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%e study the structure and the spectrum of elementary excitations of films of He atoms ad-
sorbed to plane substrates of varying strengths. An optimized variational description of the
ground-state eave function provides the short- and long-ranged structure, the distribution func-
tions, the dispersion relations, and the spatial shape of the collective modes.

I. INTRODUCTION

The study of helium Nms adsorbed to substrates in
the low-temperature regime is presently an area of active
experimental research. ' Among the variety of experi-
ments, electron-mobility and third-sound ' measure-
ments directly probe the discrete layer structure of the
adsorbed liquid. Closely related questions are the study
of collective excitations and the problem of the stability
of adsorbed liquids against longitudinal density Auctua-
tions, manifested in solidification of the liquid close to
the substrate and the "wetting" behavior of the
liquid. '

For a microscopic theoretical interpretation of these
efFects, a theory is necessary that reveals the layer struc-
ture of the films and provides a consistent description of
the ground-state and the collective excitations. Such a
microscopic theory has been developed recently' start-
ing from a variational ansatz for the ground-state wave
function of the Feenberg form, "
+o(r~, . . . , rz )=exp —,

' g u, (r, )

uz(r, , r )+
1&i &j&A

The u„(r„r2, . . . , r„) are n-body correlation factors;
they vanish whenever one or more of the particles is
moved far away from the rest. The ansatz (1.1) is espe-
cially suitable for Bose systems, where it is in principle
an exact representation of the ground-state wave func-
tion.

The wave function (1.1) for the so-called "Jastrow
choice" u„(r, , . . . , r„)=0 for n y 2 has been used suc-
cessfully to describe inhomogeneous quantum systems.
A central part of the theory is the optimization of the
microscopic wave function by minimizing the energy ex-
pectation value

of the correlations is the hypernetted-chain (HNC) ap-
proximation which we shall use throughout this paper.
The approximation has well-known deficiencies' ' for
dense systems like He. But it is the simplest theory that
provides the qualitative physical features, starting from
no other information than the microscopic Hamiltonian.
No simplifying assumption on the form of the two-body
correlations (as, for example, isotropy) needs to be made.
An especially desirable feature of the theory is that it
provides the form and the dispersion relation of the col-
lective excitations as a natural by-product of the optimi-
zation of the ground state.

The variational theory of the ground state and its ex-
tension to excited states has been reviewed in Ref. 10.
In the next section we will display only the basic
definitions and equations. Section III presents the re-
sults of extensive calculations of the structure of helium
films on substrates of three difFerent strengths. Depend-
ing on the substrate potential, we find up to five clearly
defined layers of helium atoms. Section IV discusses the
dispersion relations of the collective modes and the
surface-structure function and compares the excitation
spectra for difFerent substrates and difFerent surface cov-
erages.

Special attention will be paid to the long-wavelength
limit of the collective excitations in Sec. V. We obtain
an explicit expression for the third-sound velocity in
terms of microscopically defined quantities, and compare
our results with the experimental data of Maynard and
Chan.

Section VI gives a brief summary of our results and
the anticipated further developments.

II. VARIATIONAL THEORY

We consider a system. of interacting particles in an
external one-body potentia1; i.e., the Hamiltonian of the
system is of the form

Hoo ——

(+o j +o)

(1.3) 1(l (j(3
U(jr, —r, j).

The simplest acceptable approximation of the energy-
expectation value that allows a meaningful optimization

To be specific, we will assume that the external field
depends on only one coordinate, say z. In this geometry,
the one-body factor u, (r) and the one-body density
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(2.2)

depend only on z; the two-body correlations uz(r„rz),
the two-body density

depend on z„z2, and the distance
r~~ of the two particles

parallel to the surface. %e neglect aB but the one- and
two-body components, ul(r) and uz(rl, rz), in the
ground-state wave function. The ground-state energy
can then be written as

Pz(rl rz}
Hoo ——(bEl )+(bE2), (2.5)

f d'r, f . fd"„e,z(r, , . . . , r„)
=A (A —1) f d'r, f f d'r„q,z(r, , . . . , r„)

(2.3)

$2
(bE, )= f d r p, (r) U,„l,(r)+ —

~ V+p, (r)
~

(2.6)
2m

and the two-body distribution function (bEz)= ,' fd r—,d rz pz(r»rz}uIF(r»rz) . (2.7)

g (r„rz)=-
Pl(rl )Pl(r»

(2.4) UIF(r, , rz) is the generalized Jackson-Feenberg interac-
tion

1 1
IF( l z) =U ( I rl —rz I

}—
&

V, ,pl(rl }.V,
,
+ V,p, (rz).V, u, (r, ,r, ) .

