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%'e develop a kinetic theory for the real-time response of a quantum particle interacting with a
macroscopic reservoir. %'e discuss the equilibrium and long-time behavior of the solution of the
kinetic equation for such a system. In the limit of low damping, the kinetic equation reduces to a
master equation. Using the theory to model a Josephson junction loaded with an external im-

pedance, we make contact with the experiments of Clark, Devoret, Esteve, and Martinis. %'e ar-

gue that a stationary solution of the master equation suSciently describes the experiments, and
make detailed comparison with data.

I. INTRODUCTION

The quantum dynamics of the phase variable associat-
ed with weakly coupled superconductors is interesting
both in its own right snd because of its observable conse-
quences. On the one hand it is fascinating that a degree
of freedom ss abstract as the relative phase of the order
parameters in two nearby superconductors can be
shown, ' using the standard theory of condensed matter„
to obey quantum mechanics —albeit in the somewhat in-
tricate form appropriate to a variable that is coupled to
a dissipative environment; on the other, it is an impor-
tant challenge to verify that this theoretical picture does„
in fact, account for the results of increasingly delicate
experiments.

Among the experiments one would like to explain in
detail are some very beautiful ones on the transition
from the resistanceless to the resistive state in Josephson
junctions driven by currents with and without rni-
crowave frequency modulation. A considerable eFort
was made in these measurements to determine parame-
ters such as the resistance and capacitance in situ, with a
view to minimizing the possibility of uncontrolled fits of
theory to experiment. The aim of this paper is to exam-
ine these experiments in their general theoretical con-
text.

In a recent article, the present authors derived a fully
quantum-mechanical kinetic equation governing the tiroe

development of the phase variable alluded to above,
making only the assumption that the environment
remains in equilibrium. %'e also took preliminary steps
towards making contact with the experiments referred to
above. It wss shown that in the low-dsmping limit cor-
responding to the experiments snd at low temperatures,
when only the two lowest levels in the rnetastable quan-
turn well describing the system (see Sec. III) are appre-
ciably occupied, a numerical estimate without adjustable
pararoeters, i.e., using values determined by the experi-
menters, gave, in s situation where the approximations
were valid, good agreement with the measured width of
a resonance corresponding to microwave-induced escape.

The present paper is s sequel to the above-mentioned
article, snd contains calculationsl details and many com-
parisons with experimental dsts. There are similarities
between this work and a recent article by Larkin and
Ovchinnikov. Their starting point is a master equation,
identical to the low-dsmping limit of our kinetic equa-
tion, which they hsd previously used mainly to discuss
the high-temperature limit. In Ref. 8, calculations based
on this equation are done of the complete line shape for
the resistanceless to resistive transition, Our present
work hss been heavily inAuenced by Ref. 8, but it goes
beyond it as well. For those who have already mastered
the work of Larkin and Ovchinnikov, it may be worth
listing our new results.

(1) We have done calculations to compare theory and
experiment for several sets of published experimental
data that had not previously been so compared.

(2) Our calculations give insight into the inner work-
ings of the theory, in particular to the question of how
far the phase departs from equilibrium within the rneta-
stable well.

(3) By computerizing the calculation we have been
able to model experiments planned but not yet done, '

involving a modification of the dissipative environment,
and to predict what should be observed.

The plan of this paper is as follows. In the next sec-
tion we derive the kinetic equation. We start from the
Caldeira-Leggett model. ' We discuss both equilibrium
and time dependence. Like all quantum transport equa-
tions, ours is not useful until some approximation is in-
troduced for the collision processes. We specialize to
the "self-consistent Born approximation, " appropriate to
the low-damping limit snd show how s well-known
effect, the environment-induced shrinking of the size of
the quantum state in a harmonic well, emerges. We then
show how in the approximation of slow time dependence
the kinetic equation reduces to a roaster equation, in-
cluding energy shifts due to interaction with the environ-
ment. In Sec. III the roaster equation is applied to the
problem of escape from a metastable well, corresponding
to the resistsnceless to resistive transition discussed
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above. %e assume that the most important effect of dis-

sipation consists in level shifts and in transitions between

levels within the well, and we therefore ignore the envi-

ronment in calculating the escape from the well. Our
calculation of level positions, widths, and matrix ele-

ments is influenced by Ref. 8 but is diferent in detail.
%e then usc these elements to calculate a time-

independent current-carrying solution of the master

equation corresponding to a steady leakage of probabih-
ty from inside the well, both in the presence and in the
absence of applied microwaves. In Scc. IV we consider
dissipative environments more general than Ohmic resis-
tances. In particular, we calculate the cfkct of placing a
transmission line across the junction, in a manner
planned by the experimentalists. ' Section V contains
results of our calculation with comparison to experimen-
tal data. '" There are two appendices. In Appendix A
we give a pedagogic discussion of the equilibrium solu-
tion of the kinetic equation, Appendix 8 contains some
calculational details.

II. KINETIC THEORY

C,
H =Ho+ g co, a;a; —g C;x;q+ g 2%ii &PI

(2.1)

where Ho is the Hamiltonian of the isolated particle, the
second term describes the reservoir as a collection of
harmonic oscillators, and the last two describe the cou-
pling between the particle and the bath. Here C, is the
strength of the coupling, x; = [1/(2m, co, )]'~ (a, +a, )

and q are the bath and particle coordinates, respectively,
and the last term is a counter term to remove a bath-
induced change in the static potential seen by the parti-

In this section we will present an approach to the
real-time dynamics of a quantum particle interacting
with a dissipative environment in terms of a kinetic
equation for a quantity that is closely related to the re-
duced density matrix for the particle. Our equation is
formally identical to that found in theories of many-body
quantum transport, but difters in certain details. It is
not possible in general to write a kinetic equation for the
density matrix alone because at low temperatures the
bath does not lose memory of' the past history of the par-
ticle motion rapidly enough.

There has recently been other work ' devoted to de-
veloping equations for the real-time response that are
based on the Keldysh formulation of transport theory. '

In that work, the potential felt by the particle is broken
into a piece for which the path integral including the
bath can be explicitly evaluated, and a remainder whose
eifect is accounted for in perturbation theory. We will
take the complementary approach of assuming that the
problem of the quantum motion of the isolated particle
has been solved, and study the efrect of dissipation on
the particle motion via an expansion in the strength of
the particle-bath coupling. Thus our theory is ideally
suited to discuss the weak-damping limit for a general
one-body potential.

%e assume that the combined system of particle and
bath is governed by the Hamiltonian

X exp(iHoi'), (2.3)
where T, denotes the time-ordering operator and Vz(t) is
the sum of the two particle-bath coupling terms in the
interaction representation.

Since we are interested solely in the properties of the
particle, we define the reduced density matrix p by
p(t)=Tr[p(t)] where the Tr denotes a trace over the
bath variables. In general, it is not possible to write a
kinetic equation for p in terms of itself because the bath
docs not respond instantaneously to the motion of the
particles. %e therefore define a two-time Green func-
tion by

C(r„t )=Tr[U(t, „0)p(0)U (t,0)] (2.4)

which for t, =t2 is the density matrix. %e also intro-
duced the retarded and advanced Green functions

G "(t„r2)= —i e(t, t2 )T—r[ U(t „t2 )p,q'"],
(2.5)

G'(i, , r, )=+ie(r, r, )Tr[U—(r„r, )pb„""],
which describe the modi6cation of the time evolution of
the quantum particle due to its coupling to the bath.
The propagators for the decoupled particle are denoted
GP, Q

O ~

We now expand U in Eqs. (2.4) and (2.5) in powers of
Vz and perform the trace over the bath. The nth term
in the expansion requires the evaluation of a correlation
function of n bath coordinates x;(t). Since we assume
the initial density matrix p(0) describes the bath as being
in thermal equilibrium in the distant past, this correla-
tion function can be reduced to a sum over all distinct
products of the two™time pair correlation functions of
the bath variables given by

a(r, r ') = g C,'(x, (t)x, (r ') ),

J co 1+Pl co e
dG)

(2.6)

~here n (ai)=1/[ exp(pai) —1] is the Bose distribution
function and we have defined the bath spectral function

C2
J(ar)=n g 5(co —co, ) . (2.7)

2%k; 6);

If we were to assume that in the classical limit the
particle experiences a friction force linear in the velocity,
we would find that' J(ai)=mya~e(co, —

~

co
~

), where
my is the classical coeScicnt of friction, m is the mass
of the particle, and ~, is a high-frequency cuto8'.

In the usual way, G, G", and G' obey Dyson equa-
tions, which define the self-energy operators 8, o", and
~Q

ele." Such an eFective Hamiltonian has been justified
for the Josephson junction with the damping due to
quasipartiele tunneling by Ambegaokar et al. '

The density matrix p of the combined system is given
in the interaction representation by

p(r)=U(r, 0)p(0)U (r, 0) . (2.2)

The time evolution operator U(t, t') is given by
t

U(t, t') = exp( iHo—t)T, exp —i J Vz(r)dr
f
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6"'(t„t,)=6,"'(t„t,)+ f dt', f dk,'G,"'(t„t', )o"'(tI, t,'}6"(t'„t,) (2.&)

G(t„t, )=6"(t„O)p(0}6'(O,t, )+ f dh', f dt,'G'(t„t', )o(t'„t', )6'(t,', t, ) . (2.9)

In addition to the integration over time, each product in the above equations also denotes an internal integration over
the particle coordinate which wc will do by summing over a complete set of states that diagonalize 00. The quanti-
ties in Eq. (2.9) should therefore be regarded as matrices in the basis of particle states.

