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%e calculate statistical and dynamical quasiparticle energies of a normal Fermi liquid in a spin-

fluctuation model. The properties of spin fluctuations in the model are the same as those given by
Landau Fermi-liquid theory at long wavelengths, low frequencies, and low temperatures if all Lan-

dau parameters except Fo are neglected. The statistical quasiparticle spectrum is found to be

significantly less dependent on momentum and temperature than the dynamical quasiparticle one.
The specific heat is calculated both from the statistical quasiparticle spectrum and from the ther-

modynamic potential, and for parameters appropriate for liquid He, the corrections to the leading
low-temperature result {~ T) are well characterized by T'lnT behavior up to temperatures of or-
der 100 mK, which is in qualitative agreement with what Greywall finds experimentally. If the
Landau parameter F& is included in the calculation in addition to Fo we find rather good agree-
ment between theory and experiment. A further conclusion of our work is that the finite-

temperature contributions to the specific heat are much less sensitive to variations of the cuto6'

momentum in our calculations than is the spin-fluctuation contribution to the effective mass. Spin
fluctuations are therefore able to account for finite-temperature effects, even though they provide

only a modest contribution to the erat'ective mass. We also investigate the reason for earlier calcu-
lations in the paramagnon model giving very low estimates of the temperature below which the

specific heat should exhibit T'lnT behavior, and find that this is due to {i) the fact that the dynam-

ical quasiparticle contribution to the specific heat was calculated and {ii) the use of the paramag-
non model, rather than Landau theory.

I. INTRODUCTION

At low temperatures the speci6c heat at constant
volume of normal liquid He is much enhanced over that
of a free Fermi gas. %ith increasing temperature the
enhancement decreases rapidly, which indicates a
strongly temperature-dependent erat'ective mass. Doniach
and Engelsberg' and Berk and Schriefkr showed that
this rapid temperature dependence can be accounted for
by the coupling of quasiparticles to spin fluctuations,
which gives rise to a contribution to the speci5c heat
varying as T lnT. In addition they argued that this
mechanism could provide a plausible explanation for the
value of the efFective mass at zero temperature. The ear-
ly calculations were done assuming that the thermo-
dynamic properties could be determined using the ordi-
nary quasiparticle expression and taking for the quasi-
particle energies the poles of the single-particle propaga-
tor. Amit, Kane, and %agner showed that the nonana-
lytic term. s in the quasiparticle energies de5ned by the
poles of the single-particle propagator, the so-called
dynamical quasiparticle spectrum, may be expressed in
terms of Landau parameters. They then calculated the
entropy by putting the dynamical quasiparticle spectrum
into the quasiparticle expression for the entropy,

S = —k& g [nzlnnz+(1 —n&)ln(1 nz)]—,
P) cT

where n is the equilibrium distribution function for
quasiparticles. It was shown by Brenig et al. , Riedel,
and Brinkman and Engelsberg that in models closely re-
lated to the random-phase approximation, thermo-
dynamic properties cannot be described by the dynami-
cal quasiparticle spectrum alone, but that extra Bose
terms must be considered. Carneiro and Pethick gen-
eralized these results and showed that, as long as there
are no real collective modes, it is unnecessary to intro-
duce the Bose terms, and thermodynamic properties can
be described in terms of another spectrum, the statistical
quasiparticle spectrum, which had previously been con-
sidered by Balian and Dc Dominicis, Luttinger and
Liu, and Luttinger. ' They also showed that the entro-

py can be expressed in another way, as a sum of two
terms. One is the expression for the entropy of a nonin-
teracting Fermi gas evaluated using the dynamical quasi-
particle spectrum and the other term comes from the
on-shell scattering of quasiparticle-quasihole pairs, and
includes the Bose term discussed in Refs. 4, 5, and 6.
Carneiro and Pethick justified this procedure for calcu-
lating the leading 6nite-temperature contributions to the

Qc 1988 The American Physical Society



DERMOT COFFEY AND C. J. PETHICK

specific heat using microscopic theory, but the problem
of implementing the procedure of Balian and De Domin-
icis and of Luttinger at higher temperatures has not yet
been solved.

The statistical quasiparticle spectrum is defined by

5E[n ]
Ep = (2)

5n

where E[n j, the energy of the system, is a functional of
the distribution function. c" is therefore the quasiparti-
cle energy introduced originally by Landau. " In equilib-
rium at finite temperature the distribution function is
determined by the Fermi-Dirac function in which the ar-
gument is the statistical quasiparticle spectrum, and
therefore one has a set of self-consistency conditions for
the spectrum and the distribution function. The specific
heat is calculated by putting the statistical quasiparticle
spectrum into the expression for the entropy of a free
Fermi gas and difFerentiating. We may, in a similar way,
define a dynamical quasiparticle contribution to the
specific heat which is calculated using the dynamical
quasiparticle spectrum.

Pethick and Carneiro' gave a phenomenological mod-
el from which they deduced the behavior of these spec-
tra near the Fermi surface. The effective interaction be-
tween quasiparticles and quasiholes was expressed in
terms of Landau parameters since only interactions with
low momentum transfers are important in determining
the dominant contributions to the T lnT term in the
specific heat. This calculation emphasized that the
difference between the two spectra arises from the
different ways in which on-shell scattering of
quasiparticle-quasihole pairs is treated in the calculation
of the self-energy and the contribution to ihe energy,

More recently theoretical work on the quasiparticle
spectra of Fermi liquids has been stimulated by interest
in the uasiparticle spectra in nuclear matter and finite
nuclei, ' and by new measurements of the heat capacity
of liquid He. ' ' One of the striking features of
Greywall's data is a well-defined 1 lnT term in the
specific heat, which persists to temperatures of order 200
mK at low pressure and 100 mK near the melting line.
This result is in disagreement with paramagnon theory
calculations of Bnnkman and Engelsberg, which indicat-
ed that the T lnT behavior should be observable only at
very low temperatures. Brown, Pethick, and Zar-
inghalarn (BPZ) investigated over what region of exci-
tation energies the efFective-mass enhancement due to
spin fluctuations went away. Their approach was to cal-
culate first of all the dynamical quasiparticle energy at
higher energies. From this they estimated the statistical
quasiparticle energy by using the relationship between
the spectra derived by Pethick and Carneiro' for low
temperatures and low excitation energies. Mishra,
Brown, and Pethick ' showed that the model of BPZ
could be fitted to the recent experimental results of
Greywall' quite well at several pressures.

The purpose of this paper is to make estimates of
properties of He at temperatures and energies where the
low-energy, low-temperature results of Landau theory
and no longer valid. Our general philosophy in this pa-

per is not to produce a model which we regard as being
a realistic quantitative model for liquid He, but rather
to adopt a simplified model and to investigate qualitative
features such as the difference between the two quasipar-
ticle energies and the various contributions to thermo-
dynamic quantities. First we explore the difference be-
tween the two sorts of quasiparticle energy, and show
that it is significant. %'e then calculate the entropy and
specific heat, and determine the temperature below
which the T lnT behavior gives a good approximation to
the results of the full calculation. Our results show that
the T lnT behavior should persist to temperatures well
above those indicated by Brinkman and Engelsberg, and
we discuss the reasons for the difference.

The plan of the paper is as follows. In Sec. II we de-
scribe the basic model, and derive expressions for the
statistical and dynamical quasiparticle spectra, the entro-

py, and the specific heat. Results of numerical calcula-
tions are described in Sec. III, and in Sec. IV we com-
pare results for our model with those based on the
paramagnon model. Section V is a brief conclusion.

II. THE MODEI, QUASIPARTICLE SPECTRA,
AND THERMODYNAMIC PROPERTIES

A. The spin-Suctuation energy

The model we employ is a spin-fluctuation model
which at long wavelengths and low temperatures reduces
to Landau theory, in the sense that spin Auctuations are
made up of quasiparticle-quasihole pairs with the true
effective mass m ', and the magnetic susceptibility agrees
with that given by Landau theory. It is essentially a
generalization to finite wave numbers of the model of
Ref. 12, in which the energy is obtained by evaluating
the contribution from diagrams consisting of rings of
quasiparticle-quasihole pairs. Since pairs with spin one
provide the dominant contribution to the leading finite-
temperature properties, we shall neglect pairs with spin
zero. Also, since the largest contributions to the spin-
one channels are due to the large enhancement of the
magnetic susceptibility, we shall for the most part take
the interaction in these channels to be simply Vq, where

q is the total momentum of the pair, and shall neglect
the dependence on other momentum variables. At long
wavelengths we shall take V~ to tend to f0=Fo/E(0), —
where I'o is the angular averaged spin-antisymmetric
Landau parameter, and X(0) is the density of quasiparti-
cle states at the Fermi surface. In addition we shall take
the quasiparticles making up the spin Auctuation to have
an energy spectrum p /2rn', to within an additive con-
stant, where m' is the effective mass at the Fermi sur-
face. This ensures that at long wavelengths the proper-
ties of spin fluctuations are the same as we ~ould obtain
in Landau theory, provided all Landau parameters ex-
cept I'o are neglected. Our main purpose in this paper is
to explore qualitative features of spectra and thermo-
dynamic properties, and these are influenced little by the
inclusion of further Landau parameters. Higher Landau
parameters have important quantitative effects„and
these will be considered brieAy.
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'
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CtP —QP p~q

(p+q)' —p'
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and n is the Fermi-Dirac distribution function. The
second term in the statistical effective interaction, f", is
included to avoid counting the second-order diagram
twice.