Sm p, r, pl rz
(2.S)

The relation between the two-body density and the
two-body correlation factor is provided by the
hkypernet ted-chain equations,

g (r, , rz) =
pl(rl)pl(rz)

=exp[uz(rl, rz)+N (r„rz)+E(rl, rz)] —1,

(2.9a)

X(r, , r, ) =g (r, , r, ) —1 —N(r„rz),

N(r„rz)= f d r3p, (r3)[g(r„r3)—1]X(rz,rz) .

(2.9b)

(2.9c)

The level of sophistication of the theory is defined by
the choice of the approximation for the "elementary dia-
gram sum" E(rl, rz). The simplest choice is the "HNC
approximation, " E(r„rz)=0; this is also the simplest
possible approximation that allows a meaningful optimi-
zation of the ground state; we shall use it throughout
our paper. The approximation introduces numerical un-
certainties of a size similar to those caused by the omis-
sion of three-body correlations. ' '

For a compact representation of the Euler-l. agrange
(EL) equations (1.3) it is useful to introduce some nota-

tion. For any two-point function A (r„rz) we abbreviate

A(r„rz) =—Qp, (r, ) W (r„rz)&p, (rz) . (2.10)

The convolution product of two functions A (r, ,rz) and
8 (r„rz) is written as

[A «8](r„rz)=fd'r, A(r, ,r, )8(r„rz) (2.11)

and

1 l
Hl = — — Vp, (r) V

p, (r) p, (r)
(2.12)

The Euler-Lagrange equation for the two-body corre-
lations is most conveniently written in a random-phase
approximation (RPA) form in which the sets of "non-
nodal diagrams" X(rl, rz) fcf. Eq. (2.9b)] are related to
the particle-hole interaction V I, (r„rz). This form is
best suited for an economical numerical treatment and
the study of excited states. The equations are

with

—[Hl «X+X«Hl X«Hl «X](rl, rz}=2—Vp l, (rl, rz),

(2.13)

V, «(rl rz)=g(rl rz»( I rl —rz I
)+ [ I Vl&g«l rz} I

'+
I VzVg(rl rz) I']+[g(rl, rz) —1]~I(rl,rz),m (2.14)

~I(rl 2} [Hl «+++«Hl+X«Hl «X](rl r2} ' (2.15)

The one-body density is obtained by minimizing the energy under the constraint of constant particle number A.
The corresponding Euler equation has the form of a Hartree equation for the square root of the one-body density,
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f2
~'V'PI(r)+ [U,„b(r)+ Vic(r)]V PI(r) =p+p, (r), (2.16)

where (M is the chemical potential, and VH(r) a generalized Hartree potential

5(HEI)
VH(r) =

5p( r
(2.17)

The Hartree potential VH(r) can again be expressed in terms of the compound-diagrammatic constituents of the
HNC theory. Its explicit form has been given in Ref. 10,

with

VH(ri }= VH"(ri)+ VH"(ri » (2.18)

VH"(ri}=f d'r2pl(rp)j Vp-h(rl r2) i[g(rl (2.19}

VH (rI)= — Vp, (r() V' d ri p, (ri)[g(ri, ri) —1]N(r„ri) .(2) 3

16m pi(r()
(2.20)

The numerical solution of the two-body Euler equation (2.13) is intimately connected to the theory of collective ex-
citations. ' The energies of the collective modes are derived from the eigenvalue problem

[H +2 V ]+H y(l) g22q(l(

The eigenstates of P'" of (2.21) are normalized such that

(2.21)

(2.22)

From these states we can construct the response function

X(r, r', co) =2[p, (r)]'~ g [H, tt(" j(r) [H, 1(("](r') [p((r')](~I
I fl N —'l6 NI

(2.23)

and its inverse 5(rl r2} +Pl(rl )+(rl r2)+Pl(r2)

= g fico(f' (r()p' '(ri) . (2.28)
I

(2.24)

5p' '(r ~)=— —[H, P ](r)5(c0—~i) .5p(n(r c0)

2+pi(r)
(2.25)

The static form factor is calculated from the response
function (2.23) by frequency integration,

1 d(fico)
S(r„r~)= II' ( I' i, ri, CO )

[H, f("(r, ) ][H,P'"(r, ) ] .