The above equations have the same structure as those used in the quantum kinetic theory of many-body transport, '

the principal dilference being that the self-energies a"' and 8 in our formalism have no terms corresponding to "ex-
change" or "particle-hole annihilation" processes because we are treating one particle, not several, and there is no
way to impose quantum statistics upon it. With this one difference, it is obvious that the Feynman diagrammatic ap-
proach can be applied here as well.

In order to express the above equations in the form of a kinetic equation, we differentiate Eq. (2.9) with respect to t
&

and tz and add to find a kinetic equation

1 +
Bti Bt&

6(t„t2)—[Ho+Reo, 6]—[o',Reg]= —
[ A, & )

——II,C], (2, 10)

(2.11)

where the square brackets denote a commutator and the
curly braces an anticommutator. %e have de6ned
6"'=Reg+iA /2, and 0"'=Reo +i 1 /2 3. is the
spectral weight function which can be written

A (1,2)= ge " ' ' %„(x()%'„'(x2)

where q,p
is the position operator of the particle.

%e will begin by discussing the information contained
in the retarded function 6". In the absence of a time-
dependent external potential, it is clear that G "(t, , t2) is
a function of t, —t2. Its Fouricr transform is given by

for the uncoupled particle with eigenstates 4„. The
terms on the left-hand side of Eq. (2.10) with Reg and
leo. are corrections to the single-particle properties
akin to the wave-function renormalization factor in
many-particle systems. The anticommutator with I is
the "scattering out" term that arises from the decay of
amplitude from one state into others, while the term
with o represents "scattering in" to a given state from
other states.

To cast the above equation into a simpler form, it is
useful to introduce a distribution function f (1,2}by

6 (1,2)=i [6"(1,3)f(3,2)—f(1,3)6'(3,2)] .

Then (2.10) can be rewritten as

8 + f('»'2}—[Ho+Rely, f]=io ——fl f] .
Bh) Bt2 2

(2.12)

6"„(t0)= t0 Ho R—e tr—+—I" (2.14)

where the subscripts denote the matrix element in a set
of basis functions that, for example, diagonalize Ho.
The spectral function A „(co}=—21mG"„(co) will, if
the coupling to the bath is small enough, have sharp
peaks as a function of co which represent "quasi-
eigenstates" for the particle in the presence of the bath.
These quanti-stationary states have a width that arises
because the coupling to the bath will eventually cause
the particle amplitude to leak away into other states.
The energy of these states will also be shifted by the
bath, akin to the Lamb shift in the hydrogen caused by
the vacuum Auctuations in the electromagnetic Geld. If
the coupling is small enough, we can 6nd the position of
these poles in 6" by keeping only the diagonal com-
ponents of the self-energy. Thus the new energy Q„ is
given by

tt"'(t„t, )=a(h, t2)q, 6 ' (tl t2)to—p

+g(h, —t, ) f J(co)(q,p)',

&(t„t,)=a(t, t, )q.,C(t&, t—&)q.,
(2.13)

Because of the rather unfamiliar form of these equa-
tions, we will examine the kinetic equation (2.10) and the
Dyson equation (2.8) to leading order in the bath cou-
pling. This results in the self-consistent Born approxi-
mation, where the self-energies o" and 0' are given by

Q„=E„+Re o „„(Q„)
and the decay width by

(2.15)

I"„„
BRe a „„(co)

BQP

(2.16)

As an example„we mill calculate the leve1 shift and
width of an harmonic oscillator coupled to a heat bath.
In lowest order, the energy shift is
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and the lifetime is

X f J(co)

x 1+n(co) e(~)+E„—co —EI,. N

{2.17)

1„„(E„)=2+(n)q )k) ('J(E„—E„)

X[1+n(E„E—„)] . (2.18)

Using the harmonic oscillator matrix elements we find a
complex energy shift for the kth level

, ~k oo dk) 1+k 2 . Re I'(Q)
6Ek +i Re I'(co) +COn (co)

2 2
+i n(Q)

2 0 2&'ffl, GP+ 0 co —0

+ Im I'(Q)+i Re Y'(Q)coth
k 0
2' 2k~ T (2.19)

where we have de6ned

Re I'(co) = J(co)

(2.20)

orders in the coupling (see Appendix A). Fourier trans-
forming the above, we find

I

o"'(co)= f J(co')[ I+ n(co')]q»G"'(ro —c0')q»

=—
I A (a)),o.(a))I ——

I I {~),G(co) ) .
2

'
2

(2.21)

Note that if Re I'(co)=const, as with Ohmic dissipation,
then Im Y vanishes and we have only a constant shift of
all the levels but they remain with their uncoupled sepa-
ration, in agreement with Refs. 11 and 17. This lack of
a Lamb shift is due to the fact that J(co) is linear in co

(Ohmic dissipation) and that the uncoupled eigenstates
are evenly spaced, in energy. In any model where the
above two conditions are not met, as for example in a
superconducting quantum interference device (SQUID)
with dissipation caused by quasiparticle tunneling or for
a Josephson junction coupled to a transmission line,
there will be a dissipation-induced Lamb shift. Note
also that the change in frequency is independent of tem-
perature, while the lifetime is temperature dependent.

Before discussing the nonequilibrium response, we will
examine the information contained in the equilibrium
Green function C. In equilibrium, we expect that G and
6 are functions only of the difFerence in their time argu-
ments. If we Fourier transform the Green functions
with respect to this time difference, Eq. (2.10) becomes

—[Ho+Re a(co },6(co)]—[o (cu), Reg(co)]

trp=constX f (d~/2n )exp( —pco)trA(~)=1 . (2.24)

where tr denotes tracing over the particle coordinate.
Thus we find in equilibrium that G and o are given by

G(co) = exp[ —(Pro)]A (co)/Z,
(2.25)

o (co) = exp[ —(Pc@)]I(co)/Z,

where Z = f (dc@/2m)exp( —pro)trA(co) is the partition
function of the particle.

%e now consider the dissipation-induced changes in
the equilibrium density matrix. In order to develop
closed form expressions we will on occasion ignore the
self-consistency requirements. To calculate the change
in the density matrix, we will need expressions for the
change in the spectral weight A „(cu). We start from
the expression

J ~ q
2

(2.23)I

o(co)= f" J(co')n(ca')q»G(co co')q» . —

Using our forms for G and o we find that the solution is
indeed f, (co) =const exp( —pea). The constant can be
determined from the condition

Since all quantities in the above equation are real, both
sides must vanish in equilibrium. Let us make the an-
satz 0 „(co)=f,(co)A „(co), where f, {co) is the equilib-
rium distribution function. From the Dyson equation
(2.8) and its conjugate, we see that in equilibrium

[Ho+Reo(co), A (co)]=—[I (co),Reg(co)] . (2.22)

I

A „(a))= —2Im co —Ho —Re cr{co)+—I (co)

The change in A to leading order is given by

5A „(co)= —21m56'„(c0),

mn

(2.26)

Using this result, we find that if (2.21) is to vanish,
o „{co)=f, (co)I „(co). One suspects that f, (co)
a: exp( —pcs), which we will show for the self-consistent
Horn approximation. The result is actually true to all

(2.27)
= —2Im cr" „(co)G„"„{ro).~—E +i5

For m &n we can replace 6"with 60 to obtain
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2rr[5(co E—„) 5—(co E—)]Re cr~„(co)
5A „(co)=

If we consider low temperatures and neglect terms of or-
der exp( —PQ), we find

I „(~)
+

(ro E—„)(co —E )
(2.28} co(co+Q)

For m =n the singular behavior for ~=E„must be
treated carefully. The result can be obtained by formally
taking the limit E„—+E in the above equation which
gives

BRe cr„„(co) I"„„(co)
5A„„(co)=2n5(co E„—)

(~—E„)
(2.29)

The first term is the reduction of the spectral weight of
the "quasieigenstate. " Note that f dao tr5A =0 so the

partition function is unchanged to this order.
We can now calculate the change in the density ma-

trix 5p= f (dc@/2n) exp( —pc@}5A(c0). We find that
the diagonal elements are given by

pE BRecr„„(co)
6 =e

n

+g ((n (q(k)(2e

dto J(co)[l+n (co)]fx
2(co+E Ek)—

and the o8'-diagonal elements are given by

(2.30)

—PE
e "Retr „(E„)—e Retr „(E )

+y(n (q (k&(k(q (m&. ' "

(21,+[2+e -t'"+n(Q)]1

2mQ

x da) J(co)[1+n (co)]
rr (co+E„EI,}(e2+E —Ek)—

(2.31)
Let us turn again to the simple model of the harmonic
oscillator coupled to a thermal bath and compute the
change in the width of the oscillator (q ) due to the en-
vironment. For the simple harmonic oscillator we see
immediately that only 5p„„and 5p„„+2 are nonzero to
this order. Then we find

4Qn (co)
Q2 2}2

which for Ohmic dissipation [J(co)=myra] reduces to

(2.34)

(2.35)

Thus at T =0 the uncertainty in the particle's coordi-
nate is reduced by the constant measurement" of the
coordinate by the bath. As the temperature increases,
this contraction efkct falls as the square of the tempera-
ture as the particle samples higher excited states. This is
the source of T enhancement of the tunneling rate out
of the quadratic plus cubic potential. The above result
agrees with the result derived with path integral tech-
niques by Caldeira and Leggett. '

%'e now turn to understanding the nonequilibrium be-
havior contained in the kinetic equation. There is a
great deal of information buried in the compact nota-
tion, but we are primarily interested in the low-
frequency dynamics contained in the kinetic equation
(2.10). By this we mean that we are interested in behav-
ior that occurs on a time scale much longer than the in-
verse of the typical energy splitting in the quantum sys-
tern. Also we would prefer to have an equation for the
density matrix alone rather than this more complicated
equation for 6. Our prejudice is that on long-time scales
we can think of the motion of the system as being deter-
mined by a local density matrix that is uncorrelated with
its value at times in the distant past. To be more pre-
cise, let us define an average time T =(t&+t2)/2 and a
relative time r=(t, t2). Since, in —equilibrium, all
quantities are independent of T, we mean by "slowly
varying" that the evolution as a function of T is slow on
a scale set by the splitting of the energy levels. %e will
then find an equation for p(T) by performing a gradient
expansion with respect to T in the kinetic equation.

