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A theory for high-temperature superconductivity is developed based on a hydrodynamic approx-
imation to the many-body problem. Electrons confined to two-dimensional sheets exchange cou-
pled two-dimensional plasmon and phonon modes. This leads to a strong electron-electron attrac-
tion. Bardeen-Cooper-Schrieffer theory is used to derive an expression for the transition tempera-
ture. The superconductivity comes about because of the existence of a low-frequency mode. Ex-

perimental consequences of theory are discussed.

I. INTRODUCTION

Recent experiments on high-temperature superconduc-
tors' 7 reveal important information on both the struc-
ture and dynamics of such materials. A modified
perovskite structure containing somewhat isolated planes
of copper oxide is found. Band-structure calculations™®
indicate that these planes contain a significant number of
free electrons. It also appears necessary to have mul-
tivalent ions, such as copper, in the crystal. The transition
temperature is very sensitive to the stoichiometry and
seems to be correlated with a mode-softening transition.
In this paper a model based on the above observations is
presented which offers a possible explanation for the high
T.. Because of the recent explosion of interest in this class
of materials, it is difficult to cite all the relevant literature.
The references merely represent a selection of some of the
work related to points raised in this paper.

As we shall see, the theory will lean very heavily on the
existence of a low-frequency mode in the system. The ex-
istence of this mode will permit us to calculate the transi-
tion temperature, to account for some of the observed ex-
periments, and to make predictions for future experi-
ments. In Sec. II the theory is developed and in Sec. III
the results are discussed and the experimental conse-
quences are explored.

II. THEORY

In the model I consider a set of two-dimensional
electron-gas layers interacting with acoustic lattice vibra-
tions. The layers are well separated from each other and
to a first approximation may be treated as noninteracting.
We therefore focus our attention on a single layer. The
electron gas lies in the copper oxide plane (z=0) and is
taken to be azimuthally isotropic. It will be assumed that
the elastic properties in directions parallel and perpendic-
ular to the plane are considerably different. This is con-
sistent with the crystalline structure determined from x-
ray scattering and with the existence of an observed
structural phase transition. In directions parallel to the
plane the modes are taken to be much softer than in a
direction perpendicular to the plane. This leads to a
decoupling of the respective modes and each mode may be
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studied separately. The modes propagating along the ¢
axis are taken to be conventional acoustic phonons. We
will primarily focus our attention here on those modes
propagating perpendicular to the ¢ axis. The approach is
similar to that previously taken in studying surface excita-
tions.®

Let M denote the mass of a complete unit cell of the
crystal. In analyzing the charge distribution in the z=0
plane one must include the ionic charge, the free-electron
charge, and the electronic charge that is bound to the ions.
The free electron charge per unit area is V.. The sum of
the ionic charge and the bound electronic charge lying in a
unit-cell projection on the plane z=0 is denoted by Ze.
Note that Z need not be an integer. Let u(R,?) denote
the Atwo-gimensional displacement vector field, where
R =ix +jy.

In writing the equation of motion for the ions, the force
is expressed as a sum of two contributions: the Coulomb
force and the non-Coulomb force associated with chemi-
cal bonding or antibonding. It should be noted that
band-structure calculations’-® show a significant occupan-
cy of antibonding states. The non-Coulomb force is
represented by a set of “bare” elastic constants. For the
sake of simplicity, the ionic motion is taken here to also be
azimuthally isotropic. This restriction may be readily lift-
ed. The equation of motion for the displacement of the
cell is

2
M%-ZeEp+pLV3u+(AL+yL)V,,Vp-u. 6))

Here, A, and p; are the “bare” Lamé constants, E, is the
electric field projection parallel to the plane, and V,, is the
gradient operator in the x-y plane. There is no a priori
reason for the bare Lamé constants to be positive. The
physically measured elastic constants include Coulombic
corrections to the bare Lamé constants.
Let v(R,?) be the velocity field for the two-dimensional
electron gas. The equation of motion is
v
m‘-—aa—t—-—eE,,— TR 10))
where m* is the effective mass of the electron and u is the
chemical potential. It will suffice to take u to be the Fer-
mi energy corresponding to the Fermi circle for NV, elec-
trons per unit area, u =N h*/m*.
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The continuity equation for the ionic motion is