%'e may now also obtain the two-body distribution
function

prom the orthogonality relation (2.22) we see immediate-

ly that the normal modes of the system are given by

Equations (2.26)-(2.28) are used for the numerical solu-
tion of the Euler-Lagrange equation.

III. GROUND-STATE STRUCTURE

The physical model underlying our calculations is a
number of helium atoms interacting via the Aziz poten-
tial. ' The atoms are adsorbed to a substrate which is
described by an external field U,„b(z). A simple form for
U,„b(z) is the potential obtained by averaging Lennard-
Jones interactions between helium and substrate atoms
over a half-space. ' ' One obtains

9 r

U (z) =e 1 s s (3.1)Sob

Given the substrate potential, the two-body interaction,
and the surface coverage

n = 6fZP) Z

S (r, , rz ) —5(r, —rz)
g(r„ri }=1+

+Pi(rl )+Pl(r2 }

and the set X(r„r2) of non-nodal diagrams.

(2.27} the physical model is completely defined. It is an
oversirnpli6cation in the sense that the real substrate po-
tentials are not translationally invariant in the x-y plane
due to the crystal structure of the substrate. Moreover,
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the interaction between the two individual helium atoms
is changed in the presence of a substrate ' due to the
substrate screening of the van der %aals interaction and
induced three-body forces. ' These effects are ignored in
the present work.

A second point that has been disregarded in our work
is that the 6rst one or two layers of an adsorbed helium
61m are expected to be solid. ' The instability against a
liquid-solid phase transition appears in the HNC theory
in the form of an instability of the HNC-EI. equations
for the liquid phase against density ffuctuations of finite
wavelength. ' This feature of a theory is, in principle,
quite desirable, but the simultaneous description of a
liquid and a solid phase is presently beyond our compu-
tational capabihties. Before one gets close to the local
instability against 6nite-wavelength density fluctuations,
the pair-distribution functions g(r&, r2) develop strong,
long-ranged oscillations, and the numerical treatment be-
cornes quite cumbersome. In order to avoid such an in-
stability of the theory in the very dense regime close to
the substrate, it was necessary to weaken the most at-
tractive part of the substrate potential.

%e have extended the calculations of Ref. 10 to an ad-
ditional medium-strength substrate potential and have
solved Eqs. (2.13)-(2.20) for a large number of surface
coverages n. Two of our substrate potentials are of the
form (3.1). They are characterized by the strength e and
the range s appearing in Eq. (3.1). The strongest poten-
tial (called model I) is a substrate potential of the form
(3.1) fitted to the strength of the attractive tail of the
helium-graphite interaction. The potential parameters
are e =48 K and s =3.6 A, which is about midway be-
tween the theoretical and experimental predictions quot-
ed in Ref. 16. The attractive tail of the potential has a

strength (the Hamaker constant) of A „=2240 KA .
The second potential, model II, uses the attractive part
of the Carlos-Cole potential, ' i.e., e =34 K, and s =3.6
A, which leads to A„=1586 KA . For the reasons
discussed above, the repulsive part has been enhanced.
Thus, the potential depth of model I is just 72 K,
whereas the second potential has a depth of 51 K.

Our third substrate potential describes a system
where a thin film of solid H2 of about 10-A thickness is
adsorbed to a glass surface. The potential form is

435
U,„b(z)=-

z'
1.5~10' 0.9~10'

~5 + g9
915

(z +10)'
(3.3)

[U,„b(z) is given in K, and z in A]. The last term is due
to the attraction of the underlying glass surface. The
potential is the weakest of the three potentials used here.
No enhancement of the repulsive part has been neces-
sary in this case.

