' —2y)(q' —2y )

(2c) (2d)

no f f u(p)[u(p)+u(0)]u(p+k)u(k)
(2m)' (k' —2y)(p' —2y)'

(2e), (2f)

2kno f(2n )'
[u(k)+ &(0)]'u '(k)

(k —2y)

(2g), (2h)

X'n,'
2(2m )3 f

(2i)

u ~(k)

(k —2y)

&0 V +PV VP+V V P+VP+
(2&) (k —2y )(

~
0+k I' —2y)[k'+p'+

I k+p I

'—6y]

u '(k)[&(p)+ u(k+p)]'
(2~)' (k' —2y, )'[k'+p'+

~
k+p

~

' —6p]
p

(2k)

+0(A, ) . (16)

Using Eqs. (10) and (16), we have

3~ ~o f „[&(k)+u{0)tu '(k) ~ "o f dk f d u(k)u(p)u(k+p)
(2n )3 k —2y (2n ) (k —2y) (2n') (k —2y )(p —2y )

no f f f u(k)u(q)u{k+p}u(q+p) o f f u(p)[u(p)+u(0)]U(p+k)u(k)
(2m)o (k —2y)(p —2y )(q —2y) (2~) « —2P }{p —2y }

SX no [&(k)+&(0)] u (k) o u (k)
(2n ) (k —2y) (2~) (k —2y)

6~ no f „f u(k+p)u(k)[u(p)+u(k)][u(p)+u(p+k)]
(2n ) (k' —2y)( ( p+k [

' 2y)[k'+p + (
—k+p (

'—6y]

dk dp
3~ no

dk d
u '(k)[&(p)+u(k+p)]'

(2~)' (k' —2y)'[k'+p'+
( k+p (

' —6y]
+

Now, using the Green's function expression Eq. (15), Eq. {11)can be written as

pg=pgo+ f dk f deoa(k, eo) .
(2m ) C

To third order io A, , from Ref. 5 for a=0 me 6nd

APlo=K —Plo= —

3
6fk

2 ~
—

3
dk-no u (,k} 4~ &0 u (k)[&(k}+u(0)]

(2n. )' (k' —2y) (2n )' (k' —2y)'
2~~O

&& &
VPVkm k+P

(2n )s (k' —2y)(p' —2y)'

Now we expand yo ——p, (a=0},
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Po= X Po
m =0

and ~rite

ll()=n f()=n g fo™A.
m =0

Substituting Eqs. (20} and (21) into Eqs. (17) and (18), comparing order by order, we find

f(0)

f(1) 0

(20)

(21)

{3}

n —I dku (k)
(2lr )

4n U k 2n d~ d
UkupUk+p

(2~)' k' (2~)' k 2J 4

Po =0~{0}

po(() =n u(0),
—n dku (k)

(2lr) k

(2) 3n u (k) n dk u(k)u(p)u(k+p)
(2~)' k' (2~}' k' '

(4) 3n f d p u (k)u (p) n
y I y

u(k}u(q)u(k+p)u(q+p)
(2lr )

dp dq
2p2q2

6n '
d dk

u '(p)u(k)u(p+k)
(2lr) k p

dp
10n' dku (k)
(2~)' k'

6n

(2lr)
u(k+p)u(k)[u(p)+u(k)][u(p)+u(p+k)]

dp
k ip+ki (k +p + ik+pi )

u (k)[u(p)+u(k+p)]
k (k +p + ~k+p~ )

Equations (22) and (23) are identical to Eqs. (16) and (17) of Ref. 5. Substituting Eqs. (21), (22), and (23) into Eq. (12),
using Eq. (16), we find for

Eo
0

E(m}

m=0

E(0)

0 -=0,

{1}

,'n u(0),—

+o nu (k)—
dk

2(2~)'

n dk u '(k) n dk d u(k)u(p)u(k+p)
(2~)' k' 2(2~)'

dk- dk dp
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(2m)

2'
(2m )

2'
(2m )

(2~)'

u '(k)u '(p) n '
dk d d

&(k)u(q)u(k+p)u(q+p)
k p 2(2n) kpq

k ~
~ ~ h
u (p)u(k)u(p+k) 5n I u (k)8p

k p 2(2~) k6

u(k+p)u(k)[u(p)+u(k)][u(p)+u(p+k)]
dp k'

I p+k
I
'(k'+S '+

I k+p I

')
u '(k)[u(p)+u(k+p)]'
k (k +@2+ ~k+p~ )

By using the identities

2n ' u(k+p)u(k)[u(p)+u(k)][u(p)+u(p+k)]Jp
(2~) k ~p+k~ (k +p + ~k+p~')

2n —„„u(p)u(p+k)u (k) 2n
dk d

u (k)u (p+k)
(2rr) k p ik+pi2 (2m) k ip+ki (k +p + ik+pi )

n '
dk d

u '(k)[u(p)+u(k+p)]'
GP k'(k'+p'+

t
k+p

~

')
2n ' —

dk d
u '(k)u'(p+k)

(2~)' k'«'+p'+
I k+p

I

')
we find Eq. (24) identical to Eq. (19) of Ref. 5.