\/%

du aN;
N; Y ]+ o 0, 3)

where N; is the number of unit-cell projections on the
z =0 plane per unit area. Similarly, the electron continui-
ty equation is

AN,
Ve (Nov) + - =0, @
ot
Finally, Gauss’s law is
V- (€E) =476(z)(ZeN; —eN.+ o.y) , (5)

where €’is the dielectric tensor of the medium surrounding
the plane. In this equation the full three-dimensional
divergence is taken. A test charge density o (R,t) has
been included to facilitate the discussion of the electron-
electron interaction later. It is convenient to express E in
terms of the electrostatic potential ¢(R,z,7): E=—Vg.
The test charge density is taken to be a plane wave,

o =ooexpli(q," R —w1)].

Here, q, is a two-dimensional wave vector parallel to the
z=0 plane.

Let us now proceed to study the linear response of the
system. Let

N.=N+n,expli(q," R —wt)]
and
N;=N2+nexpli(q, R —t)] .

The quantities v and u are assumed to have similar spatial
and temporal behavior. The first-order perturbed equa-
tions are

Mo™u=iZeqyo+urqtu+Or+u)qq,-u,  (6)

m*wv=—eq,¢+nn.q,h*/m*, @)

Ngp-u=in;, ®)

Nlqp-v=on,. )
The potential is

¢=—Eol|z|+goexpli(q,-R—wt)—Q|z|]1. (10)

The dielectric tensor is taken to be of the azimuthally
symmetric form

e=c,(i+))) +ekk.
The amplitudes ¢o and E¢ in Eq. (10) are

o0=—2E(Zen; —en, + ) , a1)
Qe

Eo-i—”(ZeNio-eN}’) : (12)
z

The quantities Q and g, are related by ¢ 26,, =Q%,.
Forming the scalar products of Eqgs. (6) and (7) and q,
and combining them with Eqgs. (8) and (9) yields

(@2 —g2c®)n=NPZeqlod/M , (13)

and
(@>—A?)n, = — Nleqlpo/m* , (14)

where c2 (A, +2p;)/M and A?=zN,.(hq,/m*)% Al-
though we use the suggestive notation c? in Eq. (13), we
again emphasize that it may be either positive or negative.
Equations (11), (13), and (14) may be solved simultane-
ously to give

¢ =2noo(0?— A (w2 —glcV)/(gyeA) . @15)
The denominator is given by
A=(0?—0})(@?—glc?—a?) —-wja’

Here, w; is the two-dimensional electron-gas plasmon fre-
quency defined by the equation

w2=wl+A?, (16)
where
w3 =2nNe%q,/(m*e) . an

The two-dimensional ionic plasmon frequency has been
denoted by Q, where

02=27N(Ze)?q,/(Me) . (18)

The mean dielectric constant ¢ is defined as €= (e,¢,) /2.
The vanishing of the dispersion curves for the electronic
and ionic plasmons at g, =0 is expected for a two-
dimensional system.

The roots of the equation A =(w?— 0} )(w?—w%) =0
define a set of coupled electronic-ionic two-dimensional
plasmon modes. The resonant frequencies are given by

0k =+ {02 +q2c2+0?
+ [(02+gci+ a0t —dwiqic?— 4N’y
a19)
Note that the @ — mode goes soft when
wlqlci+A2a%=0. (20)

When this occurs, a charge-density wave is set up and the
system undergoes a structural phase transition.

