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The CuO; planes in the high-temperature superconductors are described by a two-dimensional
Hubbard model. The model is investigated for an infinite system with one and two electrons less
than half filling. The method used is to diagonalize the Hamiltonian exactly within a retained
portion of the Hilbert space. A single hole is found not to be localized by a string potential that
increases linearly with distance, although it does have a large effective mass. A pair of holes,
which naively should be quite mobile, is found instead to be extremely heavy due to a previously
unappreciated frustration effect that impedes their motion. This lack of mobility increases the en-
ergy of the pair so that they do not bind, contrary to some recently published results using mean-
field theory or intuitive arguments. The energy of one- and two-hole states is calculated as a
function of wave vector k. The comparative energy of different angular momentum channels and

magnetic polaron effects are discussed.

The discovery of high-temperature superconductivity'
has stimulated interest in nonphonon pairing mechanisms.
The high transition temperature and the small or vanish-
ing isotope effect? are evidence that the superconductivity
arises primarily from strongly interacting electrons. Fur-
ther evidence is provided by observations of antiferromag-
netic correlations and anomalous normal-state transport
properties. >4

A number of theoretical models have been proposed to
describe nonphonon pairing mechanisms.>~%! Takahashi '
has independently done a calculation with some similari-
ties to the present one, and finds that holes in the Hubbard
model do not bind. Shraiman and Siggia!” have con-
sidered this problem by a generalization of the method of
nagaoka?? and Brinkman and Rice.?*> Recent Monte Car-
lo calculations indicate that the two-dimensional Hubbard
model does not support superconductivity.'® There are,
however, persuasive qualitative arguments why there
should be pairing in the nearly half-filled Hubbard model.
These arguments are given below (see also Refs. 9 and
16). It is the purpose of this paper to critically consider
these qualitative arguments in the light of a quantitative
calculation of the hole interaction. The present calcula-
tion is not a mean-field theory, and as such can assess the
accuracy of recently published mean-field approximations.

The copper-oxygen plane may be described by a Hub-
bard model, in which the sites represent Wannier func-
tions centered on the copper atoms. The copper d,: 2 or-
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Both J and ¢’ are equal to ¢ %/U, s is a spin label, {j,k) are
nearest-neighbor sites, and (j,k,m) are three distinct ad-
jacent sites, where both (j,k) and (k,m) are nearest
neighbors. The ¢’ terms cause a hole to hop to a next-
nearest-neighbor site. The J term has the form of a
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bitals are half filled in La,-Ba,CuO4 when x =0, and
are less than half filled as x increases. A similar descrip-
tion of the copper-oxygen planes in YBa;Cu30¢y9 is also
possible. The Hubbard Hamiltonian is

Hy=~1 2‘; (c)lsex s+H.c)+UXnjnj). (1)
j’k 'S j

The first term connects nearest-neighbor sites on a square
lattice. The holes reside primarily on the copper atoms, as
found by Martin and Saxe in their cluster calculation. '3
To write a model in which the holes reside on the oxygen
atoms,® the Wannier functions would be centered on the
oxygen p orbitals, which would again form a square lat-
tice, with the only difference being that the first sum in
Eq. (1) would extend over nearest and next-nearest-
neighbor sites with approximately equal amplitudes.
(This requires that the repulsion U now applies on oxygen
sites.) The model considered here has only nearest-
neighbor connections.

The Hubbard Hamiltonian may be transformed to an
effective Hamiltonian by removing the doubly occupied
sites using second-order perturbation theory,?* a pro-
cedure that is valid for filling less than or equal to one
electron per site and for moderate to large U. The
transformed Hamiltonian is H =PH P, where P is the
projection operator onto the subspace with no doubly oc-
cupied sites, and

> (¢fsnp —sems+H.c)
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Heisenberg antiferromagnet, and is the only operative
term when the band is half filled (one electron per site).
The ground state at half filling is assumed to be a Néel an-
tiferromagnet with spin-wave fluctuations, which is sup-
ported by Monte Carlo simulations.?® In this description,
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it is convenient to write the spin-spin term in Eq. (2) as
o Ok "o}oi+2(o,7"ck°+o'j_a,}") . 3)

The ground state in the calculations that follow is taken to
be that of the ofof interaction, with the second term
treated as a perturbation. (Other assumptions about the
ground state have been made, such as the resonant-
valence-bond model.”)