8. Inhomogeneous case

2n
dk d

u (k)u(p)u(p+k)
(2~)' k'(k'+p'+

~
k+p

~

') '

4nul,
i U,„,(k)

i
u(k)

+ 3
Gfk

(2n ) (k —2p)
(3c),(3d)

2n 20K,
i
0,„,(q) (

u (k)u (k+ q)

(2n ) (k —2p)(
f k+q (

—2p)(k +
f
k+q

/

—4p)
dk dq

(3h)
16noA~

~
0,„,(k)

~
u(k)[u(k)+u(0)]

dk
(2rr ) (k —2p)

(3i), (3j),(3m), (3n)
Sn02X'

~
U,„,(k)

~
u(q)[u(q)+u(k+q)]

(2rr)6 ~ (k —2p)(q —2p, )(q + i k+q i

—4p)
dk dq

(3o),(3')
8no&. '

~
0,„,(k)

~

-'[&(k)+u(0)]'
(2vr)' (k' —2p)'

4no2A'I
~

,
~
~,„,(k)

~
u(k+q)u(q)

(2m )
8k Gq

(k —2p) (
~
k+q

~

—2p)

(3k ), (31)

(3s)
4n OA, ~ U,„,(k)

~
'[u(q)+&(k+q)]

dk dq— -+O(A, ') .
(2rr )' (k —2p) (q +

i q+k
~

—4p)
(3u)

Now we are ready to consider the inhomogeneous case—e&0. We will consider only the diagrams in Eq. (9) with
interactions up to order c A, . Using conservation of momentum, it is easy to see that I& ——0 to al1 orders of A, . The
nonvanishing diagrams which contribute to Iz are shown in Fig. 3 to order A, .

These diagrams are now evaluated using V and U as defined in Eq. (6). We find the following results:

2nD —
~
0,„,(k)

~

' 4noi,
~
0,„,(k)

~
[u(k)+u(0)]

(2rr ) k —2p (2rr ) (k 2 —2p)
(3a) (31)

8noA,
i U,«(k) i

u (k)
dk

(2m ) (k —2p)
(3e), (3f),(3q), (3r), (3t)

2' Ok i U,„,(q)
i

u (k)
6f k Gfq

(2n ) (k —2p, ) (k + i k+q i

—4p, )

(3g)
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m = 1 (p ~ go) m =- 2 (p2gi)

m = 3 (p'g')

38

30 3d

An =n —no =Ano+ kn ) E, +An 2E +
b,no has already been given by Eq. (19). From the con-
servation of momentum it is easily see that An, :—0 to all
orders in A.. The lowest-order diagrams in k which have
nonvanishing contributions to An 2 are of order A, .

We now write no in the "true'* expansions of c and A, ,

flO=lTf =ll(fO+f(E+fiE + ' ' ' )

3j

'3h 31

3I

30

I(minim
m=0

The expression for fo has been given in Eq. (22). We

will next determine f, and f2 up to 0 (e A, ).
To find the first-order terms p, and f(, we substitute

Eqs. (27) and (29) into Eq. (26). To first order in e we

have

3p

I

3q

aa (p, n, )

p, =n i(u(0)f, +
Bno "O=nfO nf

38 3U

aa (p, n, )

Bp p=p, P) ~

no =--nfo

FIG. 3. Nonvanishing connected diagrams for the inhomo-
geneous system.

where

From Eq. (10), up to the second order in s, we have

p=n, x&(0)

() 1 E,+ — Io(p, no—)+ I2(p, no—) +O(e'),

()ll (i 0
Similarly, substituting Eqs. (27) and (29) into Eq. (28) us-
ing the fact that bn

&

=—0, we find to erst order in c,

van, (p, n, )
nf( ——--

ano

where Io and Iz are given by Eqs. (16) and {25). We can
also write p as

()b,no(p, no)
+ p=p, P)

no ——nfo

(31)

P =Po+P ~~+P2~ + ' ' '2

with

(minim

m=0

po has already been obtained for the homogeneous case
in Eq. (23) to O(A, ). Here we proceed to determine p,
and pp to O(e A, ).

To find the relation between no and n, we again use

Eq. (18). Expanding hn in orders of the number of
external-field vertices in G(k, eo), we write

From Eqs. (30) and (31), expanding in i(, order by order,
one can prove that the only solution is the trivial solu-
tion f', ' =0 and p', ':—0 for all m. This is because b, no
and A have diFerent structures in the integrand to all
orders of A, .