The equation in its present form has a great deal of
rapid variation in the o8'-diagonal components solely due
to the term [HO, C], since the off-diagonal components
of the density matrix (which are nonzero due to the bath
coupling as we showed above) then vary as
exp[i(E E„)T]. We the—refore will transform to an
"interaction picture" by the following transformation: If
Y(t„ti) is some function, its interaction picture version
is given by

1 ~ des J )
1+n(co)(1—e ~ )

0 J co)
2m Q —m n(~+'Q)2

1 des 1+ ( n)(1~0—e ~ )
1 J a))

2mQ —~ ~ ~+Q
1 f ~ den J(co)

2mB

(2.33)

Y(t„t,)=e ' 'Y, (t, , t, )e (2.36)
%'e wiH also write the same quantity in the interaction
representation in terms of T and ~ as

Yt T+—,T —= f den Yt—[T;co]e '"' . (2.37)

%e will drop the subscript I in what follows.
In the interaction picture, the kinetic equation (2.10)

becomes
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i + — G(t, , t, )= f dt[tr'(t„t)C(t, t, )+o(t„t)G'(t, t, ) 6—(t„tkr'(t, t, ) 6—"(t, , t)o(t, t, )] . (2.38)

In this representation, the Cyreen functions for the noninteracting particle are given by

g fn)(n
f

G "[T;~l=
2'lr Co+ t 5

G [T;ca ]=5( co ) g exp( PE„—)
f

n ) ( n
f

(2.39)

Consider now the self-energies. In our Born approximation and including an external potential V(t) we have

i (E„—Ek )t
1
+i(El —E )t2o". (ti tz)=«ti —tz)&n fq.p fk&Gkt(ti tz)&1 lq.p I

m &e

+5(t, tz) f— J(ta)(n
f (q, )

f
m )e " '+(n

f
V(t, )

f
m )5(t, tz)—e

0 KN OP

'[En -E~ )'i+'(EI- Em )'2e„(t,,t, )=a(t, —t, )(n
f q„ f

k &G„,(t„t, )&l
f q., f

m &e (2.40)

Since the Green functions are assumed to be smooth functions of T =(t, +tz)/2, the self-energies will be a slowly
varying function of T only if the factor (E„Ek+E—t E) is—small compared to the typical level spacing. Hence we
will keep only those terms where the phase factor is small, which if there is no regularity in the level spacing requires
that (1) (n =m and k =l) or (2) (n =k and m =l). This is usually called the "secular" approximation. Note that this
implies that the only important bath contributions to the retarded self-energies are those diagonal in the basis if the
bath coupling is weak. The perturbation V(t) ~ cos(tot) is only slowly varying if E„E+to=—O. These terms are ob-
viously nearly in resonance. Keeping only those terms is tantamount to the "rotating wave" approximation. In the
absence of an explicitly time-dependent potential, the retarded and advanced functions are automatically independent
of the "center-of-mass" time T.

We can therefore expand (2.38) in gradients of T. Keeping only the lowest-order terms gives

6 .[T']= —2~t g to" k[T ~]@t,.[»~] @»[T—'~l~kn[T ~]+& ~[T'~]G~;[T ~l Gmk[T'—~]&k.[T ~]I
k

The self-energies are given by

~' [T'~]= f J(~')[I+n(~')]&n
I q., Ik &Gkl[T ~ ~+E„Ek]&l

I q., —
I

m &

d+,Ju' n q, m e " + n V T m e

I

o„[T;to]=f J(a)' )n(ta')(n
f q, f

k)G„t[T;to ta'+E„Ek]—(l
f q, p f

m—) .
(2.42)

Let us now integrate over co to find the equation of motion of the density matrix, since the unperturbed 6 is a sharp
function of a&. If the coupling to the bath is weak, we expect G to sharply peaked function of to on a scale of about
the typical lifetime I found in (2.18). We expect that the spectral density J(co) is slowly varying on the scale of I, so
any quantity in (2.41) or (2.42) that multiplies 0[T;co] can be evaluated at cu=O. Thus we find

5 i .[Tl= —2~t g I~'k[TÃk. [T]—s" t, [T]~t,.[T]+t& .[T]I .
k

(2.43)

Finally, if we assume that the coupling is weak, we can replace the self-consistent retarded and jor advanced functions
by the lowest-order terms

I 2m-o"„[T]=f (Jt)0[1 +(nt)a]( nfq, f
k) (k

f q, f
m )

m' E —m' —Ek +r 0+

I

+f,J(to')(n
f (q,~)'

f
m )e " +(n

f
V(T)

f
m )e

0 le&
(2.44)
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and using the peaked nature of G we find

1
&„[T] =- J—(E„E—k )n (E„E—g ).

X &n
~ q, ~

k )pzi[T]& l
~ q,~ ~

m ) . (2.45)

Equations (2.43)—(2.45) constitute a kinetic equation
akin to the master equation. To see this, suppose that
we ignore the self-consistency in the self-energies. Then
the real part of o.„„is given by

2m Re o „„=g (
& n

~ q., ~

k & (

'

dry 1+n (ro)fx J 63
o Ir E„Ek——~

+ n (co) 1+-E„—EI,, +co

(2.46)

which is nothing but the energy shift 5E„caused by the
bath as calculated in second-order perturbation theory.
Furthermore, let us define the usual golden-rule transi-
tion rates from state n to state m as

1V. . =21&n lq., lm & I'J(E.—E )[1+n(E.—E )]

(2.47)

These transition rates satisfy the detailed balance condi-
tion lV„ /W .„=exp[ (E E„)—/ks T]—. We find
from the kinetic equation (2.43) that the diagonal ele-
ments of the density matrix obey

dp„„(T~—"" —= g W .„p (T)— g 8'„„p„„(T)

tween one pair of levels and another pair. These terms
turn out only to be more important in the classical limit
where many levels are nearly in resonance. In that case,
the full form of equation (2.46} for o „ Inust be used in
the equation for the oF-diagonal elements.

HL Appl. K'.ATION OP MASTER EQUATION

In this section we discuss how to make contact with
experiments by solving the master equation. For this
reason, we have reinserted A everywhere it belongs. We
begin with a brief description of the experimental setup
and the correspondence between the experimental pa-
rameters and the parameters of the master equation. We
then give a pedagogical account of the semiclassical
method of calculating these parameters from the experi-
mental inputs as outlined in Ref. 8. We supplement this
with comparisons to numerical calculations of our own,
to provide the reader with a feeling of the degree of ac-
curacy of the semiclassical approximation in the present
context and to point out its limits. Given all the param-
eters of the master equation, we then argue that a. sta-
tionary solution adequately describes the experimental
situation. We solve a simple model to illustrate the
essential properties of this stationary solution before we
present the general solution. In Sec, IV we discuss the
various forms of dissipative mechanism of interest to us.
Comparison to experimental data is deferred to Sec. V.

A typical experimental system is a current-biased
Josephson junction of capacitance C and critical current
I, . At bias current II, the junction is described by the
standard resistively shunted junction (RSJ) model as con-
ducting via three channels: the supercurrent channel,
the charge buildup in the capacitor, and the normal
current through some general load with impedance
Zload '

i & n I
—[ VI ( T),p( T) ] ~

n ), (2.48}
Ib =I, sin(P)+C dV V

108d

(3.1)

where the scattering in and scattering out terms are
clearly seen. The off'-diagonal components of p evolve
according to

The voltage V is linked to the phase di8'erence across the
junction by the Josephson relation,

dj„(T)= ——,
' g ( fV k + lV„k )p„(T)

k

III di))

2e dt
(3.2)

—i(5E„5E )p„(T)—
—i&n

~
[V,(T),AT)] ~

m ) . (2.49)

These equations are simply the master equation descrip-
tion of the quantum system. The net effect of the self-
consistency is to alter the actual value of the relaxation
rates and energy shifts, but the form of equations (2.48)
alld (2.49) is Ilot changed slglllflcantly. In dcr1vlng tllcsc
final equations we have assumed that the eigenvalues do
not have any regularity in their spacing. For the har-
monic oscillator, or for a nearly harmonic system, this is
not true and we And additional terms for the ofF-diagonal
elements which represent the transfer of coherence be-

V(q)=3U
Efo

' I
2 ip

3 i)0
(3.3)

Equations (3.1) and (3.2) are equivalent to a "particle"
with coordinate P and mass m =(A'/2e) C moving in a
potential V($)=m~J[1 —cos(P)] —(A/2e)Ibg, where
uJ ——2eI, /AC. Dissipation is introduced quantum
mechanically by coupling the particle in the potential to
a bath of oscillators as explained in See. II. When the
current is close to being critical, the potential is well ap-
proximated by a metastable well of the form (see Fig. 1),
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FIG. l. Quadratic minus cubic potential as given in Eq.
(3.3). q&, q2, and q3 are the three turning points of classical
motion at energy E.

q =((}—sin '(s),
s =Ib/I, ,

U=m Q~qo/6,

A~ =co&(1—s )'

2 27 1
cos '(s)

s2)1/2

This defines the system of interest whose reduced density
matrix we will be solving for. It is also of interest to ex-
amine the microwave enhancement of the particle escape
rate from such a metastable potential. ' In that case we
add a term,

I)W
H,„,= — cos( cot )q ( t ) (3.4)

to the Hamiltonian, where 8 is the microwave frequen-
cy.