B. Quasiparticle spectra

To get the spin-Auctuation contribution to the statisti-
cal quasiparticle spectrum we functionally difFerentiate
the expression for the energy with respect to the distri-
bution function, and 6nd

The con tnbutlon to the energy from pairs with spin
one has been discussed by Baym and Pethick and is
given by

hE = ——,
' g n (1 n—+ )f "(q,co ),

QP

As we shall explain below, not all of the effective-mass
enhancement in liquid He comes from spin Auctuations,
and to take this e8ect into account we shall assume that
the quasiparticle spectrum in the absence of spin Auctua-
tions is given by p /2mo, where mo is generally difFerent

from the bare mass m.
The expression for the statistical quasiparticle spec-

trum is then

ez' ——p /2mo —pF/2mo —g(1 2n—+ )f"(q,cu ),

where f"(q,co) is defined as above. For convenience we
have subtracted g/2mo, where pF is the Fermi momen-
tum, from the quasiparticle energies, so that c, vanishes
at the Fermi surface. This calculation will be consistent
with the Landau theory calculations of the contributions
to e beyond those linear in g =(p —pF)pF/m' if the
long-wavelength low-frequency interaction between the
quasiparticles is given by the Landau theory expression.

In evaluating Eq. (6) we shall make a number of long-
wavelength approximations. %'e replace the argument
of the Fermi-Dirac distribution np+~ by

e+ —~ =(p pF+ql —)UF

where )u is the cosine of the angle between q and p, and
we use the following long-wavelength expressions for
X(q, co):

ReX(s) = — 1 ——ln
s 1+s
2 1 —s

—Q np, ( I np +q—) . (q, copq) .

For small q the last term in Eq. (5), the so-called rear-
rangement term, has been shown by Carneiro and Peth-
ick to give negligible contributions to any quantity
which is independent of spin. In line with our aim of ex-
ploring differences among various calculations we shall
generally adopt a policy of neglecting contributions like
the rearrangement term, which are unimportant at long
wavelengths, and shall introduce a cutoft' wave number

q, for the spin fiuctuations. %e therefore lump our lack
of knowledge of the finite momentum efkcts and other
features into the single parameter q, . Note that it is f",
not f ", that appears in (4). This is because in the
second-order diagram for hE there are two ways of
selecting the momentum of the particle-hole pair and,
consequently, two ways of selecting the momentum of
the particle-hole pair in hc". Since we assume that the
momenta q of pairs of interest are small enough that the
phase spaces for the two ways of choosing the pair
nlomentum do not overlap sign16cantly, these two ways
of assigning the momentum correspond to physically
different processes. The factor of —,

' in the second-order
contribution to AE is therefore compensated in Le" by
the factor 2 coming from the two ways of assigning the
quasiparticle-quasihole momentum. %e shall evaluate
the effective interaction at zero temperature, since it is a
weak function of temperature.

ImX(s)= ——se(1 —
~

s
~
),

2

where s =co/(qUF ) and e is the step function.
uz ——pF/m is the Fermi velocity. In addition, rather
than modeling V~ in detail, we shall take it to be equal
to Fo/N(0) for all momenta out to some cutoff q, . Here
I'o is the usual spin-antisymmetric Landau parameter
which is related to the magnetic susceptibility 7 by

m '/m
1+I'(')

where 7o is the magnetic susceptibility of a free Fermi
gas with bare mass m, and N(0)=m "pF/n fi is the
density of states. These long-wavelength approximations
should be reasonable provided q/2pF is small, and they
will automatically ensure that our results for the leading
corrections to the quasiparticle spectrum at finite values
of ~p —pF ~

and finite temperature are consistent with
the results of Landau theory with all the Landau param-
eters except Fo neglected.

Our model is a simplified one, since it does not incor-
porate all the physics one could wish for. In particular,
we have not allowed for the fact that the quasiparticle
spectra and the interactions should depend on energy
and temperature and should be calculated self-
consistently. One might argue that one should work
with quasiparticles with an elective mass m* and in-
teraction I'0 at zero temperature, while at temperatures
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+, 2 f q dq, . (10)
mo 4m' pF o 1 FoX(q—,0)

The efective-mass enhancement 5m s„due to spin ffuc-
tuations is given by

~qdq 0
5m s„=m "—mo ————,'mo 2, (11)

pF 1 —FoX(q, 0)

and if one neglects the momentum dependence of X(q, 0),
one Snds

Fo
5m sF = —

2
m o (12)1+8' &5'F

Since q, cannot exceed 2pF, the maximum mass
enhancement from spin fluctuations is 3.5m at zero pres-
sure, and 4.7m at 27 bars, if mass enhancements due to
other efFects are neglected (mo ——m), which might sug-
gest that spin fluctuations alone could account for the
experimentally observed enhancement, 1.76m at zero
pressure and 4.17m at 27 bars. However, as we now
show, these theoretical values are gross overestimates for
a number of reasons. To see this we take the standard
expression

pS
1=1+

P7l 3

for the efFective mass in terms of the Landau parameter

(13)

F& ——3 F'p p,If'
—i 2

(14)

where F (cos8) is the spin-symmetric quasiparticle in-
teraction (multiplied by the density of states at the Fer-
mi surface) as a function of the angle 8 between the two
quasiparticle momenta. F'{cos8) may be evaluated by
using crossing symmetry, as is commonly done in
induced-interaction models, and for small angles 0 it
may be expressed in terms of Landau parameters

F'(8=0)=Fs;,(8=0)

pS
1

21 +1

so high that the effective mass is no longer enhanced by
spin-fluctuation effects, one should work with quasiparti-
cles having a mass closer to the bare mass, and an in-
teraction closer to that in the paramagnon model. %e
shall not take such e8'ects into account explicitly, since
we expect that, in the region of energies and frequencies
of interest here, neglect of these effects will not seriously
aRect our conclusions about finite-frequency and finite-
temperature corrections.

We now consider how to choose q, . If one evaluates
the eff'ective mass from Eq. {6), and makes the long-
wavelength approximations described above, one Ands

Be

m pp ~p & =&F

Here I'&;, is the so-called direct interaction, which con-
sists of all diagrams irreducible in both the particle-hole
channels. One may recover the result (10) for m* from
Eqs. (14) and (15) by (i) neglecting the F&' terms in Eq.
(15), (ii) replacing F~;, by —,'g& FI', and (iii) setting

@=1 —q /(2pF) in Eq. (14) equal to unity, which is
equivalent to assuming that F'(p) is appreciable only for
small values of 8 (i.e., that only long-wavelength spin
ffuctuations are important). In Eq. (10) the ffuctuation-
induced contributions are contained in the second term.
%hen we include only the induced-interaction terms in
evaluating the efkctive mass, neglect all Landau parame-
ters except Fo and again replace p by 1, we find

3mo (Fo) q
&~ SF (16)

(1+F;)

which is less than 1.45 m at P=O and 2.59 m at P=27
bars if we neglect enhancements from other sources, and
mo is chosen so that mo+5ms„ is the experimentally
measured effective mass. Because of the approximations
we have made, even these estimates are too large, and
there must be signi6cant contributions to m * from ei-
ther the direct interaction or other parts of the induced
interaction. These conclusions are in accord with the
calculations of Ainsworth, Bedell, Brown, and Quader.
In their induced-interaction model for He more than
half of the enhancement of m'/m comes from the direct
term, and less than 20% from spin ffuctuations. In view
of the uncertainty as to the size of the mass enhance-
ment from spin Auctuations we shall consider two
choices of q, . One value is determined from Eq. (10)
where mo is the bare mass. Since this expression is not
realistic for q, /pz ~ 1, the actual mass enhancement due
to spin fluctuations will account for only part of the to-
tal. The second value we take is one-half the first one
and mo is chosen so that the value of m' given by Eq.
(10) is the experimentally determined value. With this
latter choice, the spin-fluctuation contribution to the
effective mass evaluated from Eq. (16) is about 50% of
the total, m' —m, but if 6nite wave number eR'ects are
included, it is of order 40%. By making calculations for
two values of q, we shall be able to see how dependent
our results are on q, .