In order to find E/0 up to O(e A. ), we still need to
know pz ', pz", f2 ', and f(z". Since the lowest-order
terms in A, for both hn0 and b, nz are of 0 (A. ), we find
from Eqs. (28) and (29) f 2

' =f2" ' =0.
To find p'i ', p2", and p2 ', we substitute Eqs. (27) and

(29) into both sides of Eq. (26) and make order-by-order
comparisons. In the limit Q~ oc,

A@2' =(1)

2 dk-
(2m. ) k

iSn I
tI,.{k)

I

'U {k) 4n g(0)dk + dk
{2'�)' k (2n. ) k
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4n I 0,„,(k)
I

u '(q)
+ dk dq(2'�)' k'q4

4n I 0,„,(k)I u (q) 96n I U,„,(k)I u (k)
+ dk dq dk

(2~)' k q (2m)

4n 4n I U,„,(q)
I

u(k)u(k+q)
dk dq — — — dk dq(2~)' k'(k'+

I k+q I') k fk+qf (k +Ik+qI )

8n I ~...«)
I

u«+q)u(q) 16n I U,„,(k)
I u(q)[u(q)+&(k+q)]

dk dq —— dk dq
(2m ) I'I k+qI' (2~)' kq (q +Ik+qI )

8n I U,„,(k)
I
-[u(q)+&(k+q)]

dk dq
(2m ) k (q'"+

I q+k
I

)

Finally, from Eq. (12), the ground-state energy can be written as

noF =0 Au(0)+pE(1 f)+ID(jz—, n~)+s I z(p, no) +0( s), (33)

where f„Io, and Iz are given by Eqs. (29), (16), and (25) respectively. Expand E as

E =Eo+E,c+E2c. +
with

E(m)gm

Eo/0 is given by
suits obtained for

Io] —2n

(2m )

[]) Sn

(2m )

Eq. (24). Using the known results f, =—p, =—0, we find from Eq (33) .that E, =0. Substituting the re-

p,
' ' p"' p,

' ' p' '
p,
'" f' f' ', and fz" into the right-hand side of Eq. (33), we find

I
0,„,(k)f'

dk
k

I 0,„,(k)
I

u(k)
dk

A:

2 4n 32n '
k q (2m)z k6

2n I U,„,(q) I
u '(k)

I 0,„,(q)
I

u(k)&(k+q)
dk dq 4 2

dk dq
(2m ) k (k + Ik+qI ) (2n) k'

I
k+ q I

'(k '+
I
k+q I

')

4IT I 0,„,(k)
I u(k+q)u(q) 8„—z

I U,„,(k)
I u(q)[&(q)+u(k+q)]

dk dq — — dk dq
(2n') k'

I k+q
I

' (2~)' k'q'(q'+
I
k+q

I

')

4n I ~.,«k)
I
'[u(q)+u(k+q)]'

dk dq-
(2m ) k (q +Iq+kI )

III. CBF THEORY

For a system of X bosons governed by the Hamiltoni-
an of Eq. (1), a simple choice of the CBF variational
ground-state wave function is

(35)

where y(r; ) is to account for the presence of the external
Geld U,„,(r), and only two-body correlating factors
u(r. , rl, ) are included. [We neglect higher-order corre-
lating factors such as uz(r;, r~, rk ), u4(r;, r~. , rk, r&), . . . . ]
Note that u (r, , r„. ) need not be a function only of

I
r. —r„ I

as in the homogeneous case. Our task now is

to determine the qr(r;) and u (r, , rk ) which mimmize the
ground-state energy.

The I-particle distribution function n (r„rz, . . . , rI)
and correlation function g (r, , rz, . . . , rI ) for the chosen
variational wave function are de6ned by

20 CBFdr (+ )dr(+g ' ' dI~
n (ri, rz, . . . , rI )= I PCBFdridrz ' ' drv

=n(r, )n(rz) . n(r, )g(r„rz, . . . , r, ),

(37)
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where n (r) is the single-particle density distribution.
Take the gradients of both sides of Eq. (36): For I =1

and 2, we obtain the generalized Bogoliubov-Born-
Green-Kirkwood- Yvon (BBGKY) equations

V, n (r, ) =2n (r, )V, »q(r, )

+ f drzn(r, )n(rz)g(r~, rz)V~u(r& rz»

Vg (r„rz)=g (r, , rz)V&u (r&, rz)

dr, n r, ) g r, , r„r,
—g(ri rz)g(ri r3)]

XV)u (r), rg) (39)

Equation (38) has been used to obtain Eq. (39). Using
Eq. (38), the variational ground-state energy

& q'caF
I

H
I

q'caF&
EcBF=

& q'caF
I
q'caF &

can be expressed as

Eca„=—,
' f dr[Vs'n (r)]z+e f dr U,„,(r)n(r)+ —f dr, f «zn (r~)n (r )g(r~ rz)U(

I ri —rz I
)