In terms of Eq. (15) it is simple to write a formula for
the Fourier transform of the interaction energy between
two electrons

2
ymlme” 1)
qp€efl

where e is an effective dielectric function defined by

(0*—0})(0?—o0l)

e(gp,0) =€ @ —AD(0?—gZe?) " (22)
The energy V includes the direct Coulomb repulsion as
well as the exchange of coupled two-dimensional electron
and ion plasma modes. This interaction energy is attrac-
tive at @ =0 if 0> w?g2c?> —A2Q2 It is this attractive
interaction which is responsible for Cooper pairing and su-
perconductivity. A necessary condition is that the com-
bination of bare Lamé constants A; +u; be negative.
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The interaction energy linking two electrons separated
by a distance vector r is given by Egs. (10) and (21) as

2
Vi)=Y 2ze
% dpeen(qp,®

It is useful to write this as a three-dimensional Fourier
transform

V(r) =2 Vi(q,w)expliq-r). 249)
q

) expligy-R—g,|z|). (23)

A comparison of these two expressions gives

= 27e?
V , == d S b A — 22— X
3(q,0) f_w z e ,w)exp( ig:z—gqplz|)
(25)
s0

4re?

q’een(qp,0)
The interaction is seen to be highly anisotropic in q space.

As one creates vacancies or inserts ions into adjacent
layers in the medium surrounding the copper oxide planes,
it is possible for the electron density in the copper oxide
plane to be altered. Oxygen is known to be a good accep-
tor of electrons, so oxygen defects are expected to be good
electron donors. Since copper may exist in several oxida-
tion states, it is able to receive these donated electrons. By
varying the defect concentration in nearby layers, one
may change the value of the sum (w;g,c) 2+ (Aw?). This
provides us with a “tuning” mechanism whereby the
mode-softening transition may be approached.

Inserting Eq. (26) in the zero-temperature BCS gap
equation gives

Agk)=— 1% Z_: V3(q,0) A0k (E' — ) 2+ A¢(k")] ~ V2,

@n
where o =(E'—E)/h and q=k'—k. Let us simplify this
equation by making two assumptions, both motivated by
the physics. Band-structure calculations indicate that the
electronic bands are rather flat along the direction in q
space parallel to the ¢ axis.”® To a first approximation we
may therefore write the electron energy as a two-
dimensional parabolic band

212
E'= hkp +const . (28)
2m

Vi(q,0) = (26)

*

Experiment '° reveals that the gap function is highly an-
isotropic. Therefore, let us look for a solution to Eq. (27)
in which the gap function A(k) is a slowly varying func-
tion of k,. Then Eq. (27) may be rewritten as

. dre?Ao(kp,0)
Bolk, 0= = 3 E €eni(gp @) (B’ — 1)+ A4 (k;,0)1'2

* dk; 1
x —_—y, (29)
f‘“ 2z (kp—kp)2+k;?
where q, =k, —k,. This, in turn, may be expressed as
2re2Ao(k),0)
Ao(kp,0)=—} E :
o : E 4p€(qp, @) [(E' — )%+ Ad(k},0)11/2
(30)

The problem is therefore reduced to the solution of a two-
dimensional gap equation with the interaction given by
Eq. (21). The gap equation may be written as

U(E,E")Ao(E")

(E)=—-"— ' , @D
Ao anh? J [E —p) 2+ EN
where U is the azimuthally averaged V,
U@, EY == [ sy (2)
b 2” 0 bl

and g2 =2m*[E + E'—2(EE")cospl/h>.
Since the frequencies associated with ionic motion are
low compared with electronic frequencies,

4l(w,qpc) 2+ (A0) 1< [0+ (gyc) 2+ 02]2,
and thus Eq. (19) also yields
2 _ (wsgpc)’+(A0)?
=== 21 02
w;+(gpc)*+

Evaluating @ -(g,) in the low-g, limit shows it to be an
acoustic-phonon mode with long-wavelength sound veloci-

ty

(33)

v-=(aAc¥2)', (34)
where a = h 2¢/(m*e?) is the effective Bohr radius and
2
A=ty 0 (35)
a gpc

Since c2 < 0, Eq. (34) implies that A is also negative.
An approximate formula for @ - which is valid for g,
inside the Fermi circle is

A+g,

1_+q,,_a/5 , (36)

a
0l= —2—(q,,c)2

where we have assumed that Q2+ (g,c)’<w]. It is in-
teresting to note that 2 vanishes for 4 +g, =0. We will
see that this condition will play an important role in deter-
mining the strength of the electron-electron interaction.