Given the shape of the potential and the damping
spectral function J (cu), we need to compute three sets of
quantities before we can go about solving the master
equation (2.49). First, we need to define our basis set
[n ) and to determine their energies relative to the well.
%e find it convenient to use a set of quasistationary
states that are "inside the meH" in some sense which mill
be explained later. The second set of quantities we need
is, therefore, the widths of such states. The final param-
eters me need to compute are the bath-induced couplings
8 k

- between the entries of the reduced density matrix.
In choosing a basis set for our solution, we will be

considering the dissipationless particle in a potential.
The e8'ect of dissipation will be to modify the properties
of such states without changing their fundamental na-
ture. In particular, the shifts in energy and width of our
basis states due to coupling to the bath should be small
compared to the original level spacing. Our approach is

therefore limited to the case of lom damping. Several ex-
periments have been performed in this regime with a
Q factor of 10 or larger. We shall see in the comparison
of our solution to data that in most cases our approxi-
mation is adequate for explaining the results to within
experimental uncertainties.

A complete set of states for a particle in the potential
specified in Eq. (3.3) is the set of scattering states, since
there are obviously no bound states. It is straightfor-
mard to integrate the Schrodinger equation numerically
and examine the nature of these states. If one plots the
phase shift of such states versus their energy one can
readily identify resonances. These resonances are sharp
for energies deep within the well; they broaden as the en-

ergy approaches the barrier top. There is always a
broad resonance above the barrier top for the range of
parameters relevant to the experiments ' and beyond
that a smoothly varying continuum. An alternative rep-
resentation of these resonances are quasistationary states
that have a long lifetime inside the metastable well.
Around the nth resonance centered at energy E„, the
quasistationary state (x

~

n ) =%„(x) is constructed out
of a wave packet of scattering states pE(x},

%„(x,t)= f dEX„(E)qE(x)e (3.5}

X„(E)will be centered around E„with a spread given by
the width of the nth state. At t =0, %„(x,0) can be ar-
ranged to have a large amplitude inside the well by an
appropriate superposition of the yz(x)'s around E =E„.
This is possible because for E =E„,yF(x) changes very
slowly with E within the well but undergoes rapid oscil-
lation outside the mell. Since there are many yz's
within the width of the smooth envelope g, their ampli-
tude will cancel outside the well. As time evolves, this
initial alignment is gradually destroyed by the difFerent

energy components evolving at different rates. After a
time of the order of the inverse of the energy width of
X„(E), the particle will build up an appreciable weight
outside the well and this time scale is defined to be the
lifetime of the quasistationary state. A natural way to
pick X„(E) is to identify it with the energy derivative of
the phase shift around E„which is approximately a
Lorentzian with a full width at half maximum equal to
the inverse lifetime of the state. Performing the energy
integral in (3.5) then yields an exponentially decaying
state with its wave function to the left of the barrier
given by q&E (x). Its amplitude to the right of the bar-

n

rier is assumed to be exponentially small. If one
prepares an initial state by putting the particle inside
such a well with very high barrier and then gradually
lowering the barrier height (which is in fact the experi-
mental situation), one would expect the state of the par-
ticle to be well-spanned by such quasistationary states as
long as it remains inside the well. The authors of Ref. 8
suggested another may of obtaining some insight into the
nature of the wave function of these quasistationary
states by normalizing the scattering states yz in the con-
tinuum. Their analysis applies only to states near the
barrier top and me mill defer the discussion of such until
we come across them naturally.
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0.0 0.5 1.0 ).5 2.0 2,5 3.0 3.5 4.0
E/(ra, )

FIG. 2. Typical scan of phase shifts in units of m vs energy
in units of A'Q~. U= 3.054k'Q~ for this plot.

%e now start with a discussion of the well-known
semiclassical quantization rule for determining the level
positions within a potential well. As our calculation is
carried out mostly in regimes where there are only a few
metastable states within the well, we performed a brute-
force calculation to verify the accuracy of the semiclassi-
cal approximation. The energies of the resonances can
be determined by numerically computing the phase shifts
of the scattering states. A typical scan through the ener-

gy range is shown in Fig. 2. For the levels deep inside
the well, we find that the level position is given to very
good accuracy by the Born-Sommerfeld quantization
rule employed in Ref. 8,

f p dq =2irfi( n + —,
'

) . (3 6)

For the metastable potential (3.3), the momentum p is
given by

p (q) =mq = [E —V(q)]—2

even two levels inside the well, we find that the numeri-
cal implementation of (3.6') agrees with our phase-shift
analysis to 2% for the ground state. [Born-Sommerfeld
quantization is, of course, not suitable for finding the po-
sition of states near the barrier top. %e shall discuss the
calculation of parameters pertaining to the Xth and
(%+1)th state after we have gone through the calcula-
tion of the lower states. ] The error for the ground state
reduced to &0.5% for the case X =4.

As suggested by Larkin and Ovchinnokov, the level
width or escape rate of the deep levels is well approxi-
mated by the semiclassical formula

—2S~ (F.„)/fi
T(E„)

T(E„)=2)dx Ix is the period of classical motion at en-

ergy E„. It comes in as the normalization of the semi-
Xl

classical wave function inside the well. S~ —— p~dg is
X2

the Euclidean action under the barrier. The correspond-
ing formula in Ref. 8 has some additional correction
terms to (3.7} which are of the order of 3% or smaller.
Since we have completely left out the efFect of dissipa-
tion, which is to reduce the escape rate, we feel that it is

consistent to leave out such corrections. For the ground
state, we have chosen to substitute in place of (3.7) the
result of the zero-temperature instanton calculation in-

cluding dissipation. ' This improvement over the naive
semiclassical result will be significant in the extreme
quantum regime when the temperature is much lo~er
that the typical level spacing.

We have checked the accuracy of (3.7) and the instan-
ton result for the range of parameters relevant to experi-
ment by taking the energy derivative of the phase shift
and fitting it to a Lorentzian. The discrepancy ranges
from a few percent for N =4 to the worst case of about
20% when N is barely two. Thus, the semiclassical ap-
proximation sufKices until one can measure the absolute
escape rate experimentally to better than a few percent.

Given the energy levels and therefore the semiclassical
wave functions of the deep levels, we now proceed to
calculate the corresponding I W„j] which give rise to
bath-induced transitions between the resonance levels.
According to the discussion in Sec. II, the equation of
evolution for the entries of p are then

Following the notation of Ref. 8, we introduce the vari-
able X =q/qo. Then (3.6) can be rewritten as

(4~U)'"qX~»X~»" I « i(1—t) 1—X23

13

I /2

=n-iri(n +-,' ), (3.6')

where X& ~ X2 ~ X3 are the three turning points at ener-

gy &.:

Pjj=,.z &i I [H... Pl li &+ g ~~ ~0k
k

X j-kPj 1 jPJ
k

p „= (i I [H,„„p]I
k ) ——,'( w . , + w

(3.8a)

+ ~k-k+],+ ~k k

The criterion for applying such semiclassical method is
that there be at least a few levels under the well; let us
call that number X for future reference. For the case of

+ Yj+Xk }pjk (3.8b}

In our notation, which differs from that of Ref. 8 in that
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our q twice their q and our mass is therefore —,
' of theirs,

the transition rates are given by

II'k J
———

I &i I q lk & I'J( ii~Jk I )Ill+n(~, k)le(~1k)

+n(~i;, )«~,k)I .