+-,' f dr, f drzn(r, ) n(rz) g(r„r z)[ V& u( ri, rz)]'

—-„' f dr, n (r, ) f dr, n (r, )[V,u (r„r,)]g(r„r, )

+,' f dr, f dr, f dr, n(r, ) n(r z) n(r, )[ V) u(r„r z) V, u (r, , r, )]g(r., z, .) . (40)

Using Eqs. (39), Eq. (40) can be written as

&caF = —,
' f dr[Van (r)] + e f dr U,„,(r)n (r)+ —f dr, f drz n (r, )n (rz)g (r„rz)U (

I
r, —rz

I
)

+ —,
' J dr, f drzn(r, )n(rz)V, g(r„rz) V, u(r, , r, ) .

Now we expand n (r), g (r„rz), and u (r, , rz) in orders of E and A, :

n(r)= g n (r)e, n, (r)= g 'n"'(r)A,
~=0 m=0

(42)

g(r„rz)= g g (r, , rz)E', g (r„rz)= g g„' '(r, , rz)A,

u(r, , r, )= g u (r, , r, )s,
a=0

u (r„rz)= g u '"'(r&, rz)A,

The following properties are known for n „g, and u

(i) In the homogeneous case we have

no(r) =n =N/fI, —

go(ri r»=g'o(
I
ri —rz

I
» uo(r»rz) uo(

I
ri —rz I

) .

(ii) Since

N=nQ= f n(r)dr= g e f n (r)dr=nQ+ g e f n (r)dr,

6'„(0)= f n (r)dr=0, a=1,2, . . . , oo .

(iii) For a & 1, we still have the following symmetry properties:

g (r, ,rz)=g (rz, r, ),
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(iv) When there is no interaction between the particles, i.e., A, =O, we should have

g (r, ,rz}=1,

u (r, , rz) =0 .

Since gp '(r„rz) = 1, Eqs. (43) and (44) then lead to

g."'(r„r,)=0, a=1,2, . . . ,

u."'(r, ,r, )=0, a=0, 1,2, . . . , ~ . (48)

Using the expansion formulas (42)—(44) and the properties given above in Eqs. (45)—(47), Eq. (41) can be rewritten as

E~BF—Eo+eE)+s E2+2

with

Ep = ni—f gp(r)u (r)dr+ n—f Vg p(r) Vup(r)dr,
0 0

n A,
—2

E) = f f gi(ri, rz)U (
~
ri —rz

~
}dri drz+ f f Vigi(fi, rz) V)up(r), rz)dri drz

—2+" f f V,g.(r, , rz} Vfu](ri

(50)

(51)

Fz —— [Vn, (r)] dr+ f U,„,(r)n, (r)dr+ —f f n, (r, )n, (rz)gp(r, , rz)U(
~
r, —rz

~
)dr, drz

1 2

n+ri& ~&ii&~g&Ii&, rz~Ui
I
r, —rz

I ++&«z+
& f gz(&i r~IU~

I &i —&~
I
+r~«~

+ —,
' f f n, (r, )n, (rz)V, gp(r, , rz). V,up(r, , rz)dr, drz

+—f f n, (r, )Vgp(r, , rz) V, u, (r„rz)dr, drz+ —" f n, (rz)V, gp(r, , rz) V, u, (r, , rz)dr, drz
8

+ —f f n, (r, )V,g, (r„rz) V,up(r„rz)dr, drz+ — f n, (rz)V, g, (r, , rz) V, up(r„rz)dr, drz
8

+
8 f f V)gp(r„rz) V,uz(r„rz)dr, drz+ f V,g, (r„rz).V', u, (r„rz)dr, drz

8

+ f f V',gz(r„rz) V, up(r), rz)dr, drz, (52)

where we have once again assumed 0,„,(k =0}=0 in Eq. (51) without loss of generahty.
The homogeneous case, e.=o, has been discussed thoroughly in Ref. 5. In the Appendix, we shall derive some of its

variational properties.
We now consider the first-order terms in e, . Expand Ei of Eq. (51) in orders of A, , and write it in the momentum

representation, we have

with

E, = y EI"a-,
m=0

(53)

z',"=o,
~(I) O (55)

Z"' = " f ""'(I I ) "(k) " ""'(k) dI
" f k'""'(k) '"(I I )di (56)
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—2 —2 —2

, f g 1
'(k, k)u(k)dk+ —,f k'g ',-'(k, k)u 0"(k)dk+ —, f k-g ',"(k,k)u 0-"(k)dk

2(2ir ) 8(2~)' 84,'2w&)+, f k'g 0"(k)u ', '{k,k)dk+, f k g „(k)u I"(k,k)dk .
8(2m ) 8(2m )'

The properties (i) and (iv), Eqs. (45) and (48), have been used in obtaining Eqs. (56) and (57). The Fourier transform of
any function F( r „rz ) is defined by

P(k, ,kz)= f F(r„rz)e ' ' ' 'dr, dr, .