Figures 1-3 show the one-body densities p, (z) for the
three potential models for helium 61ms of different sur-
face coverages n. The coordinate system has been
chosen such that the zero point of the substrate potential
is at z0=1.8 A. One sees clearly the formation of addi-
tional layers as the surface coverage is increased. The
two stronger potential models show the formation of at
least five layers, and it is not clear whether the formation
of one or even two additional layers should be expected.
Our present computational capabilities did not allow us
to go to larger surface coverages. %e feel also that the
results of such extensions would be, due to the limita-
tions of the HNC approximation, not sufFiciently con-

0.05

0.03"

0.02.

0.01 .

0.0 & 5.0 20.0

FIG. l. The density profiles for helium Sms are shown for the strong substrate potential, model I, for particle numbers
n =0.12-0.39 A in steps of 0.01 A . The substrate is located at negative z.
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FIG. 2. Same as Fig. 1 for the medium-strength substrate potential model. The particle numbers are n =0.12-0.37 A in

steps of 0.01 A

elusive to warrant the efFort. The glass-hydrogen poten-
tial (Fig. 3} serves to illustrate the transition to the
asymptotic region. Only four clearly distinguishable lay-
ers are formed; with increasing surface coverage we find
a broad shoulder in the density pro61e.

We have attempted to increase the strength of the
substrate potential in small steps in order to perform cal-
culations for a potential that is closer to the Carlos-Cole
potential. Keeping the attractive part, A „, 6xed, we
were able to increase the short-ranged attraction to

about —100 K, which still falls short of the value of
—220 K suggested by the Carlos-Cole potential. With
increasing density, the pair-distribution function devel-

ops strong, long-ranged oscillations, ' and the calcula-
tions need to be carried out in a much larger box.

Our results for the ground-state energies and the
chemical potentials for the three models under con-
sideration are collected in Figs. 4 and 5. The energy per
particle (Fig. 4} is seen to be still far from its asymptotic
value of —5.4 K in the HNC approximation. The

0.05

0 04~

0.03"

0.02.

0.01 .

0.00-
0.0 3 5.0

o 0

FIG. 3. Same as Fig. 1 for the hydrogen substrate potential. The particle numbers are n =0.12—0.34 A ' in steps of 0.01 A
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thickness. In the limit of a free surface, d~m, the
penetration depth of the surface excitation becomes
infinite, and one obtains the familiar ripplon dispersion
relation

aP=(o /mp)qadi . (4.2)

I Q.Q-

The form and the dispersion relations of the collective
excitations of the helium films are a natural by-product
of the optimization of the ground state. The derivation
of the connection between the eigenvalues Lol of Eq.
(2.21) and the collective excitations' assumes a time-
dependent component u, (r, t) of the Feenberg function
(1.1), but time indep-endent two-body correlations. This
corresponds to a Feynman wave function for the excited
states. The validity of the theory is therefore restricted
to wavelengths that are long compared with the inter-
particle distance, i.e., to the regime of validity of the
Feynman-dispersion relation of the bulk liquid.

spectrum has one or more discrete modes with energy
p, +R qII 2m. For energies above —p+A2q2lt m

the spectrum is continuous. The experiment ' shows
a rather rich spectrum of various collective excitations
which can, apparently, not all be explained with the
Feynman theory. Besides a rather clearly identifiable
linear dispersion branch, which we interpret as the sur-
face excitation, one observes very low-lying modes of an
almost constant energy and higher-lying collective exci-
tations. Figure 8 compares our results in the momentum
regime where the Peynman-dispersion relation is valid,
with the experimental results of Refs. 5 and 21. We find
that the linear part of the lowest mode comes close to a
sequence of experimental points with almost linear
dispersion relation. We expect that the remaining

diN'erence is partly due to the inaccuracies of the HNC
approximation. Moreover, the zero-sound dispersion re-
lation in the bulk is already at a wave number of

q~~
=1

A ' somewhat below the Feynman-dispersion relation,
and we expect a similar efFect to appear here due to the
assumption of stationary two-body correlations.

A sequence of very low-lying excitations with an ener-

gy that is almost independent of the wave number can be
observed for

q~~
~0.9 A '. These modes apparently

cannot be explained within the Feynman theory used
here.