(3.9)

&dx ' 6

x 4A
t ~~

~

~~~

~I

~~ ~~
1

!~

X

& [(y —X, )(X,—J )(X,

to express X(t) as

(3.12)

where ~ k
——E —EI, . For clarity we have written out the

downward and upward transitions separately.
has the meaning of a thermal transition rate

from the kth to the jth state. Since the phonon states
are assumed to be occupied according to the Bose-
Einstein distribution function, the thermal transition
rates obey the Boltzmann-type relation 8'A.

—Ek. /k~ T= 8' ke ' . In the weakly anharmonic approxi-
mation, the neighboring matrix elements of q are much
larger than nonneighboring elements. We therefore keep
only the neighboring transition elements, i.e., 8'J+,
The second- or higher-neighbor matrix elements of q are
smaller but nonzero and we have to keep them in, say,
calculating the microwave-induced ground to second
excited-state transition. From the discussion in Sec. II
as well as from (3.8b) we see that the off-diagonal ele-
ments of the reduced density matrix decay and are not
excited much if they are not pumped efFectively by H,„,.
We therefore keep only that class of off-diagonal ele-
ments that are nearly in resonance with the frequency of
the applied perturbation.

The matrix elements of q between neighboring states
can be computed semiclassically in the following
manner:

r

X(r)=X,+X»sn rII 2 X23'=x
13

(3.13)

where X/=X; —XJ. X(t) in (3.13) is periodic with a
period T =2/Qp 6/X~3 E(k ). The transform

(3.11) then amounts to doing the integral

f 2EC OTAL

0
du cos [X3+Xz3sn2(u)] .E (3.14)

The trick is to notice that

f sn Udv= 1

k
1 — u —Z(u)E(E}

E

Here sn is the elliptic function, E(E) is the complete el-
liptic integral of the second kind, and Z(E) is the g
function which has a sine expansion in sin(nn. u/E).
Thus the integral (3.14) picks out the first component in
the sine series and one arrives at (4.16) of Ref. 8,

f dq q', (q)qadi, ~(q)

(&i li &&i —11J —I&}'" (3.10) (j ~q ~ j—1&= f 'X, +X,3sn rQ

If we take +J to be the (WKB) wave function and
neglect the tail external to the well, (3.10) becomes the
discrete Fourier transform of the classical trajectory q (t )

at frequency coj z
—1 = (EJ —gj. , )/$. We pick the nor-

malization of the %KB wave functions to be

—m X23qo
2

2k E(k )sinh(mE'/E)
(3.15)

This completes the calculation of all parameters in the
master equation (3.8) for the deep levels.

%hen a resonance level is close to the barrier top, we
can always locate its width and position by numerical
phase-shift analysis. However, Larkin, and Ovchinni-
kov suggested a very elegant way of achieving the same
result by way of analytically approximating the wave
function of such states. To the left and right of the bar-
rier, it is reasonable to assume that the WKB (or semi-
classical) wave function is a good approximation. In the
vicinity of the barrier top, one can approximate the bar-
rier with an inverted parabola and thus obtain the "ex-
act' wave function as combinations of parabolic cylinder
functions. The &KB wave functions are then connected
by matching them to the parabolic cylinder functions ex-
panded to the lowest nontrivial order in its energy rnea-
sured from the barrier top. One thus arrives at an ana-
lytic expression for the scattering states in the continu-
um for energies close to the barrier top. The positions

&i li &w~a=T, /~ .

~j & q i f sp/Bpd—q cu.
e JJ —1

I /2 ~ 1/2

f dr q(t)e
2m

(3.11)

It is possible to perform the transform in (3.11}exactly
for the potential (3.3) if one is familiar with elliptic in-
tegrals and functions as are the authors of Ref. 8. One
begins by inverting the relation

( i i —1&=J'q J (T T )1/2 qpl. /2P. I/2q
j j—1 j

Xe
i f i p i

p )dq'/fi— .
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and widths of the resonances can then be extracted by
examining either the phase or amplitude of the wave

function. The details of this exercise are presented in

Appendix B.
The correct normalization of a state with its energy in

the continuum is a delta function in energy. %e there-
I

& e"(E )
~

e'(E) ) =S(E —E) .
The scaling function N(E) is given by

(3.16)

fore have to scale the wave function +(E) as derived in
Appendix 8 with a normalization constant
4'(E) =N(E)%(E) such that

f dq t g, g, [y,—(E')]'y,—(E}+g',g, [++(E')]"+,+(E}+nonsingular terms}

—2~y 1
2'ir [ny /2+ i6s/5+ 2iyln(6v 2s )] ~ —zg(E ~ E)

m 1(—,'+iy)
(3.17)

The probability density of the state
~

4"(E)} to the left
of the barrier is pro ortional to N(E) . Figure 3 is a
typical plot of N(E) versus E. The peaked structures
clearly indicate the positions of the higher resonances.
The energies and widths obtained by Atting Lorentzians
to these peaks agree very well with our phase-shift
analysis. In actual calculation we always used the form-
er method because it is easier to implement and much
more economical in terms of computer time. It is only
for the purpose of understanding the accuracy of the
former method that we compare the two and agreement
of better than 1% is obtained until the number of levels
inside the well goes below three. Larkin and Ovchin-
nokov chose to At a Lorentzian to the matrix element

} &j ~ q ~

4"(E))
} which gave level widths that are con-

sistently smaller than our method or phase-shift analysis.

I

} &E lq IE& }'=1&E

Since the level width of a metastable state should be a
property of its wave function„we have chosen not to fit
it to the matrix element of an arbitrary operator. This
method hinges on the expansion in the small parameter
y =(E—U)/(AQP ); therefore it is used only for the reso-
nances immediately above and below the barrier (the
former being the "virtual state" of Ref. 8). Note that
there is no fundamental difference between these last two
states and the lower states. What the above analysis
does is to provide an analytic formula for X(E) in (3.5).

The thermal transition rate between the last two states
[the ¹hand the (%+1)th] are calculated by an in-
coherent integration over the transition rates to the con-
tinuum states. The integrand in question is O'E
where Wz iv is still given by (3.9). The matrix element
of q is again approximated by its semiclassical value

2 2 '
It) dr x(r)e""/"

&En IEN)wKa

]/2
3~qo5E

m Q~ sinh( ~5E /Q i, )

(3.18)

-0.6 -0.4 -0.2 -0.0 0.1 0.3 0.5 0.7 0.9
(E-U}/U

FIG. 3. Plot of X(F) vs (E —U)/U showing clearly the¹hand the much broader (%+1)th state. U=3.544%0„ for
this plot.

where the zero-temperature bounce X(t)
= 1 ——', cosh(Q t /2) has been used. Note that in

(3.18) we made the assumption that Oiv(q )

=&q ~Eiv)w~B. The integration is carried over a win-

dow of energy centered around the energy level of the
upper resonance. %e picked this window such that the
integration does not run into the neighboring resonances
or that the integrand has dropped to —,

' th of its peak
value. In Ref. 8, it was indicated that the method of in-

tegrating over the continuum for the matrix element of q
was also used for the (N —l}th to ¹htransition. Our
opinion is that the incoherent integration is an uncon-
trolled approximation and is to be avoided if possible.
As long as the wave function is well localized within the
well, one can opt to normalize the quasidiscrete state to
one by cutting off the integration somewhere under the
barrier. For the (%+1)th state, such a procedure is of
dubious validity due to the large "tail" beyond the bar-
rier, see Fig. 4. Therefore, one has to make the best ap-
proximation by integrating the analytical formula (3.18)
over a carefully picked range of energy. For the
(N —1}th to ¹htransition, we have found that (3.15)
gives a much better answer than integrating (3.18). We
picked as the standard the matrix element



QUANTUM KINETICS OF A SUPERCONDUCTING TUNNEL. . .

0.4

0.2

total escape rate is &10 s ' while the 8'k . 's are of
order GHz. %e have also avoided the problem of
choosing an initial condition for the reduced density ma-
trix.

The set of equations (3.8) are homogeneous and there-
fore the only stationary solution is the trivial solution

pz
——0 unless we put in a source term. The source term

C is put in at the equation for the ground state.

+(microwave terms)+C . (3.19)

-0.4

FIG. 4. Comparison of the amplitudes of the {X—1}th and

the Xth state. The energy parameters are U/{AQ~)=3. 928,
E&/(fiQ )=3.920, and E»/(fiQ )=3.206. Note that the

Sth state has a nontrivial tail beyond the barrier.

At this point, a simple example will serve to illustrate
the general properties of the stationary solution of the
master equation. Consider a two-state system in the ab-
sence of external perturbation where the escape rate of
the lower state is negligible compared to all the other
rates in the system. The components of the master equa-
tion are then

~Pl

Bt
=0= W2 „,P2 —8') „2P,+C,

(3.20)

(&
I q l

E —I) using numerical wave functions for both
states. These wave functions are derived by starting
with an exponential under the left barrier and integrat-
ing Schrodinger's equation outward. %e found that q is
very ineftective in coupling the two wave functions in
the region outside the barrier until both of them have
developed a substantial tail; i.e., our "standard" depends
very weakly on where we chose to terminate the integra-
tion. Our calculation showed that, for the (X —1)th to¹htransition, (3.15) gave results that agreed with our
standard to =0.1% while integrating (3.18) gave results
that were too large by approximately 20%. This
difference between our calculation and that in Ref. 8 will
be important in the calculation of the ground to second
excited-state resonance, see Sec. V.

In concluding this discussion of the semiclassical
method, we note that it breaks down in the extreme
quantum limit where there are only one to two levels