The strength of the electron-electron interaction for
both electrons on the Fermi circle (E =p) is determined
from Eq. (32). Letting ¢=260 and taking ©=0 and
gp =2krsin@ yields the formula

2 x/2
UG =2~ [ doCa+2kpsing) ™!, (37)
€ 0

where kr is the Fermi wave vector,
kp=QaN2)'2. (38)
In the situation where 4 < — 2kr the integral in Eq. (37)

yields
8e? _ 2kp—A
Ulp,p)=— tan ~! .
T ar—ap " [(A2—4k,%)"2]

(39)

As the oxygen-defect concentration is varied in these
solids, one may imagine a situation in which 4 approaches
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— 2kr from below. Then,

—2re?
el—kp(4+2kp)12

U(u,pu) is thus seen to have an inverse-square-root diver-
gence. Thus it is indeed possible for the interaction ener-
gy for two electrons on the Fermi circle (cylinder) to be
very large. Before we are able to solve the gap equation,
we must have some estimate of the range of @ values for
which the interaction energy is negative. One expects this
range to be small compared with typical electronic fre-
quencies, so Eq. (21) may be approximated by

2me? 1 wz-(QpC)z
€ gt2/a o’-0*

Uu,u)— (40)

V=

41)

In general, we will have to obtain U numerically. This
will be done in Sec. III. However, if we are willing to
make two simplifying assumptions, an analytic formula
may be obtained and an insight into the physics may be
obtained. We begin by restricting our attention to the
case in which kra/2 < 1; so, from Eq. (36),

”eza a)z—(qpc)z

= . 42
4 € wl—algye)(A4+q,)/2 “2)

In performing, the angular average, U, we assume that
the main contribution to the integral stems from values of
gp near 2kr. Then,

2
Ulp,p+o)= 2e6a

Xfxlzd" w?—4(kpc)?
0 7 2—2a(krc)2(A4 +2kpsing)

(43)

Evaluation of the integral gives

2
Ulput+o)= — 2ze”

X {—kpld +2kr — 0¥/ Qakpc?)1} ~12.

(44)

The interaction U 1is attractive in the domain

— wo < o < wg, Where
wo=[2akpc?(4+2kp)]2. (45)

The interaction energy possesses a square-root singularity
at w = % wo.

As A— —2kp the strength of the interaction ap-
proaches — oo, whereas the range in frequency space goes
to zero. We may therefore try to represent U by a § func-
tion. Noting that

2n2e?

IO doUGu+o) == 2 (= 2kpach) 2, (46)

we obtain
2,2
U(u,u+w)z~3"€—e—(—2akpc2)'/25(w). (C¥))

This is expressible in terms of the long-wavelength speed
of sound for motion perpendicular to the ¢ axis. From Eq.

(34), using the fact that A — —2kp,

27[28 22 1/2V

Ulpp+to)=— —5(w) . (48)

In solving the gap equation, Eq. (31), we note that, in
those regions of energy space where U >0, Ag will be
small. To a first approximation the repulsive contribution
may be neglected. We may expect the §-function approxi-
mation to be valid when the range of U is small compared
with the gap, i.e., Awo<Ag. From Egs. (34), (35), and
(49) this implies

(akp)?<n2A/18(4 +2kp)]).

This equation will hold if A — — 2kp.
The gap equation, Eq. (31), may now be trivially
solved:

Ao=rmhv-/(a2'?). (49)

The size of the gap is simply determined by the speed of
sound of the low-frequency mode and the effective Bohr
radius.
This temperature-dependent gap function is determined
from the equation
m* ) U(E,E")A(E')
Jee

anh? —E)2+AXEN
[(E—E")*+A%E")]
X
tanh FnT ,  (50)
or as the nontrivial solution to the equation
nhv- A
A=—iptanh| == (51

The critical temperature is defined by the condition that
the above gap vanishes. Thus,

- nhv-—
2kga2'/?’