In order to determine the relationship between g'&
' and u', ', as for the homogeneous case shown in the Appendix,

we call on the use of the BBGKY equation (39) in conjunction with the Kirkwood superposition approximation,

g (r„rz, rz) =g (r„r, )g (rz, rz)g (r, , r, ) .

To first order in e, expanding both sides of Eq. (39) in powers of A, , we find with the assistance of the properties (i)—(iv)
in Eqs. (45)—(48)

g I"(k„kz)=u ', "(k„k,)

gl {klk2)=u1 {klk2)+nu1 klk2u0 kl + u
1 kl k2u0 2 +n1 {kl 2g0 1) 0 ( 2)

+ f u ',"(k,—q, kz —q)u 0"(q)dq .
(2ir )

Equation (59), together with the relations given for the homogeneous case in Eqs. (A6) and (A10), immediately gives
rise to

E(2) o

Using Eqs. (60), (59), (A6), and {A10),and noting that h ', '(0) =0, Eq. (57) for E',"can be rewritten in the form

—2 2

E',"= " f dkk'g", (k, k) 2g 0"(k)—bg „"'(k)—2n[g "'(k)]'— —f, g "'(q)g,',"(
l q —k

l
)dq

8(2m ) ~2~}' k-'

(61)

(62)

where bg 0 '(k) is as defined in Eq. (A8). It has been shown in Eq. (A16) of the Appendix that the expression in large
parentheses in Eq. (62) vanishes identically. Consequently,

E(3) O (63)

%bile these results could have been obtained as a consequence of directly minimizing the energy expression with
respect to y(r, ) and u (r, rk ), we have carried out term-by-term evaluation to illustrate how higher-order terms will

be treated.
Next we consider e terms. Expanding Ez of Eq. (52) in orders of iL using expansion formulas (42)—(44) and proper-

ties (45)—(48), we find to order e A,

E,= yE'
rn =-0

E'z ' —— f [V'nI '(r)j dr+ f U,„,(r)nI '(r)dr[0)

(64)

f I znI01(kWI01( —k)dk+ - u,„,(k)nI"( —k)dk,
8n(2~)' ' ' (2~)'

f Vnl '(r) VnI"(r)dr. + f U,„,(r)n', "(r)dr+ —,
' f f n', (r, ) I n(r0)u2(

~
r, —r,

~

)dr, dr,

f k R'',"'(k)n', "(—k)dk+ f U,„,(k)& ',
'

( —k)dk
4n(2m) (2il )

+ f 6', (klR ', '( —k)u(k)dk,
2(2'�)'
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E',"= [2Vn Io](r).wn Iz](r)+ Vn]1"(r)-]]I'n I"(r) ]dr
1

+ f f U (r)n'I '(r)dr+ —' f n'I '(r])n'I '(rz)go" ( I r] —rz I
}U(

I r] —rz I
)dr]drz

+ f f nl (r]}n] (r2»( I r] —rz I }«1«z+ g2 (rl r2»(
I r] —rz I }«1«2

2

+n f f n'I '(rz)g'I" (r„rz)U(
I r, —rz I

)dr, drz

-' f f "I '
I "I rz)p'Igo" ( I rl z I

)'~l" o"
I r] rz

I I rz

+ n I (rl )~]go (
I r]

Pl (0)
8

+ n 1 r2 V 1g0 r1 —r2 V1u 1 r1, r2 r1 r2

n (0)+— n', '(r])V]g'I" (r],rz)'~lu o (
I r] —rz

I
)drl drz

8

+— n]"(rz)~]g] (rl rz} ~]uo" (
I rl —rz I }«I«2

8

+
8 1g0 r1 r2 'VlQ 2 r1 f2 r1 f2

+ ~lg] (rl r2} ~lu I (rl r2}drl dr2+ ~lg2 (rl r2} ~lu0 (
I rl r2

I }«1«2Pl (1) . (1) (1) . (1)
8 8

2k2 (0) g g 2 g +k2 (1) (1) d + g (2)

Sn(2n) (2m )'

2 f f 8''I '(k, —kz)8'I '(kz —k, )g I]"(kz)U(k, )dk, dkz
2(22r )

f f e"'(k)e"'( —k)"(I }dk+ " f "'"(k k}"(k)dk
(2n ) 2(2m )

2 f f )I 'I I(k] —kz)g ', "(—k„—kz)U(k, )dk, dkz
(2n }'

