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%'e have used both an exact diagonalization method for 6nite-size systems and a perturbation
technique to study the lattice instability due to dimerization in a two-dimensional Hubbard model
in the large-U limit. %e show that a critical electron-phonon coupling strength is required to
form a dimerized state, in contrast to the one-dimensional system. Our calculations suggest the
phase transition to the dimerized state is of first order. The relevance to high-T, superconductor
materials is discussed.

I. INTRODUCTION

We study the stability of the antiferromagnetic (AFM)
ground state of a square-lattice Hubbard model against a
lattice dimerization due to electron-lattice interactions.
In particular we look at the limit of large Coulomb repul-
sion for the half-filled case. We treat the phonon mode
adiabatically. Two different methods are used: exact di-
agonalization of the finite-size systems and an analytic
perturbation technique. In contrast to the results in a
one-dimensional (1D) system, we find that a critical
electron-lattice coupling is required for lattice dimeriza-
tion. Furthermore, our small-system calculations strongly
suggest that the phase transition from AFM to the dimer-
ized state is first order.

The competing effects of the electron-electron repulsion
and the electron-lattice interaction on a 1D system have
been studied by many authors. ' It has been shown that an
infinitesimal electron-lattice coupling leads to lattice dis-
tortion. This subject, however, has not been investigated
in 2D systems, especially not in the large-U case.

Our work was motivated by the recent discovery of
high-T, superconductivity in Cu oxide compounds.
Many of the proposed models for the superconductivity
are based on the 2D Hubbard modeL The copper-copper
dimerization phonon mode has been considered in some
theoretical proposals. The weak coupling limit is dis-
cussed by Barisic, Batistic, and Friedel. In the large-U
limit, Kivelson, Rokhsar, and $ethna5 have proposed a
variant of Anderson's "resonant valence bond" (RVB)
theory6 in which the dimerization phonon mode plays a
central role. On the other hand, based on the results in

1D, Hirsch has conjectured the square lattice in the
half-filled Hubbard model to be inherently unstable
against dimerization, forming a "bond charge-density-
wave'* state. The present work examines the large-U case.

IL MODKI. HA.MII.IONIAN

We consider a single half-filled electron band in a
square lattice within the tight-binding approximation.

H QJ; St St+—gu;EC
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with the exchange constant

J -4t"/U2

(2a)

Without electron-phonon coupling, the ground state of
the antiferromagnetic Heisenberg model in a square lat-
tice is believed to be the antiferromagnetic ordered state
with a doubled unit cell. In the presence of the electron-
lattice coupling, the spin coupling favors the dimerization,
but the elastic energy opposes it.

We proceed by analyzing a symmetry-preferred dimer-
ized state with the displacements along one square axis,

The influence of the dimerization mode is to change the
electron hopping integral. We treat the lattice displace-
ments classically, and neglect the quantum fluctuations.
Within this approximation, the lattice displacements enter
in the problem as parameters, and the system can be de-
scribed by the Hamiltonian

H —g (ttjcp~~ +H.c.) +QUnt1nt1+ —gu;E
&ij)e i

(la)
In Eq. (la) the hopping is between the nearest-neighbor
sites i and j, and the hopping integral t;t is given by

&0
—+~i

with tt the electron-phonon coupling, and u;t the length
change between the two sites, whereas to is the hopping
integral without dimerization. The third term in Eq. (la)
describes the elastic energy due to lattice displacements
and E is the elastic constant.

The classical approximation we adopt in Eqs. (1) has
been used to study 1D systems by Soos and Ramasesha.
Quantum-fluctuation effects on dimerization have been
studied by $u, and the qualitative features of the classi-
cal solution of the phonon mode survive.