The question being considered is whether two holes in
the antiferromagnet have an attractive interaction that
can give rise to superconductivity. There are two naive ar-
guments suggesting that the holes will have an attractive
interaction for large U: (1) Two separate holes lose the
antiferromagnetic exchange energy of 2 J on 4 bonds
each, whereas two holes on adjacent sites lose the ex-
change energy on only 7 bonds together, resulting in a
binding energy of 2 J. (Note, however, that a repulsive in-
teraction arises because a hole loses delocalization energy
since it cannot hop onto the site occupied by the other
hole.) (2) A mobile particle with an effective hopping
matrix element of # lowers its energy by zf when it delo-
calizes (the coordination number z is 4 on a square lat-
tice). A single hole appears to be immobile, being tied to
a site by a string, whereas a pair of holes should be quite
mobile. Thus, if two holes bind they can gain the delocali-
zation energy.

The second point requires elaboration. Suppose a hole,
initially at the origin, travels on a straight line by succes-
sive application of the hopping term ¢ in the Hamiltonian
[Eq. (2)1. The hole leaves in its path a line of spins with
the incorrect orientation for an antiferromagnet, resulting
in a string energy of 4 J per unit length binding it to the
origin (see Fig. 1). In contrast a pair of holes should be
able to move rather freely. One of the holes moves one
space over, and the other follows it (see Fig. 2). The pair
has translated to a degenerate vacuum. Hirsch® has given
similar arguments for the one- and two-hole motion in the
case where the holes are on oxygen sites (see also Ref.
16).

A more careful analysis shows that argument (2) above
is incorrect, both for the single hole and for the two-hole
mobility. The single hole need not travel on a straight
line, trailing a string behind it. In fact, if the hole travels
around a square one and a half times, it unwinds the
string and finds itself translated to a next-nearest-
neighbor site with the background spins undisturbed (no
string energy); see Fig. 3. Thus, for large U the hole mass
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FIG. 1. The hole (a) hops right two times, leaving the spins in
configuration (b). The hole leaves behind a line of spins with
the incorrect orientation for an antiferromagnet. The high-
energy bonds are marked.
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FIG. 2. The ¢ hopping term can cause a pair of holes (a) to
make a transition to an excited state (b), and then to a state (c)
in which the pair is translated, but no background spins are dis-
turbed. State (c) is degenerate in energy with state (a). The se-
quence (a) — (d) — (e) is also possible.

is not infinite, corresponding to a string force, but instead
is rather large, corresponding to the fact that six rather
than two hops are required to reach a second nearest-
neighbor site, and that there is an intervening energy bar-
rier as well. The path illustrated in Fig. 3 is the simplest
of a family of paths that allow a hole to reach an in-
equivalent vacuum. If a hole traverses any simple closed
curve two steps less than two full circuits, the net effect is
to translate the hole two lattice spacings to a state with
the same energy as the initial one. The hole translates ei-
ther diagonally to a next-nearest-neighbor site, or along a
coordinate axis to a third nearest-neighbor site. Self-
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FIG. 3. (a) A hole following the sse:ntxzncc n—---—@

translates to a degenerate vacuum (no string is left behind). (b)
The energy of the states (1) through (7) in units of J.
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intersecting paths (such as a figure 8) do not connect to a
degenerate vacuum with this method. The longer paths
have an effective ¢ connecting degenerate vacua that de-
creases faster than exponentially with their length,?® and
will be neglected compared with the path of Fig. 3 in this
work. There are, however, exponentially many long paths,
and they should be taken into account to obtain quantita-
tive results for extremely large U.

There is another effect contributing to a hole’s finite
mobility, which arises because the 0¥ o~ term in Eq. (3)
can erase a segment of the string. The ¢’ hopping terms
have the same effect. Note, however, that these effects are
order t%/U, and are of negligible importance for large U
compared to the O(t) effects identified above.

The argument concerning the two-hole mobility is in-
correct for a more subtle reason having to do with frustra-
tion, which will be discussed later.