A third set of collective modes is observed aboUe the
surface phonon. These appear in Fig. 8 at the edge of
the continuum. Note, however, that the calculated
chemical potential is, due to the HNC approximation,
about 2 K below the experimental value. Thus, the ob-
served excitations are well below the continuum. It is
tempting to identify these excitations with one of the
higher-lying discrete modes. An alternative interpreta-
tion of these modes is that they are multiple scattering
processes from the Aat region in the dispersion relation
seen at higher momenta. Measurements at smaller
wavelengths would be helpful to determine the validity
of this interpretation.

Figure 9 shows the same dispersion relations for a sur-
face coverage of n =0.18 A, i.e., for a film of about
2.5 layers thickness. The experimental values are includ-
ed to guide the eye. We see that the lowest mode
changes very little, but the distance to the higher-lying
excited states increases considerably. In fact, we find
only two discrete states in this case. We expect that a
better understanding of the nature of the observed high-
lying collective excitations can be gained from measure-
ments for various surface coverages.

Let us 6nally address the question of the dependence
of the excitation spectrum on the substrate potential.
Figure 10 shows for a surface coverage of n =0.34 A
a comparison of the dispersion relation of the lowest col-

1Q.Q

5.Q

Q.Q
Q.Q $.Q

FIG. 8. The dispersion relations of the discrete modes in the
D

helium film with a surface coverage of n =0.34 A on the hy-
drogen substrate are compared with the experimental data of
Refs. 4 and 18 I,'crosses) for 6.4 layers of helium on top of a
neon-coated graphite powder. The dotted line indicates the
lo~er boundary of the continuum.

0.0
0.0

q„(A ')

FIG. 9. Same as Fig. 8 for a surface coverage of n =0.18
A
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lective modes for our three substrate potentials. We see
a small enhancement of the roton minimum with the
strength of the substrate potential. The existence of
such a "surface roton" has been speculated; we see
here that the effect may be present, but is probably too
small to be detected experimentally. Our finding is in-

dependent of "how close" the system is to a two-
dimensional Quid. Figure 11 shows the same dispersion
relations for a surface coverage of n =0.18 A, where

the picture is basically unchanged.
The total neutron scattering cross section can be relat-

ed to the static structure function S(r, r') [cf. Eq. (2.26)].
To keep our notation as close as possible to the notation
of the bulk theory, we have divided in Eq. (2.26) by two
factors of Qp&. The quantity that is actually measured
is the frequency integral of the density Auctuation-
correlation function. To facilitate comparison with the
bulk static form factor, we define

S(ql, ~)=—fd'r, f dz f dz'e ~' i " '+"[p (z)]'~'S(z, z', r„)[p,(z')]'~'. (4.3)

To obtain a sufficient intensity in an experimental
determination of the static structure function in the sur-
face by neutron scattering requires that the neutrons
propagate parallel to the surface. We can therefore re-
strict our study to the case a=O. Figure 12 shows the
static structure function S(qi, O) for the strong graphite
substrate for the two extreme surface coverages n =0.12
and 0.39 A, and compares them with the bulk static
structure function in HNC approximation. We see that
all three structure functions are very similar apart from
a small enhancement of the peak for the small surface
coverages, and a small shift of the peak to larger mo-
menta for the surface structure functions. It remains to
be seen whether such differences can be experimentally
resolved. %'e conclude that most of the rich structure of
the pair-distribution function shown in Figs. 6 and 7 is
averaged out due to the long-wavelength limit a~0 tak-
en in Eq. (4.3) in the z direction.

V. LONG-%AVELENGTH LIMIT: THIRD SOUND

Special considerations are required to determine the
spectrum of the collective excitations in the long-

20.0-

wavelength limit. Note that one cannot extrapolate the
dispersion relations derived in the preceding section to
qII ~0 to obtain the long wavelength limit of the disper-
sion relation: For typical values of the surface tension,
the density, and the substrate potential one would con-
clude that the second term in Eq. (4. 1) dominates the
first term for wave numbers larger than approximately
0.01 A . Thus, it is not practical to obtain an estimate
for the third-sound velocity from finite-momentum exci-
tation energies. Rather, the long-wavelength limit must
be calculated analytically.