In the limit to/U((1, the half-filled Hubbard model of
Eqs. (1) maps onto an antiferromagnetic Heisenberg
Hamiltonian:

37 Qc1988 The American Physical Society



F. C. ZHANG AND P. PRELOVSEK

e.g., u; + un/2 (1,0), where the sign + corresponds to
the two sublattices. Another dimerized state with the dis-
placements along diagonal u; ~ uc/JS (1,1) is found to
be not favored energetically, and will only be discussed
briefly. In the symmetry-preferred dimerized state, the
couplings in the direction transverse to the dimers remain
essentially unaffected Jr J 4t)/U, because the dis-
placements are very small in units of the lattice constant.
The longitudinal couplings (along the dimers) become
Jz ~ 4(to+' auo) /U. Introducing dimensionless dis-
placements x auo/to, and the dimensionless coupling
constant A. 32a 2/EU, Eqs. (2) can be rewritten as

H/J — JriS; SJ+Nx2/k, (3a)

with the dimensionless exchange coupling

J,-J /J -(1 -xq )' (3b)

where ri;i 1 for the longitudinal pair &ij) and zero for the
transverse one. ¹isthe number of electrons.

III. EXACT SMALL SYSTEM CAIA ULATIONS

The Hamiltonian of Eqs. (3) can be diagonalized exact-
ly for finite-size systems with appropriate periodic bound-
ary conditions. In the absence of the dimerization, this
has been done by Oitmaa and Betts. ' Their results are
important to understanding the ground state of the undis-
torted system. In the dimerized lattice the finite super
cells of 8 and 10 sites are shown in Fig. 1. Hamiltonian
(3) can be regarded as a function of the displacement x
for a given coupling constant A, . The true ground state
corresponds to the lowest energy with respect to x. The
energy per site, E, as a function of the displacement ob-
tained from the 8-sites system is plotted in Fig. 2 for
several values of X. The results of the 10-sites system are
essentially the same except for an overall energy shift.
Our results show that a critical electron-lattice coupling
strength is required for the dimerization. In cases
A, (A,,=1.175, the dimerized state is not energetically
favored. This means that the AFM state remains stable
at weak electron-lattice coupling. We also find that the
displacement just beyond the critical coupling constant X,
is finite: x, =0.6. This suggests a first-order phase transi-
tion between AFM and the dimerized state. To demon-
strate this further, we expand the energy per site at zero
temperature in terms of a Taylor series in the displace-
ment x:

FIG. 1. Finite cells of 8 and 10 sites on the square lattice, in

which the indnite lattice is 61led by periodic repetition of the
cells. The displacements of the ions are ~ us/2.

is negative, although the value is still system-size depen-
dent, and it is difficult to extrapolate to the infinite system.
The function f(x) is found to have a pronounced
minimum as shown in Fig. 3.

If the transition were second order, the critical coupling
R, would be —1/az. At that value of A., the actual energy
gain due to the dimerization with the finite displacement
is about 0.02 J per site. This strongly indicates that the
transition is of first order.

-0.6

E Ec+ (a2+1/A, )x2+f(x),
where

f(x) -a4x'+asxs+

(4a)

l.3

In Eqs. (4), Eo is the energy in the absence of dimeriza-
tion, which agrees with the results of Oitmaa and Betts. '

From Eqs. (3), all the coefficients a„, hence f(x), are in-
dependent of A,. We find numerically, a2 —0.7919 and—0.7922 for the 8- and 10-site systems, respectively. The
function f(x) is the dimerization energy minus the quad-
ratic term. A necessary condition for a second-order
phase transition is that a4 & 0 or f(x) & 0 for small values
of x. However, the smail-system calculations show that a4

I.5

FIG. 2. Energy per site as functions of the dimensionless dis-
placements x for several values of the dimensionless electron-
phonon coupling constant A, in 8-site systems.
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We have computed the ground-state expectation values
of the spin-spin correlation of the two nearest-neighbor
sites (S;.SJ). This value is about —0.33 from the estimate
of Oitmaa and Betts, ' for an infinite system in the ab-
sence of dimerization. For the dimerized lattice, the
values of (S;.SJ) are different for the shorter bond, the
longer bond, and the transverse bond. The shorter bond
has much stronger spin-spin correlation than the other
bonds when A. ) )I., In Fig. 4(a) we plot the correlations
as functions of the coupling constant A, . The sudden
changes of the correlation functions at A,, are in accor-
dance with the first-order phase transition.