The energy of a single hole and that of a pair of holes is
calculated quantitatively by the following method. The
single-hole calculation is considered first. A Hilbert space
is defined as follows: The first state included is that of a
single hole at the origin will all other spins in their antifer-
romagnetic configuration. The Hilbert space is expanded
to include all states that can be reached from the first with
one application of the ¢ term in the Hamiltonian [Eq. (2)],
which causes the hole to hop to a neighboring site and also
leaves the spin at the origin overturned. Also included in
the Hilbert space are all states that can be reached from
the initial state with either two or three ¢ hops. States that
can be reached with a single ¢' hop [either of the last two
terms of Eq. (2)] are included as well, although they turn
out to be equivalent to translations of the above states.
The motivation for defining the Hilbert space in this way
is that to calculate the ground state, the most important
states to retain are the lowest energy states.

The Hilbert space includes the states described above,
plus all translations of those states on an infinite lattice.
Translations are generated as above but with the initial
hole state somewhere other than the origin. See Fig. 4.
One could define an even larger Hilbert space by includ-
ing fourth-nearest-neighbor hops, etc., but the size of the
space is ultimately limited by the computing power avail-
able. The Hamiltonian [Eq. (2)] is diagonalized exactly
in the Hilbert space defined.?’ In particular, the oto™
terms in Eq. (3) that were neglected in defining the
ground state are included in the Hamiltonian, so that they
are in a sense treated to infinite order. The problem is for-
mally identical to that of a single particle tight-binding
model in a periodic lattice,

Hy ‘Zl:(t,-,k(b}bk +H.c)+X ¢bb; . (4)
Js J

A similar technique has been used by Landman and Shles-
inger.2%% It is a rather complicated tight-binding model,
in that there are 49 basis states per Wigner-Seitz cell for
the Hilbert space described. Each diagonal term in the
Hamiltonian [Eq. (2)] corresponds to a site energy, and
each off-diagonal term to a bond that connects sites in the
tight-binding model. The Wigner-Seitz cells are taken to
be square. There are bonds between sites in first, second,
and third-nearest-neighbor cells. Each eigenstate is in-
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FIG. 4. The Hilbert space used for a single hole is shown.
The symbol O denotes the hole and the symbol X denotes a spin
that is overturned with respect to the antiferromagnetic refer-
ence state. All rotations, reflections, and translations of these
states are included. The number of overturned spins is the same
as the number of 7 hops required to reach the state.
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dexed by a Bloch wave vector k in the first Brillouin zone.
The tight-binding model has a band structure that has 49
bands for this example. The energy of the hole is the
minimum energy over all k of the lowest energy band.
The effective mass of the hole is given by the band width
of the lowest energy band.

The Hilbert space for two holes with antiparallel spins
S, =0 is similarly defined. The initial state consists of two
horizontally adjacent holes, with all other spins in their
antiferromagnetic configuration. Any state that can be
reached from the initial state with one, two, or three ¢
hops or with one ¢’ hop is included. All translations and
rotations (the latter corresponding to an initial state with
two vertically adjacent holes) are included. This Hilbert
space contains 82 states per unit cell. The holes can be
separated by as many as 4 lattice spacings in this varia-
tional space. The Hilbert space for two parallel spins is
defined the same way, except that the intial state consists
of two diagonally adjacent holes. In principle nothing new
is learned in the calculation for parallel holes
(S=1, S, =1), since the S, =0 component of the S =1
state is already present in the calculation for antiparallel
holes. In practice this is only approximately true, since
the approximate Néel antiferromagnetic vacuum used is
not rotationally invariant. The numerically obtained
ground-state energy for parallel holes is always higher
than that for antiparallel holes, and the data for parallel
holes will not be presented in detail here.

The calculations are most reliable for intermediate
values of U/t. For U/t sufficiently small, neglected terms
in Eq. (2) that are higher order in ¢/U become important.
To estimate the lowest reliable U, let r be the ratio of the
exact energy gap (energy difference between the first ex-
cited state and the ground state) to the gap predicted by
Eq. (2). For the two-site, two-electron Hubbard model,
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r=0.75 for U=3 and r=0.90 for U=5.7. For U/t
sufficiently large, a larger Hilbert space is desirable.
When U/t =14, the highest energy state retained has an
energy of 1 (in units of ¢) higher than the ground state.
Results will sometimes be given for U outside this range,
as they are hoped to be qualitatively correct. In particu-
lar, the large U limit is nonsingular, is simpler to under-
stand, and is often close to the result at the upper end of
the above range.