within the well. In this regime, one can only resort to
purely numerical methods, but the effect of dissipation is
stiH poorly represented. Not only is one unable to in-
clude the efFect of dissipation in the level widths but the
thermal transition rates are also poorly calculated be-
cause the states, in general, are neither close to the bar-
rier top nor deep inside the well.

Having obtained a11 the ingredients of the master
equation (3.8a) and (3.8b), i.e., the level positions IE, ~,

level widths Iyj I, and thermal transition rates t Wz
we now discuss its solution. %e search for a stationary
solution for the diagonal elements of p by supplying a
constant source at the well bottom. This solution of
the master equation mill be a good approximation to the
exact solution as long as the total escape rate from the
well is small compared to the equilibrium rate within the
well as determined by the I W'„J I. This condition is

certainly satisfied for our parameters ranges where the

Note that C is the current fed into the lower state which
is in turn equal to the current leaking from the higher
state C =y2p2. The normalized (p, +p2 ——1) distribution
gives an escape current

—F~ /k~ TZ+
1 —~2

'V2

8)„2, fOr

(3.21)

—F.
1

Ik& T —F-2 /k& T ~eq —F-Z / 'P
where Z =e ' +e ' and p2 =e ' ' /»s
the equilibrium Boltzrnann distribution for the upper
state. The solution in (3.21) shows clearly the "bottle
neck" efFect as one would expect it. If the upper state
population is poorly replenished with a 8', 2 small

compared with the depletion rate y2, the total escape
current is basically the transition rate from the lower to
the upper state. In the other extreme, if the leakage out
of the upper state is slow, the distribution is close to
equilibrium and the total current is just y, times the

equilibrium population of the upper state.
The only terms yet to be specified before we can solve

(3.8), in general, are matrix elements of the form

(1 i [H,„„p]~

k ). We shall be concerned with two

kinds of microwave perturbations. Their frequencies are
such that we expect, (i) nearest-neighbor resonances
i ~i + 1 and, (ii) next-nearest-neighbor resonance
i ~i +2. In the first case, the only oft'-diagonal matrix
elements that are pumped effectively are the p~ -&'s.
According to the discussion in Sec. III, we therefore as-
sume that only those OA-diagonal elements are nonzero.
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In the second case, we assume that only the p .+2's are
nonzero. The next-nearest-neighbor matrix elements of
q, &j ~ q ~

j+2&, can be calculated semiclassically along
the same line of reasoning that led to (3.15). We simply
quote the result here,

&j+1 ~q ~ j—1&=
2 2

. (322)
k E(k )sinh(2''/E)

One might view (3.22) with reasonable doubt when it is
applied to a potential where the barrier height is around
4@co, the regime where experimental data sre available.
Surprisingly, when we checked (3.22) against the matrix
element obtained from integrating numerical wave func-
tions we consistently found agreement to one part in one
thousand. Summarizing, the external perturbation term
is given as

&j I lH.. A I
I+I&

I A
cos(~r)&) lq l)*»(P)+i)el Pjj)

(3.23}

j~q ~i+1&~
Wj+1 j (Cd —Cd +i+Cd. ) +I /4

(3.27)

%'hen the microwave frequency is such that we expect
next-nearest resonances, experimental data are available
for the ground to second excited state snd first to third
excited-state resonance. The data correspond to a bias
current range where there are four to five metastable
states inside the well. Hence there are only three dis-
tinct microwave factors b „b2, and 63. They are distri-
buted in the master equation as

P"l=0= —(Ill+ Wl 2+}'l)Pl

+ W'2
) +b, +{",2 —+ ljt) 2 ]p3

o

P2 0 W1~2Pl ( W2~3+ W2 l +b2+ V2}P2

+~3 2e3+b3a~

P3 0 blPl+ W2~3P2 ( W3 4+ W3~2

for case (i), all other off-diagonal terms are set to zero.
For case (ii),

&j I [tH., P] lj+2&

2e I 1+2&(P)+2jk2 Pj j) ~

(3.24)

+b l+b3+)'3)P"3

+ ~4-3P4+ &3P5

P4=0=b2P2+ W3-4P3 (W4 5+—W

+»+)'4)P4+ W5 4P"5

P,=0= b 3P3+ W4 5P4 (Ws-4+b—3 +'Y 3 )P3'

(3.28}

Again, all other ofF'-diagonal terms are set to zero.
We assume that the potential is anharmonic enough

that there is no degeneracy in the level spacing. This is
s valid assumption in the limit of low damping since the
resonances will be well resolved if their widths are small
compared to their spacing. Given this assumption, the
equation for the off-diagonal elements can then be readi-
ly solved by Fourier transform since the nondegeneracy
assumption decouples the off-diagonal elements from
each other, For example, when the microwave frequen-
cy 9 is such ihst we expect nearest-neighbor resonance,

Il &J Iq IJ+1&(P)—Pj+l) —l-
4e (Cd —Cd i+Cd ) —l I /2

(3.25)

12 r
b, =, /

&i fq [i+2& /'
16e ( Cd Cd;+2—+Cd;)'+ I ';/4

; i+ ~;+~+~+2- +i+~; +r +r (3.29)

Here we have again substituted the relevant o6'-diagonal
elements with the appropriate combination of diagonal
elements similar to (3.25). Equations (3.26) and (3.28)
are easily solved by inverting s matrix. The solution

IP,. j is proportional to the feeding current C but the
normalized total escape rate

"i=&~+&~+~+~~-J+~+ ~~-J-i
+ 8'+I +2+ S"+ I

g;r, P";
(3.30)

and P) is the population of level j. Substituting (3.25)

into the equation for the diagonal elements, p =0, gives
(6.27) of Ref. 8:

g(Wk ~Pj, —W, -kP) } b) W)+l-j'(Pj —P)+l'—
+b), W. . .(P),—P, ) —y,P, =0 „(3.26)

is independent of C. In Sec. V, we will compare the re-
sults of such calculations to experimental data.

IV. OHMIC AND NON-(OHMIC
DISSIPATIVK MECHANISMS

The origin of dissipation of Josephson junction is not
completely well understood, but it is generally believed
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that the classical behavior of the junction provides a
prescription for determining the spectral density of the
bath oscillators. " Wlthln the reslstlvely shunted junc-
tion (RSJ) model, the bath spectral function is given in
terms of the junction capacitance C and shunt resistance
R as

O' Z2 A"

/////////////

J(ru)=myc08(ru, —
~

cu
~
), (4.1)

where the "mass" m = (i)I/2e ) C, and the damping
coefBcient y= 1/RC. Here co, is some high-frequency
cutofF which is not necessarily as sharp as the step func-
tion which we have chosen here. The level shifts are ap-
proximately constant for all levels in the case of Ohmic
dissipation because the junction provides a weakly
anharmonic potential. [See the discussion following
(2.20)]. Although a great deal of experimental ingenuity
has been applied to measuring the "shunt" resistance of
the junction, experiments with Ohmic dissipation have
the problem that the junction parameters cannot be
determined until the junction has been fabricated. It is
therefore very difficult, if not impossible, to observe the
effect of changing dissipation on the population distribu-
tion and escape rate.

There are experiments' in progress that allow ihg ex-
perimentalists to change the dissipation in situ. The ex-
perimental arrangement is basically a Josephson junction
loaded with a transmission line of variable length I, see
Fig. 5. The junction is characterized by the critical
current I, and capacitance C as before. It is loaded with
a transmission line of characteristic impedance per unit
length Z, =(L, /C, )'~ which is a real number. This
first transmission line is terminated with a second
transmission line which has an absorptive medium such
that the microwave signal fed in through the small ca-
pacitance e does not reach the end of the second line
A "8". The impedance at A'8' is thus Z2(ru)=zz.
The general form of the impedance at position x (as
measured from AB) in line 1 is

Ib

qv 8

lt
(I Jb

Iz, ,i,lc

FIG. 5. Schematic diagram showing the experimental ar-
rangement for a junction loaded with an absorptive transmis-
sion line (see Sec. IV). The small capacitance c couples the mi-
crowave current to the junction without causing any dc shift in
the bias current.

Pl5E„=const+ —Im
load n

(4.5)

where RA„=E„+&—E„. We have introduced the efFect

of the dissipation and level shifts (4.4) and (4.5) into the
scheme of Sec. III to obtain some of the results given in
Sec. V.

di8'erences compared with the Ohmic case arises from
the nontrivial energy shifts. Assuming that the potential
is nearly harmonic, the calculation of Sec. II for the en-

ergy shifts of a harmonic oscillator can be used, leading
to

+ I 3' )& —Ip )&E)e +e
Z, (x)=Zoi

+ I flX —l f lxR)e —e
(4 2)

where R, is to be determined by boundary conditions
and y i

——cu/u „' u, bemg the speed of light along line l.
Matching impedance at A '8' then gives us the

efFective impedance loading the junction at AS,

1.0
I

Zt iz, tan—(y, i)
Zjoad

Z, —tZ, tan(y, i)
(4.3)

According to the prescription given by Leggett, the
spectral density J(rd) is then given by

0.0 I k I

30A05 30.415 30A25 30A35 30A45 30A55 30.465 30.475

J(tu) =
2e

l
Q)Re

, Z„,d(td)
(4.4)

This implies a more prominent frequency dependence for
the W'& than given by (3.9). A much more dramatic

FIG. 6. Fit to the microwave enhancement data first

published in Ref. 5. %e used the exact parameters as supplied

by the experimentalists; I, =30.572 pA, C =47 pF,
8 =134.7II (as calculated from a Q of 80), ro/2@=2. 0 GHz
and a temperature of 28 mK. The Atting power P was

I.O& 10
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FIG. 7. (a) At the 2~3 resonance as in Fig. 6, a plot of the normalized populations of all seven states (%=6). Naive
Boltzmann distribution is shown as a straight line. The unenhanced populations according to Eq. {3.27) is shown as squares and
the microwave enhanced populations as crosses. The level being pumped by the resonance is marked by the arrow. (b) Same as in