We have shown recently how the dispersion relation
(4.2) can be obtained in linear-response theory from Eq.
(2.21). The crucial point in deriving the

q~~
dispersion

law was that the operator H
&
+2 Vp p has in the limit of

an infinite half space, a zero eigenvalue as qII ~0. Note
that the operator has to be positive semidefinite in order
to have stable collective modes.

In what follows we consider all quantities as functions
of z and the wave number qII parallel to the surface. The
long-wavelength behavior lim~ ocr(q i ) of the elementa-

II

ry excitation energy is most easily discussed using varia-
tional principles related to the RPA sum rules. For a

15.0.

l5 0-

]Q.Q

O

5,0-

2.5
0.0

0.0
I

1.5 2.0 25

FIG. 10. The dispersion relation of the lowest collective ex-
citation is shown for our three substrate potentials at a surface

0
coverage at n =0.34 A . The curve with the strongest "ro-
ton minimum" corresponds to the strongest substrate potential.

FIG. 11. Same as Fig. 10 for a surface coverage of n =0.18
A -'.
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XXX~
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FIG. 12. The static structure factor S{q~~,0) is shown for the strong substrate potential for surface coverages n =0.12 A
{dashed line) and n =0.34 A {solid line). Also shown is the bulk structure factor in HNC approximation at the calculated equi-
librium density {crosses).

given one-body correlation operator

F=g f(r;), (5.1)

lim V~ g ( q
~t

) = V~ ~ (0+ ) .
qlI-0

(5.7)

&& ImX(r„r2, m) . (5.2)

From Eqs. (2.21)-(2.23) one obtains the explicit expres-
sions for the sum rules m 3, m, , and m

the RPA sum rules are de6ned as the nth energy-
weighted moments of the imaginary part of the RPA
response function (2.23) as

rn„= I (fico)"f d r, f d r2 f'(r))f(r2)
2m

Note that V~ 1, (0+ ) still depends on z and z'.
We see also that minimizing m 3/rn, or m

&
/rn

&
with

respect to the excitation operator,

P7l3 $ Pl )=0 or
5%& m, 5%& m

(5.8)

is identical to solving the RPA equation (2.21). The
quantities rn3/m, and m, /m, are therefore upper
bounds for the square of the exact excitation energy.

From the coordinate/momentum space representation
of H, in our geometry,

m, =(qI
~
H, (H, +2V, „)a, ( q/),

~ =(+/ IHi IqI»
(5.3)

(5.4)
fi 1 d d 1

p)(z)
2m ~~, (z) dz dz ~~,(z)

fi q=H){0)+
2pll

+I ——f (r)Qp&(r), (5.6)

we conclude that the only way to have a zero excitation
energy in the limit q~I

~0 is to have

and for convenience we have dropped writing a11 argu-
ments z, z', and

q~~
from V &. For the long-wavelength

Hmit of V
& we write

q'/«„, )=+«)+o(q'„) .

%'e theo obtain

(5.10)
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A' co (q) ) =

fi q

(&pi I [Hi(0)+2~, «(0+ }] '
I &pi)

(5.11)

where c3 is the third-sound velocity.
The m &/m, sum rule is known to be insensitive to

inaccurate trial functions; hence we did not need to cal-
culate the correction term of the order

q~~
in Eq. (5.10).

This term is needed, however, to obtain the spatial shape
of the -density Auctuation. To obtain this information,
we make the ansatz

and we can identify

with

(5.12)

'pf (q~~, z) =/p](z)+ 5e(z),
2pf

(5.14)

2

2 (/p, [ [H, (0)+2V (0+)] '
( V p, )

(5.13)
and we assume without loss of generality (Qp& (

5'I) =0.
We then obtain from the m3/m, sum rule,

R a) (q(~ ) & (Qp(+H)(0)5%' [ H)(0)+2V~ «(0+) ( Qp, +Ht(0)5%') .
2PFl 7l

(5.15)

Minimization of this expression with respect to 54'(z}
under the constraint of orthogonality gives us again, for
ql~0, the dispersion relation (5.11) and the shape of the
density Quctuation

5+p, (z}= lim H, (ql)%"'(q„,z)
q)(

~0

[H ((0)+2Vr «(0+ )] '
) gp(}

(Qp ([H (0)+2V (0+)] '~ V'p )

(5.16)

The solution (5.16) is normalized such that
(~p~

~

5~p&)=1. Of course, the shape of the density
fluctuation is also obtained directly in the course of our
numerical optimization of the ground state. Typical
shapes of the density-fluctuation prt}fli may be found in
Ref. 10. A comparison of the shape of the density fluc-
tuation with Eq. (5.12) provides, however, a good test for
the numerical accuracy of the calculation.