The dynamical quasiparticle spectrum is given by the
poles of the single-particle propagator. The self-energy
due to spin fluctuations is obtained by summing self-
energy diagrams corresponding to those summed in the
calculation of the energy, and we find the dynamical
quasiparticle spectrum to be given by

s~"=p /2mo —pF/2mo+X(p, s "), (17)

where X(p, c~"} is the self-energy. This definition of the
dynamical quasiparticle spectrum introduces renormal-
ization eRects which were not included in the calculation
of the statistical quasiparticle spectrum. In order to
compare the two spectra, we replace c. " in X by its
zero-temperature value, which we shall approximate by
the leading contribution, g =(p —pz)UF, and we shall
employ the same long-wavelength approximation as we
used in evaluating Eq. (6). The dynamical quasiparticle



gUAsrp&RTrcr. E spEcTRA wND spEcrFrc HE&T oF A. . . . l651

spectrum is therefore given by

2 2

+&(p, g )
2mo 2mo

terms of Landau parameters alone. The quantity I is
defined by

3K est
1

20
Pp + g(1 —2npq)f "(q,co~)

2&i o 27?l o

+ g [1 2—na(co~)]g (q, co~),
3 ~o

est
1 +Fo

~o1—

V

vx( )

V
g(q "w) 21

1 V ( )

and na(co~) is the Bose-Einstein distribution function.
The term involving g(q, u~) is essentially the analogue
of the rearrangement term in Eq. (5). It vanishes for
long-wavelength fiuctustions and we shall neglect it. In
the calculations of e~", the spectrum which appears in
the distribution function is taken to be the linear part of
the zero-temperature spectrum so that, in the distribu-
tion function, (e p)/T is—replaced by g~/T and the
chemical potential is not allowed to vary with tempera-
ture. Neglecting the temperature dependence of the
chemical potential should be a good approximation since
the characteristic temperature for variations of the
chemical potential is of order the Fermi temperature
whereas the qussipsrticle spectrum varies on s scale of
temperatures typical of spin-Nuctustion energies, which
are much smaller than the Fermi temperature. In the
calculations of the two qussipsrticle energies we have
made completely equivalent approximations, snd conse-
quently meaningful comparisons can be made between
them.

C. Entropy and syecific heat

In order to evaluate the entropy snd the dynamical
contribution to it we expand the expression in Eq. (1) to
linear order in (e —g ) and integrate numerically. To
include contributions from higher powers of (e~ —g~) in
the entropy and its dynamical part would be to include
higher-order efFects which are not present in our calcula-
tion of the qussiparticle spectra. However, since we
have not calculated the spectrum correctly to this order
we shall drop these contributions here. The leading
terms at low temperatures are

5 5 I+—T ln(T/T, "),
nk~ nk~ 3

where

T pal

2

2
o Pz

and ?~=pF'/2nt 'ks. The corresponding result for t
speci6c heat is

+I T ln(T/T, "), (22)
nk~ nkvd d T nkvd

CO" +I d~T'ln(T/Td~) .
nk~

(24)

Tdy —1/3Tdy
S

,y
3m'

dy 1

20

Fo1—
1+I'()

gdy 3 Fo
(26)

1+Fo

Note that the T "are not equal to the T".
The calculation of thermodynamic quantities from the

qussipsrticle spectrum is somewhat laborious, since one
has to perform, first, a double integral to evaluate the
quasiparticle energies, and, second, a single integral to
evaluate the entropy. The labor can be reduced
signi6cantly if one works directly with the thermo-
dynamic potential, in which case one has to perform one
double integral. To calculate the thermodynamic poten-
tial we adopt a phenomenological approach. We consid-
er quasiparticles with effective mass m* interacting via
an effective interaction V . The contribution to the ther-
modynamic potential coming from ring diagrams con-
sisting of spin-one fluctuations is

Qsp ———', ksT g Iln[1 —V~X(q, v„)]

where

m2 Tm'0

nkvd

2 T~ m

and T,"=e ' T,". The dynamical qussiparticle contri-
bution to the entropy is obtained by evaluating Eq. (1)
using the dynamical quasiparticle spectrum and the re-
sults are similar to Eqs. (20) and (22), except that I is re-
placed by I d":

sy s ry
+ T In(T/T ") (23)

nk~ nk~ 3

and

and T,' is a characteristic temperature noi given in +-,'&,'X'(q, v„)+&,X(q, v„)I .
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The X term in (27) is to avoid overcounting the second-
order term, as we discussed in connection with the cal-
culation of the energy, Eq. (3). The terms of first order
in V, which correspond to Hartree-Fock-like contribu-
tions are not evaluated properly by treating them as a
single bubble, so we have subtracted them too. Since
they are not enhanced by spin-fluctuation effects they are
generally small compared with the other terms. We
have not attempted to carry out a self-consistent calcula-
tion starting from the expression for the therInodynarnic
potential as a functional of the single-particle Green
function, since this is too ambitious a project at this
stage. From Eq. (27) the contribution to the entropy
from spin Auctuatlons is calculated as follows:

ASF

T

Bn~(oi)= —2 g I ImX(q, co)f"(q,co)
0 a BT

dau variable s =u/qUF, we obtain for the logarithmic
contribution

2 P~
5 =8

o (end 1 )2

with

(u/uF &q &q )

(31)

7r2a"=—', W0
12

where

X(Q) Vq o

1+%(0)V o

This is the same as 8" defined in Eq. (21) if I'o in (21) is
replaced by N(0) V o. One finds

2 T ]6

+ns(o~) [ImX(q, co)f"(q,ro)]

In our earlier calculations starting from the energy we
neglected temperature dependence of X(q, eo) and we
shall do the same here. We therefore neglect the second
term in Eq. (28) and write simply

Bna(co)
SsF ———2g ImX(q, co)f"(q,m) .

0 7T

+ dx, lnx(e"—1)

=nkvd T ln
I

kqevF

15 J~d x Inxe"

4m o (e"—1)

=0.236 .

(32)

We note in passing that if we were to neglect only the
part of the second term in (28) proportional to Bf"/BT,
we would obtain a result for the entropy, beyond the
term linear in T, that agrees with the entropy calculated
from the statistical quasiparticle spectrum retaining only
terms hnear in e —g, as described earlier in this sub-
section. At low temperatures Eq. (29) has a term pro-
portional to T, whose magnitude, which is determined
by exp»ding ImX(q, ro)f"(q, co) in powers of co, is

Higher-order terms in s give a contribution

de P cue~

o m

(equi

1)'

X g ImX(s)[f"(s)—f"(0)—&"s']

(~/UF &q gq )

f dpi Bna(co) n oi 3'
BT 2 qvF 1 —V&X(q, O)

T 3m' 1 pqc —V

2 T~o 4m @F2 "o 1 —V X(q, O)

whose leading contribution is equal to

nkaY(I —/3)T
(30)

~here

(33)

This corresponds to a correction to the quasiparticle
effective mass but. since the full mass renormalization is
already included in the basic quasiparticles from which
we built the spin fluctuations, to include it again would
be double counting, and we shall drop it. This pro-
cedure can be justNed by starting from the expression
for the thermodynaImc potential as a functional of the
fully renorrnalized single-particle propagator.

The next term in the expansion of ImX(q, co)f"(q,oi)
in powers of co gives the T lnT contribution to the entro-
py. Using the long-wavelength form of X(q, co) [Eq. (8)],
so that ImX(q, co)f"(q,co) is a function only of the Lan-

i ds [f"(s)—f"(0)—8 "s ]
0 s 3 est

The entropy to order T is given by

AS/nkvd = I /3T ln(T/T, "),
where

T,"=jq, vFexp(Y ) . (34)

This correction to the linear part of the entropy is of the
same form as in Eq. (20). However, because of the
difterent approximations that have been made in calcu-
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if only the Landau parameter I'0 is included. The quan-
tities g' and g," are characteristic energies which cannot
be calculated in Landau theory.

To investigate up to what energies the analytic results
(35) hold, in Fig. 3 we plot (g» —e»)/g» versus in/» for
the statistical and dynamical spectra for q, =0.709p+
and for q, =1.418p~. The straight lines drawn in Fig. 3
have slopes calculated from Eq. (35), and are given by

ez' g»+——(0.303 K )g ln(
~ gz ~ /P, ') (37a)

2.0

ez" ——gz+(0. 701 K )gzln(
~ gz ~

/g,"") . (37b)

For q, =0.709pF we find g,"=1200 mK and g,"=860
mK, while for q, =1.418@~ we find P,'=2400 mK and
g~"=1710 mK. The analytic expression (37a) represents
deviations of the calculated statistical quasiparticle spec-
tra from the form linear in gz to within 10% for energies

up to 650 mK for q, =0.709@+ and up to 800 mK for

q, =1.418@+. For the dynamical quasiparticle spectra
Eq. (37b) represents deviations less well, and it is in error
by 10% at 330 mK for q, =0.709pF and at 650 mK for

~e = 1.418pF .
In order to see how sensitive the values of g' and g","

are to a wave number dependence in the effective in-
teraction, we used a more general expression for g that
takes into account its q dependence, %e took the full
I.indhard function X(q, co) evaluated for quasiparticles
with a spectrum p /2m ', but in evaluating the frequen-
cy variable we approximated co~ by p„qp/m', where

p=p q. This replacement is correct for small q, and it
amounts to neglecting the curvature of the Fermi surface
and putting the velocity of all quasiparticles equal to
pF/m'. It also maintains the particle-hole symmetry of
the spin-Auctuation contributions to the quasiparticle en-

ergies. With this form of X(q, co), the value of q, re-

quired for spin fluctuations to account for all the mass
enhancement is 1.585@~, if one evaluates the effective
mass from Eq. (10) with mo=m. The values of g' and
g" we find for this case are 1600 mK and 1170 mK, re-

spectively, which are to be compared with the values
2400 mK and 1710 mK obtained if the momentum
dependence of X(q, co) is neglected. Considering the
large value of q, used, it is encouraging that the eiTect of
the q dependence is not larger.