{a) but for the 1~2 resonance with six levels in all. (c) Same as in {b) but for the 0~1 resonance with five levels in all.

V. CALCULATION AND RESULTS

In this section we present the results of our calcula-
tions. Figure 6 is a reproduction of the work of Ref. 8
and Figs. 7—12 are new results produced by our code.
In comparing our calculations with published data, we
have taken the liberty of shifting our curves along the
current axis in order to achieve the best 6t. Shifting the
data along the current axis by a small amount is
equivalent to changing the critical current by the same
amount in the opposite direction. A small change in the
critical current does not aAect the calculation quahta-
tively but only gives the results a constant shift. The
magnitude of this shift, ho~ever, is always small and
well within the limits set by the uncertainties of the mea-

sured junction parameters.
Figure 6 is a fit to the microwave enhancement

[r...(I'~o) —r...(p =o)]
r...(p=o)

versus bias current data as in Fig. 2 of Ref. 5. The junc-
tion parameters used are I, =30.572 pA, C =47 pF, and
R = 134.660. The data have been given a constant
current shift of 0.018 pA which is within the experimen-
tal uncertainty (the combined effect of 6I, and 5C) as
shown in Fig. 2(b) of Ref. 5. The only unmeasured pa-
rameter is the microwave power where following Larkin
and Ovchinnikov, we define the dimensionless power P
for a junction as
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10 = g
1

&0'
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E;/U
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FIG. 8. Plot of p;y; vs E;/U with the same junction parameters as in Fig. 6. (a) The bias current is the same as in Fig. 7(a)
w'hich is at the 2~3 resonance. Unenhanced escape currents are represented as squares and microwave enhanced currents as
crosses. The level being pumped is marked by the arrow. (b) Same as (a) but at the 1~2 resonance. (c) Same as (a) but at the
0~ 1 resonance,

Z„,~(8 )
(S.l)

Our curve was produced with a P of 1)&10 . The
differences in the power used in our calculation and that
of Ref. 8 (I'=S.S7Xla ') is probably due to the
differences in the details of the calculation; the main one
being the method of computing the thermal transition
rate involving the last two states under the barrier. The
separations, widths and relative heights of the three res-
onances agree very well with the calculation. Figures '7

and 8 serve to provide some insights into the inner
workings of the calculation that led to Fig. 6. Figures
7(a)—7(c) are plots of the normalized populations tp, j
for three values of the bias current corresponding to a
resonance for the 2~3, 1~2, and 0~1 transitions, re-
spectively. The naive Boltzmann distribution is shown
as a straight line, and the actual population in the ab-
sence and presence of microwave are shown as squares
and crosses, respectively. %'e see that deep inside the
well, the distribution is almost Boltzmannian, since the
escape rates of these states are small. Microwave pump-
ing enhances the population of aH states above the reso-
nance while the populations of the last two states are al-
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FIG. 9. Fits to microwave enhancement of escape rate data presented in Fig. 20 of Ref. 11. %e used I, =9.5715 pA, C =5.95
pF„and R =350 0 for the junction parameters. Other parameters are (a} T=97.19 mK, co/2m=4. 5 GHz, and po~er
P =7.7&(10 ', (b) T=57.06 mK, 9/2m=4. 1 GHz, and power P=2. 1X10 ', (c) T=17.76 mK, 9/2~=3. 7 GHz, and power
P =1.54' 10-4.

ways lower than the Boltzmann distribution due to de-
pletion by sigm6cant leakage. This serves to demon-
strate a weakness in the "finite temperature instsn-
ton" method of calculating escape rates which as-
sumes that all levels are populated according to the
Boltzmann distribution. Figures 8(a)—8(c) show the con-
tribution of the individual states to the total escape rate
I „,as in (3.30). The biggest contribution is always from
the state just below the barrier top with or without ap-
plied microwaves. This is in line with expectation, since
the junction temperature is about twice the crossover
temperature. The contribution of the virtual state is
reduced by the eiTect of depletion; the ratio

yv+, /W~ z+, )50 for all cases we have encountered.
Any resonances beyond that would be so depleted that
their contributions would be negligible.

To demonstrate the erat'ect of temperature, we have
performed calculations for another junction with

I, =9.5715 pA and C =5.95 pF. *" These Sts to the
data in Figs. 9(a)—9(c) are obtained by varying the ca-
pacitance until the current spacing between the 4.5-GHZ
peak snd the 3.7-GHz peak agrees with the data and
then shifting all three calculated curves along the
current axis by varying I, . Note that the capacitance
used is still within the experimental uncertainty of the
measured value and we have picked a shunt resistance of
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FIG. 10. Fit to microwave enhancement data for the 0~2
and 1~3 resonances in Fig. 19 of Ref. 11. Junction parame-
ters used are I, =9.489 pA, C =6.35 pF, and 8 =120 A. Oth-
er parameters are T=57 mK, 9/2m=7. 9 GHz, and power
P =1.0y 10-'.

350 Q to obtain the right line shape. The value of the
resistance used is significantly higher than the 190 100
0 quoted in Ref. 11 but we would like to point out that
Martinis et al. , were concerned with establishing a
lower bound to the resistance. For example, for a Q
value of 30 (which is the correct value for the particular
junction), Table I of Ref. 11 indicated that the shunt
resistance should be 50% higher than the conservative

sin(2Q„I /v, )
5E„~

5 —3 cos(2Q„I /v
&

)
(5.2)

estimate that gave 1900, thus bringing the theoretical
and experimental value within the uncertainty of the
latter. We have not been able to put all three calculated
peaks on top of the experiment ones but their line shapes
all agree beautifully. The discrepancy in the peak posi-
tions amounts to an error in the calculated level spacing
of about 4', not much higher than our expected accu-
racy for the semiclassical method in the quantum re-
gime. The same junction has been used to obtain data
for the 0~2 and 1~3 resonance. Figure 10 shows our
At to the data taken from Ref. 11. In addition to using a
slightly lower critical current as explained by the experi-
mentalists, we found that a lower shunt resistance of
120 0 gives a much better At to the data. This
frequency-dependent dissipation actually agrees very
well with the structure seen in the data, see Figs. 7 and
12 of Ref. 11. The overall shift along the current axis
was 0.005 pA, which one might attribute to a
frequency-dependent Lamb shift. Since the experimental
uncertainty in the critical current is significantly larger
than this shift, we have not attempted to calculate and
compare the two.

Figure 11 shows the result of calculation of microwave
enhancement of escape rate assuming a transmission line
loading, see Sec. IV for details. We have used the same
junction parameters as in Fig. 6 with the temperature set
at 28 mK. We expect to be able to At experimental data
as soon as they become available. In Fig. 11, we try to
demonstrate the effect of frequency-dependent Lamb
shifts on such a microwave enhancement experiment.
From Eq. (4.3) and (4.5), the interesting part of the fre-
quency shift due to a transmission line loading is

2.0

Cl
1.5

I ~ 2.761crn

l

I = 4.0am
~

/'

l

where I is the length of the transmission line 1 and U, is
the speed of light along line 1. The three values of I
chosen correspond to the sin(2Q„l /v, ) factor being ap-
proximately —1(1=4 cm), 0(1=2.761 cm), and +1(l
=1.38 cm). ~e have assumed Z, =75 Q=ZZz and a
v, of 2.22X10 m/s. The frequency-dependent shifts
are clearly observable and the power has been kept con-
stant such that minimum dissipation (zero shift) corre-
sponds to the sharpest resonance.

Figures 12(a)-12(c) are comparisons of the calculated
versus measured escape temperature defined as"

0.5

0.0
30.40 30.46

FIG. 11. Microwave enhancement vs bias current for a
transmission line loaded junction with the same parameters as
in Fig. 6. The line impedances chosen were Z, =75 0,
Z2 ——Z&/2, and v, =2.22~10 m/s. I ~s the length of the
transmission line 1. The micro~ave power used was the same
ln all three cases, P = 1.0+ 10

+p —U/'k~ T
(5.3)

2m

The data have been presented in its original form
without any shift in the current because shifting does not
improve the fit by very much on the scale of this figure.
The dotted lines are the upper and lower bounds of the
calculated escape temperature due to experimental un-
certainties in the critical current, junction temperature,
and capacitance. The discrepancy demonstrated the big-
gest weakness of our calculation, i.e., the omission of the
effect of dissipation on the escape rate of the individual
states. As a result, our calculated escape rate, and thus
the escape temperature, is higher than the measured
value (except in the extreme quantum limit) although the
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(a) T~ vs Q~ at T = 19 mK
(b)

Teec vs lext Ot T = 44 mK
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FIG. 12. Calculated vs measured T, for three di8'erent temperatures for the junction used in Fig. 10. The data are shown in
dots and the calculated T in solid lines. The dotted lines are the upper and lower bounds to the calculated T„, allowved by the
uncertainties in the junction temperature, capacitance, and critical currerit.

general trend is in agreement. The microwave enhance-
ment calculation is not so sensitive to the absolute value
of the level widths because the line shape depends more
on the thermal transition elements, and because the mi-