The calculation of the third-sound velocity c3 en-

counters some practical problems. It has already been
mentioned that the operator H, +2V «(0+ ) has a zero
eigenvalue in the limit of an in6nite half space. This is
due to the inuariance of the surface profile under dis-
placements of the surface in the z direction, and hence
due to rather subtle cancellations between the attractive
and the repulsive parts of the particle-hole interaction.
Experimental values ' for a five-layer film suggest that
f12c 3 should be about 0.8 K. Gn the other hand, the bulk
limit of the particle-hole interaction is mc&, where c& is
the value of the first sound. The experimental value for
this quantity is about 23 K, whereas the calculated value
in the HNC approximation is 12 K. In any event, one
has to expect cancellations to within more than one or-
der of magnitude. It is therefore no surprise that the
calculation of the third-sound velocity becomes numeri-
cally very delicate.

These quali5cations have to be kept in mind for the
interpretation of our numerical results for mc3. Figure

13 shows the calculated values for mc3 using Eq. (5.13)
for the strong graphite substrate potential. To demon-
strate the sensitive dependence of this quantity on the
particle-hole interaction Vr «(z, z ', q ) ) we have per-
formed the calculation for qII

——0, q~~
——0.219 A ', and

q~~
——0.502 A '. %'e 6nd that the surface indeed devel-

ops a slight instability in the long-wavelength limit in
the sense that the right-hand side of Eq. (5.13) becomes
negative for thick 61ms. This instability fortunately does
not preclude the existence of numerical solutions of the
Euler-Lagrange equation, since the qII

——0 value is never
actually needed. %'e suspect that this slight instability is
a numerical problem. A definite conclusion could be
drawn only by repetition of our calculations on a consid-
erably 6ner mesh, which is presently beyond our compu-
tational capabilities. It seems also that such a
re6nement of the numerics is not yet warranted due to
the uncertainties introduced by the HNC approximation
and the neglect of three-body correlations, which affect
most seriously the sound velocity.

Further evidence that the slight long-wavelength in-
stability is indeed a numerical problem is dragon from
the fact that the right-hand side of Eq. (5.13) depends
sensitively on the particle-hole interaction. The compar-
ison of the three curves in Fig. 13 shows that the system
is already stable if Vr «(z, z', q~~) is taken for

q~~
——0.219

A instead of in the limit
qI~

——0, and it reaches its bulk
CI

value at
q~~

——0.502 A '. It seems obvious from this
comparison that the lowest eigenvalue of H&+2V~ z ap-
proaches zero quite rapidly as a function of momentum

qtI, and it is again no surprise that its numerical calcula-
tion is quite diScult. %e note, ho~ever, that a definite
statement on the stability of 0, +2V & in the long-
wavelength limit could give microscopic indications for
an instability of the surface against very long wavelength
(of the order of 50 A) excitations which might indicate
the formation of a corrugated surface. Note, however,
that the chemica/ potentia/ is a monotonically increasing
function of the surface coverage; in other words our
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FIG. 13. The estimate for mc3 is shown for the helium films in the strong substrate potential as a function of the surface cover-
age n. The lowest curve corresponds to the particle-hole interaction V~ &4,'z, z', qII) taken at

q~~
——0, the middle curve to q))

——0.219
A ', and the upper curve to q~~

——0.502 A
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FIG. 14. Our results for rne3 for the medium and the strong substrate potential are compared with the experimental data of
Maynard and Chan (Ref. 3, crosses). The experimental data have been modified by a scattering factor of 1.7 and extrapolated to
zero temperature as described in the text. The theoretical curves have been obtained by interpolating between the low-momentum
portions of the particle-hole interaction. The curve with the strong fluctuations corresponds to the strong substrate potential, and
the smoother curve to the medium substrate potential.



theory predicts that all films considered here "wet" the
surface. This is in agreement with experimental evi-
dence.