+
2 f f R''I '(k, —kz)&'I '(kz —k, )(k, kz)gll"(kz)u 11"(k,)dk, dkz

8(2m')+, f f &'I '(kz —k])(k] kz)g (]"(k,)u ',"(k„kz)dk, dkz
8(2n )

+ 2 f f 8''I '(kl —kz)k]g 'II"(k])u 'I"(k],kz)dk]dkz
8(2n )+, f f & I"(kz-k])(k].kz)g I (kl k2}u 0 (k2}dk]dk2
8(2m )

+
8(2m )

+"
8(2]] )

+
8(2]I.)

f f &'I"(k]-kz)k]g 'I"(k].kz)u o"(k] }«I«2

f f k g '"(k)u '"(k,k)dk+ f f k,g ', "(k„k )u ',"(—k, , —k )dk, dk
8(2n }

f k'g "'(k k)u "'(k)dk

Before ~e consider the variation of E2 ', E'2", and E2 ', we should point out some useful relations that exist for
n' ', g' ', U,„„and u' '. Since n' '(r), g' '(r„rz), U,„,(r), a]id u' '(r„rz) are real, we have
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li™(k}=[R''( —k)]', g ™(ki,k2)=[g ' '( —ki, —k2)]',

0,„,(k)=[0,„,( —k)]', u ' '(k, , k2) =[u ' '( —k„—k2)]' .

Also, the symmetry property of g' '(r„ri) and u' '(r„r2), Eq. (47), gives

g' '(k„ki)=g' '( —k„—k, ), u ™(k,,k, )=u ' '( —k, , —k, ) .

(68)

As in the derivation of Eq. (59), the BBGKY Eq. (39) in conjunction with the Kirkwood superposition approxima-
tion yields

g,'"(k„k,}=u ',"(k„k,) .

By Eqs. (70), (A6), and (A10), u 2" and g 2" disappear from Ez '. We are finally ready to apply the variational princi-
ple by minimizing E'z ', E'z", and E'z ' with respect to |i ', ', & ',", and g ',

"(or u ',").
From Eqs. (65) and (66), we find that both 5E~2 '/5k ', '(k) =0 and 5E'z" /5n ', "(k)=0 yield

—4n0, „,(k)
e ',"(k)= (71)

With Eq. (71), the dependence of E~z ' on 8' I
' also disappears Fro. m 5E~z '/5t ',"(k)=0, then, we obtain

e',"(k)=—4n U(k)e', "(k}/k'.
From 5E~z '/Sg ',"(k„k2)=0, using Eqs. (59), (A6), and (A10), we find

~ (1) 2 (0) k, k2u(k2) U(ki)
g 'i"(ki k2}=—& i"«2—ki }

n k k 2
ki

1

(72)

(73)

(74)

Substituting Eqs. (71), (72), and (73) into Eqs. (65), (66), and (67), after some mathematical manipulations we finally ar-
rive at the optimized energy expressions,

2.—
(2n ) k

8n '
I cxt(k} I

U(k}

(2n ) k' (75)

—32Pf

(2n )

8 2

(2ir)
Sn I 0,„,(q) I

U (k)
dk dq-

(2~)' q'
I
k+q I

'

8n'
I
0,„,(q)

I

~U (k)(k q)
dk dq

(2n ) q "k'
I k+q I

'

I ~. i(k} I
U'«} 8n '

I , „,(k)
I

U(q)
dk —

6
dk dq(2~}' k "q'

I 0,„,(q) I
U(k)U(

I k+q I }
dk dq q' Ik+q I

'
I 0,„,(q) I

~U(k)u(
I k+q I

)(k.
dk dq q'k'

I
k+q

I

' (76)

IV. DENSITY-FUNCTIGNAX. THEGRY

Ebner and Saam' genera1ized the local-density-
functional method (LDF) to treating Bose liquids. The
ground-state energy functional

E[n]= J eH[n(r)]dr

+e I n(r)U, „,(r)dr+ —,
' J [V&n(r)] dr, (77)

of Eq. (46}, casting E[n] in momentum representation,
and varying E with respect to ft, (k), we find order by
order in the expansion

n(r)=no+ g e n (r), h (k)= g n ' '(k)A,
&=1 m =0

(79}

contains an energy density eH of a homogeneous system
at the local density n (r). Apart from a constant,

P

eH(n)= —
—,'n 'A = n 'A, ' dk . (78)

2(2~)'

Using the expansion formula (42) and the property (ii)

4n0—, ,(k}„
e I"(k)=

4n |i I '(k) g~(q)8' P'(k) = d q
k 2

(80}
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I O,„t(k) u (q)

2;
(2ir) A;

(83)

(84)

Going beyond local-density approximation, one adds a
nonlocal correction term to the energy functional,
5E [n]:

5E[n]= ——,
' f f f [n(r, ) —n (r~)] e ' ' [Ii, '(n) —(X„' ') '(n)]dkdr, dry,

or

5E[n (k)]=—,
's' f dk1t, (k)R', ( —k)[X„'(n ) —(X'„') '(n )],

(86)

where

X„'(n ) —(X'„') '(n ) = [&o '(k) —1]
4n

g 0 '(k)+A, [ —2g O(k)+3n[g 0"(k)] )+0(A,') . (87)

(88)

tto(k) denotes the liquid structure factor of the homogeneous Bose system, and go '(k) represents the mth term in the
expansion of 1/n [So(k)—1] in powers of I,. [go '(k)] are taken then from the exact expressions given in Ref. 5.