crowave power is fitting parameter. In the regime of our
calculation, where the ratio b, U/A'0 is never very large,
we are not aware of any theoretical prediction of the
e6ect of dissipation on the escape rate of the excited
states. %'e think this is an area that deserves further
theoretical investigation.
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APPENDIX A

En this Appendix we will outline a proof that
G(co}=exp( —Pcs}A (co} is a general result in equilibri-
um. %'e will do this by first analyzing the self-energy
corrections for 6" and 0 to learn the Feynman rules.
Then we will consider one fourth-order correction to the
self-energy which is suSciently complicated that all the
general features of the nth-order diagrams can be seen.
It will also give an opportunity to examine how the di-
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agrammatic technique is used in this formalism.
In the text it was mentioned that the Xth-order terms

can be found by expanding out the time evolution opera-
tors and taking the resulting trace over the bath degrees
of freedom. Let us see this in more detail.

In the following we will ignore the counterterm, so the

interaction term is given by Vr(t) = —F(t)q (t), where
F(t)= Q, C, X, (t) operates on the bath coordinates and
q(t) operates on the particle. The Nth order term to
C(t, t') is given by a sum of (2%+I) terms that come
from expanding U(t, to) to kth order and U (to, t') to
(N —k}th order, where k runs from 0 to X:

g ( —&) (t) f dri f dr2' ' ' f dr~e Trb„h[Vr(ri)Vr(r2) Vr(r~)e p(to)pb '"

—iHoto —IHot'
Vr(rr )

' ' ' Vr«t:+i)]e

where the integrals are over t & ~» ~2 & & ~& & to and t' y ~k+, y & ~z & to. Since the density matrix at the
initial time, which we will assume was in the distant past, is of the Feynman-Vernon form of a product of a density
matrix for the particle times one for the bath, the terms acting on the particle can be removed and the problem
reduces to calculati. ng

( i) (i) f dr) f dr2 f drrrTrb th[F(ri) F(rk)p q F(rrr) F(rk+i)]

Ho' iHot0 —iHoto +iHot'
&&e 'q(r, ) q(r„)e ' 'p(to)e ' 'q(r„) q(r„+, )e (A2)

The product of q's is in the interaction representation which can be written in a simple form by removing the factors
exp(kiHor) multiplying q. If we then take note of the domain of integration that the time-ordering imposes, and
define the bare retarded and advanced Green functions by Eq. (2.8), the product of q's can be written as

Go( t —rl )qGo(ri r2 )q ' ' q—Go(rk to )P(to )Go(to rw )qGo(rrr rw —i )q ' ' ' qGo(rk+ i
t')—

It should be noted that the Nth order term of the full re-
tarded Green function can also be written as a string of
6's and q's but the Green's functions are all retarded.
Similarly, the advanced Green function produces a
string of all advanced Green functions in time-reversed
order. These strings of 6's are multiphed by this bath
correlation function at 2% times. Since the bath is de-
scribed as a set of harmonic oscillators and coupling be-
tween the bath and the particle is linear in the bath
coordinate the correlation function breaks up into a sum
over all possible partitions of the (2%)F(r)'s into pairs.
There is only one subtlety in the process. If the two ~'s
lie both to the right or both to the left, then the time ar-
guments of the correlation can be gotten by putting the
one on the left 6rst. If, however, one is to the right and
one is to the left, it is the leftmost time argument that
goes last. Speci6cally,

Trb„h[F(r, )F(r }p,""]=a(r;—r ),
Trb„h[F(r, )p,q'"F(r )]=a(r —r, ),
Trb, hfp q

F(r) F(rr )]:a(r —r )

In fact, the above result is a simple consequence of the
cyclic property of the trace, but it is the mathematical
source of the equilibrium condition we seek to show.

To write out the diagrams, we write a Go as a directed
line segment pointing to the left, a Go as a line segment
directed to the right and Go as a line segment with a cir-
cle on it [representing the p(to)] with arrows at both
ends. This notation was chosen since the noninteracting
Co(t, t') is given by

G (ott' =)Go( tto)p(to)Go(to t )

The particle-bath vertex gives a value q between two 6's.

a(r)= f J(ai)[l+n (co)]e—cc 27T

FIG. 13. The lowest-order corrections to the Green func-
tions. Note that the corrections for C can be derived from
those of 6"by replacing one of the Go with a Co and reversing
all the arrows to the right of it.
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The bath propagator, represented as a wiggly line, has
the order of its time arguments reversed if it spans the
Gp. The lowest-order Feynman diagrams for the
Careen's functions are shown in Fig. 13. Notice that the
corrections to 0 can be derived from the corrections to
6' by replacing in all possible ways one of the 60's with
a Cp and changing all the Gp's to the right of it into
6QsS

We will now set out to prove our relation C(cp)
= exp( —Pcp) A (c0). We will examine the contribution in

Fig. 14(a) to 6". The corresponding self-energy for 6' is
given by reversing all the arrows. For this particular
term, there will be five corresponding terms in 6 de-
pending on which internal line the p factor is inserted.
These are shown in Fig. 14(b). Consider now the contri-
bution of 14(a) to the spectral function
A (co) =i [6"(co) 6'(c—p)]. It is given by

FIG. 14. (a) Fourth-order correction to 6'. (b) The five
corrections to G which can be uniquely derived from (a).

5A (cp) =i f dcp' f dcp"a(cp')a(cp")[Gp(cp)qGo(cp —cp')qGo(cp —cp' —cp")qGp(cp —cp")qGp(cp)

Go (cp —)qG o (co cp')qG—
o (co cp' —cp—")q

Go�

(cp —cp" )qG o (cp ) ]

which equals

5A(cp)= f dc'' f dc0"a(c0')a(c0")[A (cp)qGo(cp cp)qG—
'

(ocp cp' —cp)qG—(ocp cp)q —G(pc)p

+Go(cp)qA(cp c)0qG'—( o—cp cp' —c0")qGo(co —cp")qGp(cp)

+Go(cp)qG p(cp co')qA (co ——cp' cp")qG p—(co co")qGp—(cp)

+Go(cp)qG p(cp —cp )qGo(cp —cp' —co )qA (cp ci)" )qGo—(cp)

+Go(cp)qGo(cp —cp )qGo(c0 cp cp )qGo(cp cp )qA (co)]

If we write down from Fig. 14(b) the corresponding five expressions for the term in 0, we find exactly the same kind
of structure except that the a(cp) are replaced by a( —co) if they bridge the p(tp) factor. If we use the identity
a(,—cp)= exp( —Pcp)a(cp) we find that the expression for C is identical to (A7) above except for an overall factor of
exp( —Pcp), as we set out to show.

APPENDIX 8 which in the semiclassical approximation is

In this Appendix we will describe in some details the
calculation of the semiclassical wave function for ener-
gies close to the barrier top. This is meant to be a sup-
plement to the terse outline given in Ref. 8.

In the classically forbidden region 3, see Fig. 1, the
wave function is a decaying exponential

X3

'P3(E) = e
1 —

leap f kdx
(81)

k

= 2 X
0 2(E)= —cos qp k dx-v'k X3 4

'
1 j2

4mU 1/2[(x —X3)(Xz—x)(X, —x )]

(82)

where
1/2

f2 [(X&—x)(X2 —x)(X, —x)]'

'4)'3 continued into the well becomes a standing wave

For the purpose of matching, we need to expand the
phase in (82) for X close to the turning point Xz but not
so close that the semiclassical approximation fails. We
shall de6ne the parameters of expansion to be
5x =(X, +Xi )/2 —X and b, =X,2. After a bit of tedious
algebra one emerges with the expression
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iso f k dx =iIO
X3

' 1/2
1 3 23

23 13
8 13

25X 1 5
1

4i5x
i9+2 3

'"
~ '36 (83)

(84)

In this region, the phase in (84) can be expanded in
terms of the energy as measured form the barrier top as

1/2
4mU

f2

Here F( ——,', —,', 3,X2, /X, 3) is a hypergeometric function.
Beyond the barrier, the wave function is a superposi-

tion of an incoming and outgoing wave of equal weight
(such that probability is conserved). These two waves
are again given in the semiclassical approximation by,

+i f~kdz—e
k

n

z is the appropriate variable for matching since it is
equal to (X, +X2)/2 up to order b, . For z large and
negative and v= (—,'+—iy), the solutions to (87) have
the asymptotic expansions

D+( —3 /43/2
~ ~

)
— /2 —3 /2( —3 /4v/2

~ ~
)

—vniez /2e —3ni/2
I ( —v)

—3nz/43/2
~ ~

)
—i —v

X f [x —X3)(x —X2)(x —X, )]'/2dx, D —(erne/4V'2
~

z
~

) &
—z /2eni/2(eni/4V/2

I ~

)v

' 1/2
1/2

5x
ln

85x 2

where I ( —v) is the gamma function of complex argu-
ment —v.

In order to match (82) to (BS), we expand the phase of
42 as given by (83) to order b, to obtain

where we have followed the notation of Ref. 8 with

(85)
qp

2
i8 —s5x i/28 e

' —iy

s =qo&6mU =mQyqo,
+e e

—iH s5x i/2 (89)

where 8=3s/5 rr/4 y ln(5—/24). —Matching (89) to
(810) for z &0 in region 2 then yields

y is the dimensionless expansion parameter which in

turn is related to another small parameter A=X, 2 by

y = —sh /8. The fina, 1 form of 41 that will be used for
matching is

+2=AD, —BD+, (810)

qp

$5x
+zbz i/2 (84') I"(

i +iy )
( 2 )

1 /4 —iy /2

3/2n.

In region 2 around the barrier top, Schrodinger*s
equation e e

—3vri /8 —3' /4

+[3U(X ——', X ) —E1$=0,
2m/ o BX

can be transformed to the equation for the parabolic
cylinder function by a change of variable z =3/s (X —1)
and dropping the anharmonic term in z,

1 +e 2i Oe i/2e ny/2( n2s )iy

I ( —,'+iy)
( 2s )

i /4 —iy/2

3/2m
' 1/2

—7ni /8 ny /4

—2ly
+2m'

I ( —,'+~y)

(811)
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Having determined the linear combination of D „
around the barrier top, we analytically continue (810)
into region 1 for z large and positive. Matching the
wave function to (84') then gives us the equal weight su-

perposition of incoming and outgoing wave of the
scattering state.

r W X —1/2[1/2+ iy) ny /4 —7Ji /8
M

~
—l, ~) e e

'
Jy

X( Ae
—ny~ni/2 g ) e

—iy/2

)1/2(iy —1/2) —my/4 7mi/S5

(812)

where
This completes the calculation of the wave function in
all three regions.
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