Note that the condition relating the critical temperature
and the zero-temperature energy gap is

200=4kpT. . (53)

An explicit solution for the temperature in terms of the
gap follows from Eq. (51):
T 24

T. Adnl(1+A/80)/(1—A/Ag)] °

Using Egs. (34), (35), and (52) and the relation

A= —2kr and kra <1 allows us to obtain an expression
for T.:

(52)

[

(54)

- nhQFf
4kp ’

where Qf is the two-dimensional ion plasma frequency
evaluated at the electronic Fermi wave vector,

/
[ 22N0(Ze) %k ] 2
Qp=|——mF .

T, (55)

Me (56)
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III. RESULTS AND DISCUSSION

In Sec. II I have developed a theory for high-
temperature superconducting oxides based on a hydro-
dynamic approximation to the many-body problem. A
key consequence of this theory is the existence of coupled
two-dimensional ionic and electronic plasmon modes.
One of the coupled modes, w+, is basically electron-
plasmon-like and is not of much interest in the present dis-
cussion, although its effect is included in our calculations.
The low-frequency mode, w -, however, plays an impor-
tant role in bringing about superconductivity.

In Fig. 1, I plot w+ as a function of the magnitude of
the wave vector parallel to the conducting plane. It
displays the characteristic square-root dispersion for small
qp expected for a two-dimensional plasmon. At higher
wave vectors the curve becomes straighter due to the
effect of the degeneracy pressure.

The numerical values of the parameters used in our cal-
culations are presented in Table I and are appropriate to
La; 3Srg2CuOy4. The value of the parameter M is obtained
by computing the mass of the unit cell. The ionic areal
density, !! N, is the reciprocal of the unit-cell projection
perpendicular to the ¢ axis. The electronic areal density is
obtained from experiment.!> The value of the ionic
charge, Z, is based on the standard valences for the ions in
the CuO; plane. It should stressed again that Z deter-
mines how much ionic charge lies in the conducting plane.
The effective mass of the electron is assumed to be the
free-electron mass. The background dielectric constant, ¢,
is taken to be that for typical metal oxides.!® Obviously,
these numbers are not known exactly and must be regard-
ed as just reasonable estimates at this point.

The key assumption in our theory involves the nature of
the instability which leads to superconductivity. In for-
mulating our model it was assumed that there are two
competing mechanisms operating. One is the effect of the
electrons occupying antibonding band states, which is as-
sumed to act in a direction so as to destabilize the system.
The other is the Coulomb effect, which tends to stabilize

ay

FIG. 1. Energy of the high-frequency mode as a function of
the wave-vector projection parallel to the surface. The wave
vector is expressed in units of the Femi wave vector kr.

TABLE I. Parameters used in the calculation.

M 6.6x1072 g

NP 7.0x10" ¢cm 2
0 2.0x10™ cm 2

VA -2

m* 091x1077 g

€ 4.0

the system. If only the former effect were present, the
crystal would undergo a structural phase transition. How-
ever, we believe that the two effects nearby balance each
other and that the system is therefore soft. This is mani-
fested by the existence of an anomalous acoustic phonon
o —. This phenomenon occurs for a restricted class of ma-
terials and distinguishes the oxide superconductors from
more conventional superconductors.

In Fig. 2, I graph the behavior of @ - as a function of g,
for several values of the parameter A of Eq. (35). One
may think of this parameter as a measure of the stability
of the system, in that the two contributions reflect the two
competing mechanisms described above. We note three
peculiar features of the dispersion curves. First, they are
characterized by exceptionally low acoustic velocities.
For example, using Eqs. (34) and (35) and the values of
Table I gives, for the case where 4= —2kp, a velocity of
8.4x10* cm/s. Second, for some values of the stability
parameter, A, the dispersion curves possess a maximum
value and then bend over and fall with increasing g,. Fi-
nally, if the condition 4= —2kr is met, the dispersion
curve returns to zero frequency at gp =2kr. In our calcu-
lation 2kz=7.1x107 cm ~! and the effective Bohr radius,
a,is 2.1x10 "® cm.