Variation of E+5E with respect to }t,(k) and separating into various powers of A, as before give us a new set of
[& ', '(k) J and new energy expressions. While E2 ' is unchanged, we find

sn '
I ~ext(k) I

u(k)

(2m )' k4

(2) —Sn I ext I u (q) 4n I ext I u (q)
(2n) k4 q (2n)i k q

Sn I ~.,t(k)
I

u(e)u(
I k+qI } Sn '

I O,„t(k} I
u(q)u(

I
k+q

I
)

dk dq dk dq(2~)' A. "q' (2~)' k'q'
I k+qI

I

0',„t(k) I
u (k)

k6
(89)

V. COMPARISON AND CONCLUSIONS

In this work we have studied the ground-state proper-
ties of a weakly interacting Bose gas made inhomogene-
ous by the presence of a weak external field. Three
different theories have been used to obtain the ground-
state energy: the perturbation theory, CBF, and Dj." j. .
In each case the energy is calculated to order s A, .

For the perturbation theory, a new and simpler
method than that of Ref. 5 is used to obtain both the
chemical potential and the ground-state energy. We
have shown that for the homogeneous system (s=O} this
method gives identical results to those of Ref. 5 using a
more conventional approach.

For our CBF calculation, only one- and two-particle
factors are included in the trial wave function, and the
Kirkwood superposition approximation has been used.

Comparing results from the CBF theory to perturba-
tion theory, we find that in the first order of s, Eqs. (54),
(55), (61), and (63) agree with the results of the perturba-
tion theory. In the CBF, however, we have not proved
generally that Ei =0 for all pB. To second order in E,

t

E2 ' and E'2", as given in Eqs. (74) and (75), are identical
to those of Eq. (34) from the perturbation theory. But
for E'2 ', Eq. (76) is able to pick up only parts of the
terms in Eq. (34). The last two terms in Eq. (76) cannot
be expressed in terms of perturbation diagrams. There
are two reasons. First, the choice of the trial wave func-
tion has been limited. It is not so much the omission of
high-order correlating factors, but the arti6cial separa-
tion of the single-particle factors (which account for sta-
tistical correlations} from the two-particle factors (which
account for dynamical correlations) that introduces in-
herent errors. For the ground state of a homogeneous
Bose system, the single-particle factors reduce to unity,
thus preserving the generality of the wave function. The
inclusion of higher-order correlating factors would im-
prove the description of the ground state, leading asymp-
totically toward an exact expression while continuing to
preserve the generality of the wave function. It does not
work in the same way for its excited states, or for an in-
homogeneous system, or for the ground state of a Fermi
system. (For example, for the excited states of a homo-
geneous Bose system, factorization leads to the Feynman
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theory, which is exact only in the long-wavelength limit.
It fails to describe phonon dispersion. See the detailed
discussions in Ref, 2.) The second reason is the use of
the Kirkwood superposition approximation. At such
low orders, this approximation scheme would have been
acceptable (as seen in Ref. 5), were it not for the above-
mentioned problem created by using such a trial wave
function for an inhomogeneous system.

For the DFT calculation, we And E(~ ' ——0 for all m, in
agreement with the perturbation theory. However, in
the LDF, other than O(e A, ) there is no similarity at all
between results from the DF"i and from the perturbation
theory. A nonlocal correction term to the energy func-
tional has to be included in order to get the correct re-
sult for E'2". E'2 ' remains far apart from the corre-

I

sponding expression in the perturbation theory.
%'e conclude that in their simplest workable forms

(meaning the renormalized theory by Ebner and Saam in
the case of DFT) the CBF theory yields results which
are better than DFT. In particular, it is superior to
DFT in the local density approximation, even though
the latter was designed to take care of systems with slow
and small density variations such as, the one considered
here.