The tight-binding models on which the calculations are
performed are difficult to visualize because there are so
many states per Wigner-Seitz cell. To make the impor-
tant ideas more apparent, a simplified tight-binding mod-
el describing two antiparallel holes with eight states per
unit cell is considered. The simplified Hilbert space con-
sists of the initial state with two horizontally adjacent
holes and any state that can be reached with one ¢ hop,
plus translations and rotations (see Fig. 5).

The bonds marked with a slash correspond to a hopping
matrix element of +¢, in contrast to the usual bonds that
represent a matrix element of —¢. Which bonds are posi-
tive and which are negative does not have an absolute
physical significance. In particular, by changing the sign
defining the amplitude on site j (| y;)— — | y;}), the sign
changes for all bonds connected to site j. The sign change
leaves all of the eigenvalues invariant, and is a type of
gauge transformation. The sign convention used
throughout this work is to number the lattice sites in rows
beginning from the upper left, to work on a square lattice
with an odd number of sites on each edge, and to order the
creation operators defining a state in the order

chaetye el iefr]0).

FIG. 5. The figure represents a portion of the infinite
simplified tight-binding model for two antiparallel holes, in the
limit U~ oo. States are located near the position of the center
of mass of the two holes (small displacements are made so that
two sites are not on top of each other). The initial state (and its
translations and rotations) are denoted by a circle, and the one ¢
hop states by a square. A line connecting two states represents a
hopping matrix element of —¢, and a line with a slash represents
a matrix element of +¢. For finite U, additional lines would be
required to represent matrix elements of strength =+ ¢2/U.

It is not always possible to remove unwanted +¢ bonds
with a gauge transformation. In particular, whether there
are an even or an odd number of +¢ bonds in a closed loop
is a gauge invariant quantity. Some of the loops in Fig. 5
in fact have an odd number of +¢ bonds, for example the
cycle (2,12, 27, 11, 1, 5). These loops are frustrated, in a
sense that is analogous to the use of the term in a spin
glass.’® It is straightforward to show that an isolated loop
with n sites has a nondegenerate ground state with energy
— 2t if there are an even number of +¢ bonds, and a re-
duced bandwidth and degenerate ground state with the
higher energy of

e=—2tcos(n/n) )

if it is frustrated (has an odd number of +¢ bonds).

The physical reason that the tight-binding model
representing two holes (Fig. 5) is frustrated is that the
background spins are fermions, and that there are simple
motions of the holes that return the entire system to its
original state, with two background fermions inter-
changed. The extra minus sign thus arises from the inter-
change of two fermions (see Fig. 6). Because the tight-
binding model is frustrated, one would expect that the two
holes have a delocalization energy and bandwidth that are
somewhat smaller than for an unfrustrated tight-binding
model [see Eq. (5)].

When the effect of frustration is calculated quantita-
tively by exactly diagonalizing the Hamiltonian in the
protion of the Hilbert space that is retained (8 states per
unit cell), the results are far more dramatic. In the
U— oo limit, frustration renders the lowest energy band
precisely flat [e(k) is independent of k]. The two-hole
delocalization energy is not merely reduced by frustration,
it is reduced to zero. The system is maximally frustrated.
Since the energy is independent of k, it is possible to write
down exact localized ground states in the retained Hilbert
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FIG. 6. The holes move so as to interchange the two spin-up
electrons (one of the electrons is black). The states are num-
bered as in Fig. S.
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space. One may verify that the state
vi=yr=—y3=—yi=1/(2V2) ,

W’s“‘vls"“%'—W‘%,
)
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with all other y; =0 is an exact eigenstate with e=—+/8
for the tight-bonding model of Fig. 5. It is in fact a ground
state. The astonishing fact that this localized state is an
exact eigenstate for this translationally invariant system
and does not “leak” into the rest of the infinite lattice to
which it is connected can be explained as follows: Consid-
er a zero amplitude site that borders the wave function,
such as site (27). When the state [Eq. (6)] time evolves
under i/t | y)=H | y), the fact that there is a nonzero
positive amplitude on site (11) causes site (27) to develop
a nonzero positive amplitude. However, because of frus-
tration, site (12) has a negative amplitude and contributes
a negative amplitude to site (27) that exactly cancels the
contribution of site (11). The net result is that the ampli-
tude of site (27) and all other zero amplitude sites
remains zero. The localization that results from frustra-
tion is similar to that caused by the magnetic field in the
integral quantum Hall effect.