The above dispersion curves permit us to compute the
interaction energy in Eq. (32), making use of the expres-

T
20F E
a
ha_ b
(meV) c
Lok d
o 1
0 K, 2k,
q

FIG. 2. Energy of the low-frequency mode as a function of
the wave-vector projection parallel to the surface. The wave
vector is expressed in units of the Fermi wave vector kr. The
curves are given for four values of the stability parameter A.
The values of 4/(2kr) in curves a, b, ¢, and d are —1.43,
—1.27, —1.13, and —1.00, respectively.
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sions in Egs. (21) and (22). This interaction is presented
as a function of the energy difference Aw=E'—E in Fig.
3. For convenience, atomic units (1 atomic unit =27.2
eV) are used here. The curve is generated for a value of A
slightly less than —2kr. We note the existence of an at-
tractive band around o =0 and the presence of a square-
root divergence. This is to be expected based on our ap-
proximate formula, Eq. (44). The exact calculation is in
good quantitative agreement with Eq. (44). Our calcula-
tions also have shown that as A4 approaches —2kg, the
band over which the attractive interaction exist narrows,
in agreement with Eq. (45), while the strength of the in-
teraction increases in such a way as have Eq. (46) obeyed.
For w values outside of the above attractive band, the in-
teraction rapidly becomes repulsive.

In Fig. 4, I show how the strength of the interaction po-
tential at E' =E varies with the electron density, keeping
all other parameters fixed. We see that the interaction
grows to be very strong as the electron density is increased
and diverges as the condition 4= —2kr is reached.
Again, U is expressed in atomic units in Fig. 4.

We may now calculate the superconducting transition
temperature from Eq. (55). The ionic plasmon energy at
the Fermi momentum is computed to be 4.9 meV, so the
transition temperature is 44 K. This is in reasonable
agreement with the observed value'* of T, of 36 K. Given
the uncertainties in the parameters of the theory at this
time, it is not reasonable to expect better accuracy.

An examination of Egs. (55) and (56) shows the transi-
tion temperature to depend on only a few physical param-
eters: the ionic areal density, the planar cellular valence,
the electron areal density, and the background dielectric

-1000 T T

(e%ay)

T

-500 7]

|

-4 -2 (o]
w

(10 ¢%/a )

FIG. 3. Interaction strength U vs @ =(E'—E)/h for an elec-
tron density N2=2x10" cm ~2 A value for 4 close to —2kr
has been chosen. Atomic units are used.

-40 T
u
2
(e“a,)
-20F 4
o 1
() 1.0 2.0
N, (1014cm'2)

FIG. 4. Interaction strength U vs electron density N2 for
E'=FE. Atomic units are used.

constant. It does not depend on the effective mass of the
electron. Also, since only the magnitude of the electronic
charge enters, it makes no difference whether it is elec-
trons or holes which are the mobile carriers.

It is known that there are some superconductors, such
as YBa;Cu307, which possess several conducting layers
per unit cell. While the theory developed here must be
generalized to include such cases, a crude estimate of the
effect can be obtained by assuming that the layers in a
given unit cell are strongly coupled and thus may be
thought of as constituting a single more dense layer. The
net effect would be to increase the value of the parameter
Z, which represents the net bound valence charge, while
leaving the other parameters unchanged. The transition
temperature is seen to be directly proportional to Z and
thus one could possible account for the higher 7, values.
In Fig. 5, I plot the behavior of the superconducting gap
as a function of temperature below T,, as given by Eq.
(54). The ordinate is normalized to the zero-temperature
gap, while the abscissa is normalized to the transition
temperature. The curve approximately follows the same
qualitative behavior as the BCS gap, although some quan-
titative differences exist. The main difference occurs in
Eq. (53), where the value of 2Aq is predicted to be 4kp T
instead ! of the traditional 3.52kgT.. This difference may
be traced to our reduction of the three-dimensional gap
equation to two dimensions, due to the highly anisotropic
form of the interaction, and to our use of the §-function
approximation in Eq. (47). In addition, the conventional
BCS gap equation involves the coupling in electrons to op-
tic phonons. To a first approximation the dispersion of
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FIG. 5. Temperature-dependent gap function in units of the
zero-temperature gap plotted as a function of the temperature
expressed in units of the transition temperature.