%e now consider calculations using parameters ap-
propriate for liquid He at 27 bars (m'=5. 17m and

Fo ———0.759) and the long-wavelength form of X(q, co) in
the e8'ective interaction. %ith these values of m' and

Fo, the value of q, determined from Eq. (10) is 1.879pF
when mo ——m, and 0.940@+ when mo=2. 53m. In the
latter case spin fluctuations are responsible for about
40% of the enhancement of the efFective mass. As we
mentioned previously, there are overestimates of the
mass enhancement due to spin Auctuations because of
the approximations made in deriving Eq. (10). The ana-
lytic expressions for the spectra for small g, given by
Eq. (35), are

e"=g +(1.540 K )g ln(
~ g ~

/g'),
(38)

e "=g +(3.762 K }(&in(
~ gz ~ /g, ") .

The coefficient of g ln
~ g ~

is much larger for the high-
pressure case than for zero pressure while the g, 's are
smaller at the higher pressure. We find that g'=812
mK and g,"=572 mK for q, =0.940pF and g,"=1600
mK and g'"=1140 mK for q, =1.879pF. Thus, for
values of q, that give comparable fractions of the total
mass enhancement, the g, at high pressure are typically
-30% less than those at low pressure. %e have also
calculated the statistical quasiparticle spectrum for the
case where both Fo and I'& are nonzero which is dis-
cussed in more detail in Sec. III C. In Table I we show
the calculated cutoff' energies g' for the cases where one
and two Landau parameters are nonzero at high and low
pressure.

Our calculations enable us to investigate one of the as-
sumptions made by BPZ. In order to derive the sta-
tistical quasiparticle spectrum from the dynamical quasi-
particle spectrum at finite values of

~ p —pF ~

and finite
temperatures, BPZ assumed that the ratio of the devia-

!.0

0 !g
tO 20 40 60 IOG 200 560 IOOO 2000

&p (mK}

FIC». 3. Plot of (g» —c» )/g» for the statistical and dynamical
quasiparticle spectra vs lng» for q, =1.418pF (dots) and for

q, =0.709pF (triangles). The straight lines are the g»in('» fits in
Eqs. (37a) and (37b). For q, =l.418PF, g'=2400 mK and
g"= 1710 mK and for q, =O.709pF, g' = 1200 mK and

g,"=860mK. fhe other parameters are the same as in Fig. 1.

1.4182
1.879
0.709
0.940
1.249
1.550

—0.70
—0.759
—0.70
—0.759
—0.7
—0.759

0.0
0.0
0.0
0.0

—0.55
—0.99

2.76
5.17
2.76
5.17
2.76
5.17

2400
1600
1200
812

3300
3100

TABLE I. Energy cutoff's, g', found by fitting the calculated
statistical quasiparticle spectrum to the analytically determined

g» In/» dependence.

g' (mK)
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tions from the linear behavior in g of the two spectra
was given by its value for small p —p~, 8~"/8" [see Eqs.
(21) and (26)j. In Fig. 4 we plot the ratio of the devia-
tions of the spectra from g as functions of

~ p —pF ~

for
zero pressure with q, =0.709p~ and q, =1.418pF. Since
the numerical calculation of the ratio was not accurate
for p close to pF at zero temperature, we used the analyt-
ical result obtained from the fits (37) here

temperature value of the ratio at the Fermi surface is
2.24 and again, because g' and g" are different, there is

a sharp drop in the value of the ratio at small
~ p —pF ~

.

B. Effective masses

%e now turn to the quasiparticle effective masses,
which are de6ned, for arbitrary p and arbitrary tempera-
ture, by

ln
gti)'

(St

gdy

est

1 1 Fp

m* p ~p
(40)

Our approximation for s is odd in g, and to preserve
the particle-hole symmetry we shall replace p-i in the
interaction term by pz . Thus

(39)

The ratio has a term varying as 1/ln
~ g ~, which causes

it to fall rapidly as p becomes different from p+. The ra-
tio falls faster as one goes further from the Fermi surface
for the smaller value of q, . At zero temperature and for

q, =0.709pF, the ratio has fallen by about 16% from its
value at the Fermi surface, 2.3148, for g =150 mK,
which corresponds to a momentum 0.04pF from the Fer-
mi surface. For q, =1.418pF at the same g~ the ratio
has fallen by about 10%. At a temperature of 100 mK
the numerically determined value of (g~ —s~")/(g~ —s~ )

at p =pF is about 1.80 for q, =0.709pp and about 1.94
for q, =1.418pF, so we see that the temperature depen-
dence of the ratio is also important. The dependence of
the ratio on

~ p —pF ~

is not as strong at fimte tempera-
tures as at zero temperature and is much the same for
the two values of q, . %ith the values of parameters ap-
propriate to normal liquid He at 27 bars, the zero-

Bbs
+

~0 pF ~p
(41)

The statistical and the dynamical effective masses at
zero temperature are shown in Fig. 5 as functions of

p pF l

or q =() 7() pF and q =1 418pr ~i
q, =0.709pF the effective mass due to other sources pl p,
is 1.917m. As a consequence of this small value of q„
mp approaches its limiting value more rapidly than
when q, =1.418pF and mo ——m. The dynamical effective
mass falls more rapidly than the corresponding statisti-
cal effective mass. For q, = 1.418pF „ the enhancement
due to spin Iluctuations at

~ p —pF ~

=0. lpF is 30% less
for the statistical spectrum and 45% for the dynamical
spectrum than the enhancement at the Fermi surface,
1.76m. For q, =0.709pz, the enhancement at

~ p —pF ~

=0. lpF has fallen by 40% for the statistical

~ 5 I I I I
1

I I I I ( I I2.

2.0
pd)f

P P
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q =0.709pF—
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q = IAIep—
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0 O. I 0.2

jl -p, I

PF

FIG. 4. Ratio of the deviations of the quasiparticle spectra
from g~ at zero temperature and at 100 mK as a function of
Ip —pF ~

for q, =1.418pF (solid lines) and for q, =0.709pF
(dashed lines). At zero temperature and p~pF this ratio is

gl Yen by the analytic result 8 /8 =2.3148, he e 8 and
8 " are defined in Eqs. (21) and (26). The other parameters
used are the same as in Fig. 1.

I.4 I I I 1 I I I I

G. I

PF

0.2

FIG. 5. Statistical and dynamical quasiparticle effective
masses at zero temperature as functions of

~ p —pF ~

for

q, =1.418pF (solid lines) and for q, =0.709@+ {dashed lines).
The other parameters are the same as in Fig. 1.
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spectrum and by 50% for the dynamical spectrum. The
statistical and dynamical effective masses are compared
at di8'erent temperatures for q, =1.418pF in Fig. 6. One
sees that the variation of m~*/m with ~p —p„~ de-
creases as the temperature increases. In Fig. 7 we show
the variation of the statistical and dynamical erat'ective

masses at the Fermi surface as a function of temperature
for the two values of q, . The temperature-dependent
contribution to the effective masses for q, =0.709pF is
much smaller than for q, =1.418pF because the efkctive
mass due to other sources, mo, is comparable with m*,
whereas for q, =1.418pF all of the enhancement comes
from spin Auctuations.

2.8

2A

2.2
Alp

m 2. I

2.0

C. Thermodynamic properties

As we described above, we have used two ways to cal-
culate thermodynamic properties, the 6rst based on the
statistical quasiparticle spectrum, and the second on a
direct evaluation of the thermodynamic potential. %e
begin by describing the calculations starting from the
spectrum.

2,8

2.6

2.2
fop

ITl
2.0

l.4
0

I

O. I

PF

FIG. 6. Statistical and dynamical efrective masses as func-
tions of

~ p —pF ~

at zero temperature, 100 mK, and 200 mK
for q, =1.418@~. The other parameters are the same as in Fig.
1.

Calculations using the quusiparticle spectrum

The entropy and the dynamical quasiparticle contribu-
tion to the entropy are evaluated by putting the statisti-
cal quasiparticle spectrum and the dynamical quasiparti-
cle spectrum into the quasiparticle expression for the en-
tropy [Eq. (I)]. The analytic results for the coefficients
of the T lnT term in the entropy and the dynamical con-
tribution to it are given by Eqs. (20) and (23). For pa-
rameters appropriate to He at zero pressure,

I.8-

l.7-
l.6 '

0 IOG 200 500 400
T(mK)

FIG. 7. Statistical and dynamical quasiparticle e8'ective
masses on the Fermi surface as functions of temperature for
q, =1.41SpF (solid lines) and for q, =0.709p+ (dashed lines).
The other parameters are the same as in Fig. 1.

3 o = —2.333 and m '/m=2. 76, we find

SInks ——S Inkii+(19. 53 K )T ln(TIT,"),

S "/nkvd S Ink&——+(45.21 K )T ln(T/T, ") .