When the Hilbert space is expanded to include two ¢
hops and one ¢’ hop (32 rather than eight states per unit
cell), the lowest energy band is still exactly flat. Some,
but not all of the excited state bands are also dispersion-
less. It is only when the Hilbert space is further expanded
to include three ¢ hops and one ¢’ hop (82 state per
Wigner-Seitz cell) that the bands acquire a small nonzero
dispersion.

The numerically obtained ground-state energies for a
single hole and for two antiparallel holes are plotted in
Fig. 7. The calculation includes three ¢ hops and one ¢’
hop, with 49 basis states per unit cell for the single hole,
and 82 for two holes.! The lowest energy for a single
hole lies below the energy per hole for the two-hole state,
so that two holes with antiparallel spins do not bind to-
gether at any U. Two holes with parallel spins (not plot-
ted) are even higher in energy than two antiparallel holes.
The wave vectors k at which the single hole energies are
plotted are chosen because the real-space unit cell is
effectively expanded by v2 and rotated by 45°. This
occurs because a hole in a uniform antiferromagnetic
background defines a state with a different spin S; when
translated to a neighboring site. The hole must be
translated to a second-nearest-neighbor site to obtain a
state with the same S,. For a single hole, the calculated
energy minimum is at ka =(0,0) for (U/t) > 159, at
ka =(n/2,7/2) for 159> (U/t) > 3.5, and at ka =(x,0)
for 3.5> (U/t). It is not clear whether the transition at
(U/t) =159 is physical or whether it is an indication that
the retained Hilbert space is too small.

The bandwidth for the two-hole state is narrow, con-
sistent with the fact that due to frustration, high-energy
states reached through three ¢ hops are required to give
the band nonzero dispersion. The effective mass may be
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FIG. 7. The ground-state energy is plotted as a function of U
for a single hole at three wave vectors k (filled symbols). The
energy scale is chosen so that a hole localized at the origin has
an energy of zero, with all energies measured in units of . The
open symbols are the energy per hole (with the same energy
zero) for the two-hole states plotted at three wave vectors. The
three wave vectors plotted in each case include the minimum
and maximum energy in the band. There is a break in the U
axis at U > 20, to the right of which the energies at U =oo are
plotted. The energies at different k cross between U =20 and
U=oo,

defined through the band width Ae by m™*/mo=8/Ae,
which gives m™*/mo=1 for a single electron on a square
lattice (z=4). The two-hole state has a large effective
mass of 78.24 at U=co (see Table I).3> The effective
mass is so large that the two-hole state has negligible delo-
calization energy for large and intermediate U. If the
frustration in the two hole tight-binding model were re-
moved by replacing all of the ¢ and ¢’ bonds by — || and
— | '], respectively, the two-hole effective mass would

TABLE 1. Effective masses for one and two holes, and the
spin-spin correlation function for the one-hole ground state at
the nearest and next-nearest sites to the hole, as a function of U.

U mft/mo m3 /mo (o1 62)
oo 55.12 78.24 —0.154
100 109.42 140.25 —0.274
20 15.17 63.01 —0.399
15 10.58 39.25 —0.449
12 8.04 28.57 —0.496
10 6.53 22.54 —0.539
8 5.47 17.22 —0.597
6 4.32 12.57 —0.679
4 3.11 8.59 —0.799
3 2.41 6.87 —1.313
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decrease dramatically to 6.88 at U =o0, and the energy
would be lowered sufficiently by delocalization that a
bound state would be formed for 8.6 <U < 16.3. This re-
moval of frustration is, however, unphysical, and the real
system does not form a bound state. The single hole also
has a large effective mass for large U, reflecting the fact
that it must move in a complicated path to unwind its
string.