these optic photons may be neglected with the result that
the attractive electron-electron interaction exists for a set
of electron states within some fixed band of energies about
the Fermi surface. Inspection of Fig. 2 shows this not to
be the case for the long-wavelength acoustic phonons
studies in this paper. Thus the solution of the BCS gap
equation is done slightly differently here to take this into
account.

A central prediction of our theory is the existence of the
low-frequency mode w-. Let us turn our attention to
some of the experimental consequences posed by its ex-
istence. The anomalous dispersion relation could, in prin-
ciple, be detected by cold-neutron scattering. A charac-
teristic signature of the dispersion curve would be to have
a low inelastic energy loss at 2kr. In Fig. 2 the maximum
value of @ - for the case in which A = — 2k, expressed in
thermal unit, is 14 K. The temperature of the neutron
beam would have to be comparable to this to observe this
effect.

One of the more puzzling features of the high-
temperature superconductors is the behavior of the resis-
tivity as a function of the temperature above 7.. As the
temperature is lowered towards zero, the resistivity often
appears to extrapolate linearly to zero until the critical
temperature is reached. ! Thereafter it falls precipitously
to zero. Linear behavior of the resistivity in many metals
occurs when the temperature exceeds the Debye tempera-
ture. In other words, the thermal energy must exceed
characteristic acoustic-phonon energies. Since the
characteristic temperature of the low-frequency mode in
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our problem is only 14 K, one may understand how the
linear behavior of the resistivity is observed down to the
transition temperature. A more quantitative description
based on this theory will be presented in a future publica-
tion.

Experiments have revealed anomalies in the elastic con-
stants and sound velocities in the high-temperature super-
conductors.'” The measured sound velocities, however,
are around a factor of 5 higher than those predicted in our
theory. This may be due to several cases. First of all, the
sound velocity along the ¢ axis is not expected to be low.
In a crystal with randomly oriented microcrystallites,
pieces with fast characteristic velocities and pieces with
slow characteristic velocities will occur in both series and
in parallel combinations. The measured sound velocity is
an appropriately averaged quantity. Second, it is quite
possible that the superconducting microcrystallites
comprise only some fraction of the sample. For observing
zero resistivity it is only necessary for them to percolate
into conducting paths. Similarly, to obtain a complete
Meissner effect, it is only necessary for the planes to per-
colate into a union of closed surfaces (bubbles).

The present theory predicts the existence of an isotope
effect. An isotope effect has recently been observed.'®
Since the ionic plasmon frequency depends on the mass of
the unit cell we can estimate the size of the isotope effect
to be expected. For 100% substitution '°0O by 30, we
predict a shift in the ionic plasmon frequency, and hence
the critical temperature, of 0.72 K. Experiment extrapo-
lates to a shift of about 0.5 K. However, it should be
pointed out that the temperature region over which the
transition occurs is still larger than the isotope shift, so
that there may yet be considerable uncertainty in the ex-
perimental results.

The specific heat of the system will be affected to some
extent by the existence of the low-frequency mode. For
temperatures corresponding to thermal energies above the
typical maximum energy of the low-frequency mode, the
specific heat assumes the approximate linear form
c=constX(T—T*). A more complete discussion of this
effect will be discussed in a forthcoming publication. !°

One of the issues not addressed in the present work is
the relative stability of the superconducting transition
compared with other possible transitions. A detailed dis-
cussion of this issue must be deferred to the future. The
theory also omits the possible interplay of phonon and
magnetic effects in determining the superconducting prop-
erties of the system. However, given the present theory
and its experimental implications, I believe a reasonable
case can be made for the Cooper pairing mechanism being
phononlike in origin.
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