We believe, on the other hand, that the fiuctuations of
the velocity of sound as a function of the surface cover-
age are quantitatively significant. We draw this
confidence from the fact that their size is essentially the
same for the three interactions considered in Fig. 13. To
get a reasonable comparison with experimental data, we
have therefore constructed an estimate for the third-
sound velocity by linear interpolation between the calcu-
lated particle-hole interaction for

q~I
——0 and 0.219 A

The comparison of our interpolated third-sound veloc-
ity with the experimental results of Ref. 3 is shown in
Fig. 14. The "experimental" results shown there have
been obtained from the finite-temperature experiments of
Maynard and Chan by a linear extrapolation to T =0.
More recent data on the third-sound resonance fre-
quency reaching to temperatures as low as 0.35 K indi-
cate that such a linear extrapolation is reasonably well
justified for surface coverages larger than n =4.5 A
The extrapolation somewhat overestimates, presumably,
the finite-temperature efFects for lower surface coverages.
Moreover, a scattering factor of 1.7 has been applied to
the velocity of sound, and the zero point has been slight-
ly shifted such that the first maximum of the experimen-
tal and the theoretical sound velocities coincide. The
theoretical predictions and the experimental results coin-
cide in so far as that a maximum of the third-sound ve-
locity appears for systems where the last layer is slightly
more than half filled, whereas a minimum occurs shortly
before one layer is completely Sled. Our calculations
offer some explanation for this. We find (cf. Figs. I —3)
that the n +1st layer becomes already slightly populated
even before the nth layer reaches its maximum density.

Taking all the uncertainties caused on the theoretical
side by the HNC approximation and the interpolation
procedure for the interactions, and on the experimental
side by the extrapolation to zero temperature and the
correction for substrate scattering, the agreement be-
tween the experimental results and our theoretical
description is quite satisfactory. We have mentioned al-
ready that the linear extrapolation to zero temperature
might somewhat overestimate the true temperature
dependence of the third-sound velocity. One would then
be led to conclude that our "experimental" third-sound
velocity should have some~hat smaller fiuctuations.

An interesting feature is the strong dependence of the
Auctuations of the third-sound velocity on the substrate
potential. The weaker 3-9 potential (model II) shows al-
ready much smaller fluctuations, whereas the fiuctua-
tions produced by the glass-hydrogen substrate are al-
most negligible.

In this paper we have extended the variational
description of systems of liquid He adsorbed to sub-
strates of varying strength, and addressed a number of
points of present experimental interest. Despite the
mell-known quantitative deficiencies of the HNC-EL
theory we believe that our description is presently the
most powerful one in the sense that a complete theory of
the structure and excitations of such systems can be
built on minimal assumptions. Similar success of any
competing many-body theory remains to be achieved.

Most important from a practica1 point of view is that
our theory gives information on the internal structure of
the helium films. The dependence of the chemical po-
tential and the third-sound velocity on the internal struc-
ture of the layered liquid comes out of the theory, rather
than being input to it, as they would be in hydrodynamic
or mean-field models. The quantitative shortcomings of
the HNC theory are well understood, and methods to
improve upon the accuracy of the microscopic descrip-
tion are available. ' '

Presently it does not seem economical to use a more
realistic potential close to the substrate. But we feel that
the main points studied in this paper and our further
plans are not seriously affected by this shortcoming.
The lowest-lying collective excitations are localized in
the low-density tail of the surface, where only the
asymptotic tail of the substrate potential plays a role.

Further improvements and applications of our theory
are foreseen in a number of difFerent directions. The in-
terpretation of experiments in which the layer structure
of the film is essential naturally provides the most excit-
ing further application. Most predominantly, we men-
tion electron-mobility experiments and the possibility to
generate two-dimensional electron systems in the quan-
tum regime. ' The theory of electronic states on helium
surfaces ' requires knowledge of the low-lying excita-
tions of the liquid. To the extent that the observations
are sensitive to a layer structure, a theoretical descrip-
tion of the film-thickness dependence of the third-sound
velocity seems indispensable, since the experiments of
Maynard and Chan' can apparently not yet resolve such
Auctuations up to ten layers.
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