The numerical wave functions provide information
about the variational bound states. One hole makes an
entire orbit around the other by following the sequence of
states (1, 5, 2, 6, 3, 7, 4, 8), or alternatively the sequence
(1, 9, 25, 26, 27, 12, 2, 5) in Fig. 5. By examining the
wave function on either of these cycles, one can determine
the angular momentum of an eigenstate. It is incorrect to
merely count the number of zero crossings in the eigen-
state, because this number is not gauge invariant. A
gauge transformation should first be performed to remove
the +¢ bonds from the cycle.>* (For the first cycle above,
the wave function should be multiplied by —1 on sites 6,
3, 7, and 4.) Over the parameter range 44.5> U/t
= 0.01, the variational ground state for two holes occurs
for the wave vector ka = (x,7), and is angular momentum
zero (an s state). There are small admixtures of other
even-parity states, since the square lattice is not rotation-
ally invariant, but only invariant under 90° rotations.
Over the parameter range oo > U/t > 44.5, the ground
state is at ka =(0,0), and is degenerate. This is an angu-
lar momentum 1, or p state, with small odd-parity admix-
tures. One can show analytically and confirm numerically
that on a square lattice, even-parity eigenstates are nonde-
generate, while odd-parity eigenstates are two-fold degen-
erate. The “bridge” states (sites 10 and 11 in Fig. 5)
across the cycle (1,9, 25, 26, 27, 12, 2, 5) lower the ener-
gy of odd-parity states relative to even-parity states, so
that an odd-parity state is in fact the ground state for
sufficiently large U.

For large U, as a hole travels through the lattice, it
tends to leave behind a ferromagneticallgl ordered state.
This effect has been noted by Nagaoka,?* Nagaev,** and
by Brinkman and Rice.?? The effect of a hole on the local
magnetic order has been measured by calculating {o;* 77),
where 1 and 2 are the hole’s nearest-neighbor and
second-nearest-neighbor sites (see Table I). The correla-
tion functions are calculated for the one-hole ground state
with 49 states per unit cell. The correlation function
would be —1 in the antiferromagnetic ground state with
no hole present. The correlation function is reduced sub-

stantially to —0.154 for U =oo, although it is still nega-
tive. As U decreases, the intermediate states become en-
ergetically less favorable and the hole is less effective at
creating a ferromagnetic domain. The sudden jump at
U=3 results because the minimum energy occurs at
k=(z/2,7/2) for U=4 and k=(x,0) for U=3.3 The
calculated correlation function does not approach +1 as
U— oo, as required by Nagaoka’s theorem.?? This is an
indication that a larger Hilbert space is required to obtain
quantitative results for very large U, roughly U > 15, as
discussed above. Other calculations are also unable to
reproduce the correct U— oo limit, "3

It appears to be impossible to consistently assign a spin
to each of the holes separately for a S, =0 state. Consider
the initial state labeled (2) in Fig. 6. The hole on the right
occupies a position formerly occupied by a down spin in
the Néel state, so that the hole should be assigned an up
spin. Similarly, the hole on the left should be assigned a
down spin. The assigned spin should travel with a hole as
it moves. One may verify that the sequence portrayed in
Fig. 6 exchanges the two holes, so that by the end one
must assign an up spin to the left hole and a down spin to
the right hole in state (2), in contradiction to the original
assignment. One may, however, state that the combined
S; of the two spins is zero.

In conclusion, it is found that contrary to expectations,
a hole in an antiferromagnet is not bound by a string.
Furthermore, due to frustration, a pair of holes is not
highly mobile. Both of these effects work against the pair-
ing of holes, and the quantitative calculations indicate
that holes do not bind in the range of U investigated.
These conclusions are also likely to apply in the presence
of short-range antiferromagnetic order.

The fact that a bound pair does not form suggests that
Bose condensation may not occur. In two dimensions, two
particles with an exclusively attractive interaction will
form a bound state, and a finite density of them will Bose
condense (in mean-field theory). This is to be contrasted
with the situation in three dimensions, where weak attrac-
tion results in a Bose condensate but not a bound state be-
tween two isolated particles.
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