(42)

To find the entropy and the specific heat at higher
temperatures we evaluated the expression for the entro-
py, Eq. (1), using the two quasiparticle spectra which
were calculated with the long-wavelength form of
g(q, co). To determine the temperatures T," and T, " and
to investigate how good the low-temprature expansions
are, we display in Fig. 8 plots of (S S)ink—AT versus
lnT for the two values of q, . The straight lines in Fig. 8
are drawn with the theoretical slopes given by Eq. (42).
The characteristic temperatures obtained from the fits
for q, =0.709pF are T,"=182 mK and T, "=136 mK,
and, for q, =l.418pF, T,"=359 mK and T, "=268 mK.
In Eq. (34) we showed that the characteristic tempera-
ture T, is proportional to q, when the entropy is calcu-
lated from the thermodynamic potential with the long-
wa~elength form of X(q, co). One sees from the fits here
that T, is approximately proportional to q, and that the
deviation from exact proportionality, which is a measure
of the error introduced in carrying out the triple in-
tegral, is quite small. These results exhibit a feature we
have found in all calculations, namely, that characteris-
tic temperature for calculations using dynamical quasi-
particle energies are signi6cantly lower than those for
calculations using statistical quasiparticle energies. Also
we find that the T lnT behavior holds to higher temper-
atures in the statistical case than in the dynamical one:
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FIG. 8. Entropy and the dynamical contribution to the en-
tropy for q, =1.418pF (dots) and q, =0.709pF (triangles). Also
plotted are the T'lnT fits, Eq. (42), for q, = 1.418pq (solid lines)
and for q, =0.709p (dashed lines). For q, =1.418p, T,"=359
mK and T,""=268 mK and for q, =0.709pz, T,"=182 mK and
Td"=136 mK. The other parameters are as in Fig. 1.

IG 20 40 60 t00 200
T(mK}

FIG. 9. Speci5c heat and the dynamical contribution to the
speci6c heat for q, =1.418pz (dots) and q, =0.709pz {triangles).
Also plotted are the T'lnT fits, Eq. (43), for q, =1.418pF (solid
line) and q, =0.709pF (dashed line). For q, = 1.418pz, T,"=257
mK and T,""=192mK and, for q, =0.709pz, T,"=130mK and
T, "=97 mK. The other parameters are the same as in Fig. 1.

for q, =0.709pz the deviations of the entropy and of the
dynamical contribution to the entropy are given to
better than 10% by the low-temperature expansions in
(42) up to 60 mK for the entropy and up to 46 mK for
the dynamical contribution to the entropy. Similarly,
for q, =1.418pF, the corresponding temperatures are 110
mK and 90 mK, respectively, which shows that the T,
roughly scale with q„as the g, do.

Now we turn to the specific heat. The low-
temperature expressions calculated from Eqs. (42) are

C„C„
+(58.59 K )T ln(T/T, ")

Plk8 llkB

c,'& c„'
+(135.62K )T ln(T/T, ") .

nk~ nka

(43)

The calculations of the speci6c heat were made by nu-
merically differentiating the entropy calculated above.
In Fig. 9 we show a plot of (C„—C„)/nkvd T versus lnT.
The straight lines have the theoretical slope given by
Eqs. (43), and the values of T,"and Td" determined from
the plots are 130 mK and 97 mK for q, =0.709pF, and
257 mK and 192 mK for q, =1.418pF, which are in sa-
tisfactory agreement with the values obtained from the
expressions T,"=e '~3T," and T~"=e '~ T,~", which
follow from differentiation of the low-temperature ex-
pansion for the entropy. The deviation of the specific

heat and of the dynamical contribution to the speci6c
are given to better than 10% by the low-temperature ex-
pansions (43) up to 67 mK and 33 mK, respectively, for
q, =0.709pF and up to 86 mK and 60 mK, respectively,
for q, =1.418pF. The temperature at which this 10%
deviation occurs is roughly proportional to q, for the
dynamical contribution to the specific heat but decreases
less with decreasing q, for the specific heat.

Terms in the speciSc heat beyond the T3lnT contribu-
tion cannot be evaluated in terms of Landau theory, and
it is therefore of interest to know the extent to which re-
sults depend on uncertain features of the model at finite
wave numbers. %e performed calculations similar to
those above, except that we replaced the long-
wavelength form of P(q, co) in Eqs. (4), (5), and (19) by its
q-dependent form, as described in Sec. IIIA. As we
mentioned above, for a cutoN' q, =1.585@+, this model
gives the measured e8'ective mass. The characteristic
temperature in the logarithmic 6ts to these results is
somewhat lower than for the earlier calculations using
the long-wavelength form of +q, co) with q, =l.418@~;
T," is 270 mK and T, " is 189 mK. Also the deviations
of the entropy from the linear temperature dependence
are given by the logarithmic fit to better than 10% up to
69 mK, while for the dynamical contribution to the en-
tropy the fit is good to 10% up to only 52 mK. The
speci6c heat and the dynamical contribution to the
specific heat are calculated from the entropy and the
dynamical contribution to it. In this case T," is 193 mK
and T," is 135 mK. The deviation of the speci6c heat
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from linear temperature dependence is fitted by the loga-
rithmic term in Eq. (22) to within 10% up to a tempera-
ture of S6 mK. For the dynamical case the fit is good to
10% up to 46 mK.

These results show that characteristic temperatures
can be altered by about 25% by treating the finite
momentum response in di8'erent ways. We find it
reassuring that the effects are no larger, considering how
large the values of q, are, but we should stress that the
differences between the two calculations are rather mod-
est, and larger changes in characteristic temperatures
could result from, for example, allowing the interaction,
V, to be momentum dependent.

In the earlier calculations, we included only the single
Landau parameter Fo. However, the experimental value
of the coefFicient I of the T 1nT term in the specific heat
at zero pressure is 36.8 K, which is considerably
smaller than the theoretical value 58.6 K [see Eq. (43)]
which orle obtains in this approximation. The dift'erence

may be attributed to the effects of Landau parameters
other than Fo which wi11 modify the spin-Auetuation
propagator and give rise to interactions in other chan-
nels. To investigate these effects we have carried out a
calculation in which we include a second Landau param-
eter, F;. As in the earlier calculations, we consider the
scattering of a quasiparticle-quasihole pair with small to-
tal momentum q. The K matrix for scattering a pair
with a quasipartiele of momentum p and a quasihole in
the state p —q to a state where the quasiparticle and
quasihole are in the states p' and p' —q is a function of
8, the angle between p and q, 8', the angle between p'
and q, P, the angle between the plane containing p and q
and the plane containing p' and q„and the Landau vari-
able s. The equations for K may be solved by expanding
K in associated Legendre polynomials of 8 and 8', and
powers of e'~. We note that for on-shell processes,
which are the ones of interest here, cose and cos8' are
both equal to s. For further details we refer to Ref. 12.
The effective interaction between quasiparticles is related
to K in essentially the same way as for the ease of one
Landau parameter, and one finds [cf. Eq. (4)]

and (26) for 8" and 8 " are

8"=—(Ao) (1+A i)— (Ao)'0 1

2—2AoA;+(A', ) — (A i )
48

2

772—2AoA i+(A i ) — (A i)
16

msF = —mo3
Fo

1+F' 1+—,'F', 2p
(46)

The parameters Ao, Ao, and A& may be determined
from bulk thermodynamic measurements, but these do
not determine F;. A number of estimates of F; are
available, but they are rather imprecise. We shall adopt
values GreywaB estimated from I, the eoeScient of the
T lnT term in the specific heat, by using the theoretical
expressions (21) and the generalization of (45) which in-
cludes contributions from the spin-symmetric Landau
parameters. The values of Fo, Fo, and F'] he used were
obtained from bulk thermodynamic measurements in the
low-temperature limit. At 1ow pressure he finds
F i

———0.55. If one now estimates I using Eqs. (21) and
(45), one finds I =35.39 K, compared with the experi-
mental value of 36.8 K . The difference is due to our
neglect of contributions from spin-symmetric (density)
channels in (45). The fact that the two values are so
close shows how relatively unimportant the density
channels are. We turn now to the numerical calcula-
tions. We need values for the cuto8'parameters associat-
ed with the spin modes, and we shall take these to be the
same for all spin modes. If we make the same long-
wavelength approximations as we did in the derivation
of Eq. (12), we find

tan [ImX(s)Eo(s)]f"(s)=—
2 ImX(s)

2 tan '[ImX(s)E i (s)]
+

ImX(s)
where

F'+ 3's
Eo(s) =

1 —(Fo+ A;s )RCX(s)

F;(1—s )
K;(s)=

2[1—F;RcQ,', (s)]

(44)

C„, /nks C, /nks+(35. 39 ——K )T ln(T/T, "), 4;47)

This overestimates the contribution to the enhancement
from long-wavelength Auctuations for the same reason as
Eq. (12) did. When no other source of enhancement is
allowed for, so that mo ——m, q, is 1.249pF. Taking q,
equal to half this value, 0.62Spz, the e8'ective mass due
to other sources, mo, is 1.92m. The value of q, for
mo=m is lower than that when only Fo is nonzero be-
cause transverse spin-current Auctuations make a posi-
tive contribution to the enhancement. The fit to the nu-
merical calculations at low temperature is

RcQ,', (s) = ——,'[—,'+(1—s )RCX(s)],

A', =F;/(1+F;/3) .

g is given in Eqs. (8). The generalizations of Eqs. (21)

whci'c T~ = 192 I11K. Wc fiiid tliat Eq. (47) fits tllc devi-
ation of the calculated specific heat from linear tempera-
ture dependence to better than about 10% up to a tem-
perature of 70 mK. When all of the mass enhancement
comes from spin-density and spin-current fluctuations,
q, is 1.249@~ and T," is 381 mK. In this case we find
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that Eq. (47} fits the deviation of the calculated speci6c
heat from linear temperature dependence to about 10%
up to a temperature of 100 rnK.