APPENDIX

We expand Eo of Eq. (50) in powers of A, using Eqs.
(43) and (44). Writing Eo as Eo ——g" 0E0 'A. , we
have, using property (iv), or Eq. (48),

g (0jj 0

E(1)
U(0),

E(2)

f go" (r)o(r)dr+" f Vgo" (r) Vuo" (r)dr
8

—2 —2

8 0"(k)U(k)dk+ k g 0 '(k)u 0 '(k)dk,
2(2~)3 ' 8(2~)3

(Al)

E(3) —2 —2

Io ~ U "d&+ 'I7o» " '~~o ~ +~No ~ '~~o(

E(4)

0

, f g" (k)U (k)dk+, f [g "'(k)u "'(k)+g,'"(k)u,"'(k)]k'dk,
2{2m ) 8(2n )

—2 —2

f go'(r)u{r)dr+" f [Vgo'(r) Vuo '(r)+Vgo '(r) Vuo '(r)+Vgo '(r) Vuo '(r)]dr

(A4)

2(2m)' f g '(k)U(k)dk+ f [g ' '(k)u '"(k)+g ' '(k)u '(k)+g "'(k)u '(k)]k dk
8(2 )3 0 0 0 0 0 0

We now wish to determine the optimal Iuo™(r)Iwhich minimize [Eo™I. The relation between go™and uo can
be obtained from the BBGKY Eq. (39). We use the Kirkwood superposition approximation g(r, , r2, r, )

=g (r, , r2)g (rz, r3)g (r3, r, ) in Eq. (39) and expand both sides of this equation in powers of A, . Once again using proper-
ty (iv), or Eq. (48), we find the following. To order A, :

Vg,'"(r)=Vu,"'(r), or g,"'(k)=u,"'(k) .

To order

Virgo" {
I ri —r2 I

)=V&uo" {
I ri —r2

I
)+go"{

I
ri —r2 I

)Viuo" (
I ri —r2

I
)

+n f go" { Ir~ —r3
I

)Viue" ( Iri —r3
I
)«»

(A6)

g,'"(k)=u,"'(k)+ng,'"(k)u,"'(k)+ f "g,"'( Ik —qI )g,"'(q)dq.
(2' )' k '

Using the relation

f „,go"( Ik —ql )g 0"'(q)dq= f „, g o'(q)g o"( Ik —ql )dq

and Eq. (A6), Eq. (A7) can be written as

bg "'(k):—g "'(k)—u'~'(k) =n [g "'(k)] +—,f g '"(q)g "(
I
k —q I

)dq .
2(2~)



ZHAO-QING ZHANG, RUI-BAO TAO, AND CHIA-WEI WOO

To order A, :

~igo" (
I ri —r2 I

) =~tuo(
I ri —r2 I

)+go" (
I ri —r2 I

)~tuo" (
I ri —r2 I

)

+go" (
I ri —r2 I

}~iuo"{
I ri —r2 I

}+n f g"'{
I r2 —ri

I
)~tuo" {

I ri —r3 I
)«3

+n go" r, —r2 go
'

r2 —r3 +go" r, —r3 go I2 I3

+go" (
I r2 r31 })~iuo"(

I ri —r3 I
}«3

g~(3)(k) u~ (3)(l )+n g~(2)(k)u~ (t)(l )+n g~(&){k)~u (2)(l )+, f „,io"(II —ql)go"(q)dq+ 3 f, io"{q)uo"{II —ql)dq
& q-~z) - ~2i

+ f i o"(
I

It —ql )go"(q)u o"(q)dq+ f g ',"(
I

&—ql )g,"'(—k)u ',"(q)dq. (A9)
(2tr } k (2tr) k

Substituting Eq. (A6) into Eq. (A4), and using 5Eo ' /5g o '(k) =0, we find

(i)(k)2U(k)go (A10)

Using Eqs. (A6), (AS), and (A10), it can be shown that

5E(3)

, [u(k)+-,'g,'"(k)k 2]=0 .
5g,"'(k) 2(2~)'

Now we consider the condition 5Eo '/5go2'{k) =0. From Eqs. (A5) and (A10) we have

5Eo ' „-2 5' o '(q)
2k2g o2'(k) —k bg o '(k) — g o"(q)q2 dq5"'"(k) 8(2~)3 ' ' '

5g ',"(k)

where hg ' '(k) is as defined in Eq. (AS) and Ago(q) is as defined by

&g o"'(q) =g '"(q) u,'"(q) . —

From Eq. (A9), we have

5' o '(q)

5g,"'(k)
=2n g o"(q)5(q Ir)+ — 3g o"(

I q —&
I

)(2'�)'

Substituting Eq. (A14) into Eq. (A12), we have

i(2)(k) i gg~(2)(k)+n[g~(li(k)]2+ f g~(1)(q)g~(it(
I q I

I )dq
2(2m } k

Using Eq. (A8), Eq. (A15) becomes

i o"{k)= Ig o"(k))'+
3 f io"(q}i'o"{

I
&—ql )dq+ f io"(q}io"{

I
I —ql )dq

4(2m ) 2(2m) k

(A11}

(A12)

(A13)

(A14)

(A15)

(A16)
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