We have also computed the ground-state expectation
values of the squares of the staggered magnetization
M, g~ a;S;, where a; + 1, depending on which sublat-
tice i is on. The expectation values are given by
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FIG. 3. Dimerization energy per site f(x) as functions of the
displacements x in S sites systems (dashed curve) and in 10 sites
systems (solid curve). The quadratic terms have been subtract-
ed out in f(x).

where the sum runs over all the sites. The results are
shown in Fig. 4(b). The staggered magnetization has a
sudden drop when the electron-lattice coupling A, reaches
X, as a result of the first-order phase transition.

In the above calculations, we have neglected the length
changes of the transverse bonds. Inclusion of this pro-
duces an additional term H' in Eqs. (3), and

H' (Jr J)S; -S + KI(a—)+u$) 'i —apl
T

J g

where the first and second terms are the shift of the spin-
spin correlation and the elastic energy of the transverse
bonds respectively. ap is the lattice parameter. Since
Qp)) up we can neglect higher-order terms in up/ap, and

Jr J(1—x /y+x /4y ),

0

Q.IQ—

(b)

with y aap/tp»x
Using the exact solution of the Hamiltonian in Eqs. (3),

and treating H' perturbatively, we can examine the effect
of H'. The energy correction per site due to H' is given by
E'(x) (y(x))H'(y(x))/JV in first-order perturbation
theory, where y(x) is the lowest-energy state of the Ham-
iltonian in Eqs. (3) for a fixed x. In analogy with E, we
may expand E' in terms of a Taylor series: E' a2x2
+aux + . We find that a&=0.32/y and a4(0.
Since y is very large (about 10 if we use the parameter
values ap 4 A, rp 0.5 eV, a 1-2 eV/A), a2 is very
small in comparison with a2= 0.79. The negative value
of a4 is to further enhance the first-order phase transition.
Thus the qualitative results we obtained from Eqs. (3)
remain the same.

Q

FIG. 4. (a) Nearest-neighbor spin-spin correlation (Sq Si) as
functions of the coupHng constant X,. The curves S, T, and I. are
for the shorter bond, the longer bond, and the transverse bond

(ij ), respectively. (b) Magnetization as functions of A, .

IV. RESULTS OF THE ANALYTIC
PER'FURBATION THEORY

We now study the Hamiltonian of Eqs. (3) using an an-
alytic perturbation method. In the square lattice, we ex-
pect that the ground state of (3) will show a doubled unit
cell either due to AFM order or due to dimerization. The
reciprocal wave vectors of the new lattice are Q& 2 x/ap
(1,~ 1). In the new cell we denote two sites as 1,2. The
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Eqs. (3) can be rewritten as

0/J -g J,S, S,+ex'/~, (5a)

«a state of ordered singlets, while the longitudinal dimer-
ization does. The Cu displacement degree of freedom
tends to favor the singlet pairing as discussed in R,ef. 5.

1
J» — J,J exp(iq R';i),

ij&

J;,-J;,/J,
where S» is the Fourier transform of the spin operator S;.
Note that J» is not real in general due to the lack of inver-
sion symmetry, but still J J . Using Eq. (3b), we
find

J» 2[(1+x )cos(q„ao)+cos(q~ao)+2ixsin(q„ao)] .