At high pressure the magnitude of the 6nite-
temperature contribution to the specific heat is much
larger than at zero pressure. For example, the experi-
mental value of I is about 5.2 times larger at 27 bars
than at I'=0. It is therefore of interest to carry out cal-
culations using parameters appropriate for high pres-
sures. At 27 bars, m ' is 5.17m, F' is —0.759, and I', is
—0.99, where the latter value is again that estimated by
GreywaB from the measured value of I", and q, is
1.550@+ if we take mo to be the bare mass. %ith this
value of q„ the fit to the numerical calculations at low
temperature is

l40
(K

120

100

C, /nktt C„——/nktt+(182. 82 K )T ln(T/T, "), (48)
40

with T,"=322 mk. If one includes the spin-symmetric
Landau parameters, one finds that I is 190 K, which
again shows that, in studying the T lnT contributions to
the speci6c heat, the error incurred by neglecting the
spin-symmetric channels is small. In this case the devia-
tion of the calculated correction to the linear part of the
specific heat from the logarithmic term in Eq. (40) is
10% at 100 mK.

As we have remarked earlier, calculations of thermo-
dynamic properties starting from the quasiparticle spec-
trum are rather cumbersome numerically, and we have
carried out a number of calculations starting from the
thermodynamic potential, which is easier to evaluate.
%'e now describe these.

20

l0 20 40 60 I00 200 400
T(mK}

FIG. 10. Comparison of the entropy and specific heat at
zero pressure calculated from the thermodynamic potential
{dots) and from the statistical quasiparticle spectrum (tria-
gles). The parameters are as in Fig. 1 except that q, =1.418pF.
The straight lines through the entropy and specific-heat points
at low temperatures are given by Eqs. {42) and {43). T, is 378
mK and 1, is 270 mK.

2. Calculations starting from the thermodynamic potential

%'e begin by considering parameters appropriate for
the case of liquid He at low pressure, and include only
the Landau parameter Fo. This is important for making
comparison with our earlier calculations starting from
the spectrum. We find that the characteristic cutoff tem-
perature T, in the T lnT contribution to the entropy,
which is defined by an equation analogous to Eq. (34), is
given by T, =267(q, /pF) mK if we take the long-
wavelength form of the Lindhard function. %hen
q, =1.418pF, T, is found to be 378 mK, compared with
359 rnK for the quasiparticle calculation. This shows
that the different approximations made in the two calcu-
lations have small effects. In Fig. 10 we show the entro-
py and specific heat calculated from the therrnodynarnic
potential with I'o = —0.70 and all other Landau pararne-
ters set equal to zero, and with q, =1.418pF. The trian-
gles in Fig. 10 are the results of the corresponding calcu-
lation from the quasiparticle spectrum. %'e find that the
T lnT behavior its the numerical calculations based on
the thermodynamic potential up to a somewhat higher
temperature than it does for the calculations based on
the quasiparticle spectrum.

As in the quasiparticle calculations we have investigat-
ed how the deviations of the specific heat from the
T lnT behavior depend on q, . Calculations were carried
out for q, =0.5pF, pF, and 1.418pF using the long-
wavelength form of g{q,co). For these values of q, the

effective mass enhancements from spin fluctuations in
our model, calculated from Eq. (12), are 0.495m, 1.288m,
and 1.76m, respectively. Just as in the case of the quasi-
particle calculations, the temperature range over which
the calculations are well described by a T lnT behavior
decreases as q, decreases. Kith a value of q, equal to
1.418pF the deviation of the speci6c heat from linear
temperature dependence fits the form in Eq. (43) to
better than 10% up to 100 mK. When q, is equal to pF
this temperature is 77 mK and when q, is O.Spz this
temperature falls further to 40 mK. To a first approxi-
mation, this temperature is proportional to q, . Al-
though the enhancement of the zero-temperature
effective mass falls very rapidly with q„ the region over
which the T lnT behavior persists falls quite slowly.
This demonstrates that the T lnT behavior can persist to
reasonably high temperatures, even though spin fluctua-
tions contribute only a modest amount to the effective-
rnass enhancement.

To investigate what one might expect at higher pres-
sure, we carried out calculations for m'=5. 17m and
I'o ———0.759, parameters appropriate for a pressure of
27 bars. For I one finds 449 K, compared with 59
K for the analogous calculation at zero pressure, and
for q, =1.879@+, the characteristic temperatures in the
logarithms are T, =260 rnK and T, =188 mK, about
30% lower than the zero-pressure values. The T lnT fit
(20) fit to the deviation of the entropy from a linear tem-
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perature dependence is good to better than 10% up to a
temperature of 100 mK, and the corresponding tempera-
ture for the T 1nT fit to the specific heat is 70 mK.
With increasing pressure, T," and T," decrease and devi-
ations from logarithmic temperature dependence start at
lower temperatures.

The entropy and specific heat were also calculated for
the case when both I 0 and I

&
are taken to be nonzero,

and equal to the values given earlier. For the case of
zero pressure and q, =0.625pz, the deviation of the
specific heat from a linear temperature dependence is
fitted by the logarithmic term in Eq. (47) to better than
10% up to a temperature of 72 mK. T, is found to be
170 mK„which is smaller than the corresponding value,
192 mK, when the specific heat is calculated from the
statistical quasiparticle spectrum. However, the T lnT
behavior of the specific heat calculated from the thermo-
dynamic potential persists to higher temperatures than
in the quasiparticle calculation. We have also calculated
the speci6c heat for q, =1.249pF, and 6nd T, =339 mK.
In this case the deviation of the specific heat from a
linear dependence on temperature is fitted by the loga-
rithmic term in Eq. (47) to 10% up to 140 mK. We
have also carried out calculations for a pressure of 27
bars for q, =1.550pF, q, =pz, and q, =0.775pF, where
again we took the value of the Landau parameter F

&

from Greywall's fit, which gives Ii
~
———0.99. The T lnT

fit to the specific heat is

=(C„C„)l—nks ——182.82 K T ln

with T, =210(q, /pF) mK. When q, =0.775pF, this
form fits the deviation of the calculated specific heat
from linear temperature dependence to better than 10%
up to a temperature of 76 mK. For q, =pz, this temper-
ature is 100 mK and with q, =1.550pF, the correspond-
ing temperature is 150 mK. As in the low-pressure case,
the specific heat calculated from the thermodynamic po-
tential is described by the logarithmic term to higher
temperatures than is the specific heat calculated from
the quasiparticle spectrum. In Table II we show the cal-
culated cutoffs in the entropy and speci6c heat for the
various values of I'o and I' &.

We now investigate the extent to which our calcula-
tions with F~ and I'; included resemble the experimental
data. The specific heat calculated with parameters ap-
propriate to zero pressure and with q, =1.418pz is com-
pared with the experimental results of Greywall in Fig.

11. For this value of q„T, is 339 mK, which is smaller
than the value 450 mK, obtained by Greywall from his
fit. At a given temperature, the diiTerences between the
calculated specific heat and the experimental data are
larger for smaller q, . One also sees from Fig. 11 that
beyond about 160 mK the full calculation is much closer
to experiment than the T lnT expression (47). At higher
pressures the values of T, found by Greywall by fitting
to his data are much lo~er than at zero pressure, 238
mK at 22.22 bars and 226 mK at 29.30 bars. %'ith pa-
rameters appropriate to 27 bars and q, =p~, the calculat-
ed value of T, is 210 mK, which is quite close to the ex-
perimental value. In Fig. 12 we compare the specific
heat calculated with these parameters with the experi-
mental specific heat. Greywall was able to fit his data at
27 bars with a T lnT term alone up to 100 mK. As we
can see from Fig. 12, the T lnT expression for the
specific heat fits the full calculation very well up to
about 100 mK. In addition the calculated specific heat
is quite close to experiment up to 200 mK after which
the difference between the two grows rapidly. What
these calculations show is that a spin-fluctuation model
which includes both spin-density and transverse spin-
current fluctuations can give a reasonable account of the
experimental specific heat for He up to a temperature of
almost 150 mK. For the high-pressure case the model
can account for the experimentally determined T, if q, is
about pF, but with such a cutoff one cannot account for
the high value of T, observed at low pressure.

IV. THE PARAMAGNQN MQDKI.

Calculations of contributions to the specific heat and
entropy of He beyond the T lnT term have previously
been made by Srinkman and Engelsberg, who used the
paramagnon model. On the basis of their calculation
they concluded that the T lnT behavior should be ob-
servable only at very low temperatures, less than 20 mK
at high pressure, which would make it difficult to detect
experimentally. In the calculations described above we
found that the T lnT behavior persists to considerably
higher temperatures, typically more than 100 mK, which
is in qualitative agreement with what is observed experi-
mentally. ' In this section we isolate the reasons for the
paramagnon model calculations giving such a low esti-
mate of the temperature to which the T3lnT behavior
should persist.

The 6rst point to notice is that in Ref. 6 the entropy
due to spin fluctuations, apart from any contributions to

TABLE II. Characteristic temperatures T, and T, obtained from calculations using the thermo-
dynamic potential and coelcients of the T lnT terms in the speci6c heat for the various values of Fo,
Fl and q, .

1, {mK)

1.4182
1.879
1.2494
1.550

—0.70
—0.759
—0.70
—0.759

0.0
0.0

—0.55
—0.99

2.76
5.17
2.76
5.17

38.59
449.1

35.39
182.82

380
260
464
455
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FIG. 11. Comparison of the experimental specific heat at
zero pressure and the theoretical one calculated from the ther-
modynamic potential with two Landau parameters, I'0 and I"

&,

and q, = 1.249pF. Also plotted in the T3lnT fit, Eq. (47},where

T, is 339 mK.

FIG. 12. Comparison of the experimental specific heat at 27
bars and the theoretical one calculated from the thermodynam-
ic potential with two Landau parameters, Fo and I';, and

q, =pF. Also plotted is the T'lnT fit, Eq. (49), where T, =210
mK.

ES(T)=2+ X(p, s ), (50)

where X(p, e } is the self-energy due to spin Iluctuations,
e =p /2m is the free-particle energy, and n is the
Fermi-Dirac distribution function evaluated at c . This
expression is precisely what one finds if one evaluates the
dynamical quasiparticle contribution to the entropy, by

I

the T=O effective mass at the Fermi surface, was ap-
proximated by the expression inserting the dynamical quasiparticle energy (17) into the

quasiparticle expression (1} for the entropy, and retains
only terms of first order in X. The fact that the entropy
and specific heat were approximated by their dynamical
contributions implies that the T lnT contributions were
overestimated by a factor 8 "/8", typically 2 —3, as one
can see from the calculations in Sec. III C.

To make contact with the calculations based on the
thermodynamic potential we observe that (50) may be
rewritten as

Bns(cd)
aS(T)= —2g I ImX(q, co)fd"(q, co }

+2+f (q, e~ s~) — [ns(et „~
—e ) ns(e ——e,

~

)]+ns(e~
~

—e }
p q

(51)

If we neglect in (51) all but the first term, which is con-
sistent with the approximations we have made
throughout our calculations, we find

clns ( co )
bS(T)= —2+ I ImX(q, co)f "(q,co),

0

which is identical with Eq. (29), except that f"(q,~) js
replaced by fd"(q, cg).

We now turn to the main difference between Landau
theory and the paramagnon model. This is that in the
paramagnon model, the quasiparticles that make up the
spin fluctuations are assumed to have the bare He mass,
rather than the effective mass, as they do in Landau
theory. In the paramagnoo model the interaction is ap-
proxirnated by a contact ioteraction whose strength I is
determined by fitting the calculated static spin suscepti-

bility to the experimental value. In Landau theory the
Landau parameter Fo is also determined from K, the ra-
tio of the static spin susceptibility for a normal Fermi
liquid to that of a free Fermi gas, and from this it fol-
lows that the relationship between the Landau and
paramagnon parameters is

m /m 1

1+F. 1+I
(53)

Using Greywall's values for m' together with the rnea-
surements of magnetic susceptibility of Ramrn eI, al.
one 6ods that I is —0.891 at zero pressure, and —0.943
at 27 bars.

To investigate quantitatively the difference between
I.andau theory and the paramagnon model we have car-
ried out calculations of the speci6c heat ai high pressure
with the paramagnon model aod also with Landau
theory for the case when all Landau parameters except
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Fo are zero. %'e have also calculated the dynamical con-
tributions to the specific heat in both cases.

First of all we compare estimates of I and I ", the
coeijcients of the T lnT term in the specific heat and its
dynamical quasiparticle contribution, in Table III. Us-
ing the values of Fo and I shown in Table III one finds
that at, 27 bars

and

T",„,„=81 K,

T"„=33mK,

T" =24rnK.par

This clearly shows that difFerences between Landau
theory and paramagnon theory are numerically very
significant and that at low temperatures one should use
Landau theory, which is known to be the correct theory.
For I ~" one finds

dyI,",= 1.79I L~„~„. (55)

b,C~„=I',„T ln(T/138 mK),
(56)

and

b,C " =I "T ln(T/102 mK) .

The temperatures at which hC deviates by 10% from
the logarithmic forms in Eq. (56) are 70 mK for
Acl „&I„, about 55 mK for both hc „and hciy„&,„,
and about 40 mK for b, C4i', . The T, 's for the paramag-
non theory calculations are lower than those calculated
using the Landau theory parameters, and are lower for
the dynamical contribution to the specific heat than for
the specific heat itself. %e have also carried out calcula-
tion where X(q, co) is taken to be the full Lindhard func-
tion, and find

Prom Table III one also sees that if one uses the
paramagnon model and approximates the specific heat
by its dynamical contribution, as was done in Ref. 6, one
overestimates the coeScient of the T InT term by a fac-
tor I ~" /I t s,„, which is 4.247 at zero pressure and
4.376 at 27 bars.

To investigate how weB the speci5c heat is described
by T lnT terms at 27 bars, we first describe calculations
in which the long-wavelength form of the effective in-
teraction is used. q, is taken to be equal to 1.6pF, which
is the value used by Brinkman and Engelsberg for the
high pressure case. We find that the T lnT and T3 con-
tributions to the specific heat and the dynamical contri-
bution to it calculated from the paramagnon model and
Landau theory are

b, Cz „q,„——I"i „~,„T ln(T/186 mK),
1+%(0)V o

'I corr

' 1/2

pF (59)

In the paramagnon case q„„ is approximately 0.8pF,
while for the Landau case it is about 2p~. This crude es-
timate shows that because of the size of the paramagnon
and Landau parameters the effect of momentum depen-
dence in the Lindhard function becomes important at
smaller moments in the paramagnon case than in the
Landau case. %e therefore see that two reasons for the
low values of T, in the Brinkman and Engelsberg calcu-
lations are the use of the paramagnon model, and ap-
proximating the speci6c heat by its dynamical quasipar-
ticle contribution.

Finally we compare the values of I obtained in the
paramagnon model with experiment. From Table I we
see that at low pressure I is 91.6 K, and at 27 bars it

The values of TL',„s,„and TL",„s,„ in Eq. (57) are about
half their values in Eq. (56) and the values of Tz'„and
T~, in Eq. (57) are about a quarter of their values in Eq.
(56). In the paramagnon model the AC are described by
the logarithmic terms corresponding to those in Eq. (56)
up to lower temperatures than in the analogous calcula-
tions using the Landau theory parameters. The devia-
tion of hC from the logarithmic form is 10%%uo at 25 mK
for ECi,„s,„, at 14 mK from hCq",„q,„, at 10 mK for
hC „„and at 7 mK for b,Cs"„. The reason for this large
effect is that Snite wave number efFects become impor-
tant for smaller q for larger values of the interaction pa-
rameter, as may be seen by considering the value of the
momentum at which the leading momentum correction
is equal to the zero-momentum term. The important
momentum dependence in the efFective interaction comes
from the quantity 1 —N(0) V~ OReX(q, O) which is given
to second order in q by

1 —N (0)V OReX(q, O)

=[1+%(0)Vq 0] N(0)Vq Oq /12@~ ~ (58)

The value of the momentum where the two terms are
equal, q„„„is given by

TABLE III. Comparison of the values of I and I ""for Landau and paramagnon cases at two pres-
sures. mb is the elective mass of the quasiparticles making up the spin fluctuations. In Landau
theory this is the fuB e8'ective mass taken from experiment and in the paramagnon model it is the
bare mass.

Pressure (bar)

2.76
1.0
5.17
1.0

5.0
5.0
6.216
6.216

—0.700
0.891

—0.759
—0.953

58.59
91.6

449. 1

680.4

135.62
250.33

1097.24
1964.74
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is 680.4 K, which are, respectively, 2.5 and 3.6 times
the experimental values. As we discussed in Sec. III, the
corresponding difFerence in the Landau theory calcula-
tions may be accounted for by introducing higher-order
Landau parameters, which take into account cfFects
neglected in the paramagnon model. If one werc to ex-
tend the paramagnon model to accommodate /=1 can-
tributions to the interaction, that channel would also
have to be rather close to instability to account for the
experimental value of I".

T 1nT terms have also been identified in the experi-
mental measurements of the specific heat of various me-
tallic alloys, namely, UA12, TiBe2„and UPt3.
This T lnT dependence has been analyzed usiog the
expression given in Ref. 6 for the dynamical contribution
to the specific heat which arises from the paramagnon
model. As we have pointed out above, the T lnT terms
should be analyzed using the expression for the T lnT
term in the specific heat given by Landau theory. This
has recently been done by Pethick, et al. , and by
CofFcy snd Pethick.