The AFM state was shown to be stable at T 0, uo 0
in Ref. 8, in agreement with the spin-wave theory result.
We use the latter approach to investigate analytically the
stability of the AFM state at finite uo. Assuming the Neel
state S~, —S2, S —,', we expand Eq. (5a) to lowest

order in spin-wave fiuctuations. In terms of boson opera-
tors b and br, the spin part can be written as

—S2Jo+SX [Jo(bg', pbbs, »+bi»b2»)

+J» b) qb2, -q+ Jqb(, mb), -q], (6)

with Jo J»-o. A diagonalization of H, yields an approx-
imate ground-state energy per site of the system

—-—Z[(J'-
I J i')'"-Jo]+x2/~.J N q

The results can be represented in terms of Taylor series in
x as in Eqs. (4). The q integrals yield Eo —0.657,
a2 -0.619, a4 0.051. Eo represents the usual spin-
wave results for an undeformed Heisenberg model. " The
value of a2 is close to that we find in small-system calcula-
tions. The two different methods give the same con-
clusion: A critical electron-lattice coupling is required to
form a dimerized state.

Since a4 & 0, the perturbation analysis would indicate a
second-order transition to a dimerized state at k A,,

1.62. Considering the uncertainty of the perturbative
approximation for the strong coupling systems as well as
the smallness of the value a4 (one order of magnitude
smaller than a2), we feel that the qualitative results from
the exact calculations of the small systems are more reli-
able.

The above results are for the longitudinal dimerized
state. We have also considered the state with the dis-
placements along the diagonal. In that case, Eqs. (5), (6),
and (7) hold, but J» is given by

J»-2 1+ [cos(q ao)+cos(qyao)]
2

+ i& 2x [sin(q„ao) —sin(q„ao) ]

And we find az —0.387. The diagonal dimerization is
thus not favored. This can be understood by noting that in
the large-l, limit, the diagonal dimerization does not lead

V. DISCUSSION

Within the adiabatic approximation, we have studied
the Hubbard model in the large-U limit on a square lattice
including the dimerization phonon mode at the half-filled
case. The model is equivalent to an antiferromagnetic
Heisenberg model with a spin-lattice interaction. The
most firm conclusion we can draw is that the AFM state is
stable against weak electron-lattice interaction. The criti-
cal coupling A,, 32c,/KU to form a dimer solid is found
to be order of 1 in both the small-system exact calcula-
tions and the analytical perturbation method. This result
is qualitatively different from that in 1D case. In 1D
chain, the ground state of the system in the absence of
electron-phonon interaction is a singlet without an AFM
order. The lattice is unstable against arbitrary weak
electron-phonon coupling. ' However, the ground state in
a square lattice appears to be an ordered AFM state,
which makes it much more stable. Each site in a square
lattice has four bonds to connect with. Dimerization
favors one bond, but weakens the other three bonds in ex-
change energy. This explains the dimensionality depen-
dence of the problem.

Our small system calculations strongly suggest that the
transition between AFM state and the dimer solid is first-
order. A finite displacement is thus expected at the transi-
tion point.

We now discuss the possible effect of a finite phonon
frequency. It has been proposed that finite-frequency
phonons may favor the RVB dimer liquid due to the quan-
tum tunneling in La-Cu-0 materials. Since the transition
is of first order, it seems very difficult to have a state be-
tween AFM and the dimer solid at the half-filled system.
When doped, however, the liquid state gains more kinetic
energy, ' a possible dimer liquid state cannot be excluded.

Finally, we estimate the electron-lattice coupling pa-
rameter for the Cu-0 plane in La2Cu04. The elastic
constant can be estimated from the Raman scattering
measurements, K=10 eV/A2. The Coulomb energy is
approximately U 5 eV. The electron-lattice coupling
constant a' of the copper and oxygen ions is related to the
deformation potential energy V found in band-structure
calculations, ' where V 1.6-3.9 eV/A. Note that the
Coulomb interaction U is partly included in a Haretree-
Fock-type interaction in the band-structure calculation.
Taking this into account, we have

.
&/2

V +UK
4 +16

The electron-lattice coupling constant a of the copper-
copper ions is related to a'. But the former one is related
to the second-order hopping process (copper to copper via
oxygen ion), so a must be less than a'. An accurate esti-
mate of a seems difficult at the moment. Experimentally,
however, the copper displacement has not been observed
yet.
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