V. CONCLUSION

In this paper we have investigated statistical and

dynamical quasiparticle spectra in a model in which the
interaction effects come from spin Auctuations. These
two spectra sre the same at zero temperature on the Fer-
mi surface, but are difFerent ai finite temperatures or
away from the Fermi surface, the dynamical quasiparti-
cle spectrum being significantly more strongly tempera-
ture snd momentum dependent than the statistical onc.
The temperature and energy dependence of the efFective
mass is quite strong and should be taken into account in
calculations of transport snd other properties at finite
temperatures.

The calculations of the specific heat were carried out
from two difFerent starting points, the statistical quasi-
particle spectrum and the thermodynamic potential.
The corrections to the linear temperature dependence of
the specific heat are well described by s T lnT behavior
up to s temperature of about 100 mK. We find that this
temperature is somewhat higher at low pressure than si
high pressure. When A; is included, the T lnT behavior
survives to higher temperatures than when only one
Landau parameter is considered and there is good agree-
ment with experiment up to about 150 rnK at both high
and low pressure if q, is chosen approximately. Howev-
er, our calculations cannot account for a T, at low pres-
sure as high as that which Greywall Ands experimental-
ly, 450 mK. The highest value we find is 340 mK when
T, is calculated from the thermodynamic potential for
q, =1.249p~, which is the largest value we investigated
at I'=0. The largest value of T,", calculated from the
statistical quasiparticle spectrum with q, =1.249p+, is
380 mK. However, the difFerence between the specific
heat calculated from the quasipsrticle spectrum with

q, =1.249pz and the experimental specific heat is larger
than the corresponding difFerence for the specific heat
calculated from the thermodynamic potential for tera-
peratures greater than 120 mK. A larger value of q,

would lead to a higher T„but, for such cutofFs, correc-
tions to our results are likely to be important because of
the approximations we have made. Another point that
must be borne in mind is that in analyzing experimental
data, the low-temperature values of y =C, /T and I are
treated as fitting parameters. This will tend to make a T
plus T lnT fit to the data possible to higher tempera-
tures than would be the case if y and I were fixed. By
contrast, in our analyses of the calculations, y and I are
determined analytically, and are not free parameters.

Our investigation revealed the reasons why the Brink-
man and Engelsberg calculations suggested that the
T lnT dependence in the specific heat would be seen
only at low temperatures. The first is that they approxi-
mated the specific heat by its dynamical contribution,
the second is that they used the paramagnon model rath-
er than one which reduces to the Landau theory at long
wavelengths and low frequencies, and third is that they
considered parameters appropriate for high pressure.
Their calculations were also shown to lead to a large
overestimate of the coeScient of the T lnT term.

Since completing our calculations it has come to our
notice that Larkin snd Melnikov have calculated the
spin-fluctuation contributions to the heat capacity. They
started from the thermodynamic potential, and took the
efFective mass of the quasipsrticles making up the spin
fluctuations to be the experimentally measured one.
Thus, the starting point of their calculations is similar to
ours, but their conclusions about the temperature up to
which the heat capacity should exhibit T lnT behavior
are more pessimistic than ours. %'e have no ready ex-
planation for this, but it could be due in part to the fact
that s number of approximations were made in Ref. 35
to enab1e the calculations to be carried out largely
analytically.

Using our results we have investigated an assumption
made by BPZ about the two qussiparticle spectra. In
their calculations of the specific hest they assumed that
the statistical quasipsrticle spectrum could be obtained
from the dynamical quasiparticle one by using the rela-
tionship derived by Pethick and Carneiro for values of

close to the Fermi surface at zero temperature, name-
ly that the ratio of contributions to the spectra beyond
the leading term, g, is given by 8 "/8". Our calcula-
tion of the spectra shows that the ratio approaches its
value for g~ =0 only asymptotically because of different
characteristic energies in the logarithmic term, but that
for g and T less than 150 mK, which were the values
considered by BPZ, the ratio never difFers from the
T=O, low g value by more than 20%.

%'e now make some general remarks regarding efFccts
which limit the validity of our approximations. First of
all, in our calculations we have included only the leading
contribution from spin fluctuations, whose size increases
with both temperature and q, . For parameters appropri-
ate to zero pressure the correction term is half the linear
contribution to the speci6c heat at 300 mK for
q, =1.249pz, which implies that there are almost cer-
tainly sigm6cant corrections to our results at such tern-
peratures. At higher pressures these corrections are im-
portant at lower temperatures: for the 27-bars parame-
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ters and q, = 1.550@+, the calculated spin-Quctuation
corrections are almost half the linear term at 100 mK.
Further calculations are needed to determine the impor-
tance of contributions beyond the leading ones. In order
to improve upon the present calculations higher-order
spin-Auctuation effects must be studied including renor-
malization of the vertices and propagators. A step in
this direction has been made by Mishra and Rarnakrish-
nan, who used a model which reduces to the pararnag-
non model at low temperatures. They calculated the
specific heat up to temperatures of about 600 mK, as-
suming I, but not X(q, r0), to be temperature dependent,
with a value determined from the experimental magnetic
susceptibility at each temperature. However, in general,
one must allow for renormalization of both the propaga-
tors as well as the efFective interaction, and it is impor-
tant to carry out these renormalizations consistently.
Carneiro and Pethick have shown in their calculation of
the magnetic susceptibility that the leading finite tem-
perature contributions due to deviations of the quasipar-
ticle spectrum from the form g =(p —p~)U~ exactly
cancel those due to vertex corrections, and similar can-
cellations probably occur here.

A second approximation we have made is to assume
that the lifetimes of quasiparticles may be neg1ected. In
order to determine the temperature at which lifetime
effects lead to signiScant corrections to the quasiparticle
picture, we now estimate the temperature at which the
width of a typical quasiparticle state is equal to its aver-
age energy, of order ( g ) '~, where ( ) denotes a
thermal average. The relaxation time of a normal-state
quasiparticle is given by [see Eq. (4.62) of Ref. 22]

1 (g'/T')+~' 1 4 1

2 r 3 r(0)
(60)

where r(0) is the quasiparticle lifetime at the Fermi sur-
face. The width is (1 =R(1/r )/2) and this will be
equal to a typical quasiparticle energy

(g~ )' =(m/&3)ksT when

To estimate r(0) we take the value of the thermal con-
duction time ~z deduced by Greywall from his measure-
ments of the thermal conductivity and the speci6c
heat. For temperatures of the order of 50 mK and
above, vz T is about 0.5X10 ' sec K at zero pressure
and 0.3)&10 ' secE at 27 bars. Thus the quasiparticle
width is equal to the average quasiparticle energy at
about 200 mK at zero pressure and about 100 mK at 27
bars, and the width of the quasiparticle states could have
important e8'eets on the thermodynamics at such tem-
peratures. However, there is evidence to suggest that
this simple estimate may be too pessimistic. Firstly, for
liquid He the thermodynamic functions calculated from
the standard quasiparticle expressions, evaluated using
as quasiparticle energies the (temperature-dependent) po-

sitions of peaks observed in inelastic neutron scattering
experiments, agree remarkably well with experiment
even when the peaks are broad. Secondly, calculations
based on microscopic theory' suggests that the damping
has less effect on the spectral density that enters expres-
sions for thermodynamic properties than it does on the
spectral density of the single-particle propagator.

%e now comment on the connection between the
enhaneernent of the effective mass due to spin Auetua-
tions and the T lnT terms in the speci6c heat. The ar-
guments in Sec. IIB showed that spin fluctuations can
account for only part of the effective-mass enhancement
for liquid He, and consequently we considered a range
of valges of q, . The effective-mass enhancement is a
rapidly varying function of q„but the temperature
below which the deviation from linear temperature
dependence can be described by a T lnT behavior has a
much slower, approximately linear, dependence on q, .
%e And that the spin-fluctuation model can account for
the persistence of the T lnT behavior to temperatures
where it ean be experimentally detected, and it does not
depend on whether or not spin Auctuations can account
for all the enhancement of the effective mass. This is en-
couraging, given the existence of theoretical evidence for
contributions to the effective mass from other sources.
For example, Pandharipande and Itoh 8 have shown that
there is an enhancement of the effective mass of He in
He- He mixtures due to backflow and one would expect

similar effects for pure He. Also, in the induced-
interaction approach it is found that both backflow
and spin fluctuations each contribute about 20% and
that the direct interaction contributes about 60% to the
value of F'I.

Among other calculations of the properties of liquid
He are those of Fantoni er al. ,

' who used a
correlated-basis function approach, supplemented by a
phenomenological spin-fiuctuation contribution to the
quasiparticle energy, and those based on the idea that
He is a nearly localized Fermi liquid. Using the latter

approach, Vollhardt ' has considered zero-temperature
properties, and Seiler et a/. , have considered the tran-
sition from Fermi liquid behavior at low temperatures to
classical behavior at high temperatures. The relation-
ship between the various approaches to the properties of
liquid He is not understood in detail, but for our
present purposes the important point is that they all pro-
vide evidence for signi6cant contributions to the quasi-
particle effective from sources other than spin Auetua-
tions.
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