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Variational theory of superconductivity and application to the love-density electron gas
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The method of efFective-potential expansion is employed to describe superconductivity in strong-

ly correlated electron systems. %e have obtained a gap equation in which both the pairing poten-
tial V~(k, k) and the single-particle energy Zi, are expanded in terms of the effective potential.
%hen the ring approximation or the random-phase approximation is used to evaluate each term in

the expansion, V~(k, k') and Zi, have the form V~" "(k,k')/zi, zi, , and Fi, /zi„respectively, where
V~" " is the pairing potential derived by Kirzhnits, Maksimov, and Khomskii (KMK), zl, is the
renormalization factor, and ci, tends to the bare single-particle energy in the weak-coupling limit.
Thus our theory may be viewed as an extension of the KMK theory to the strong-coupling region.
The present general theory is applied to the electron gas in order to investigate whether the
Coulomb interaction alone can cause superconductivity. %e have improved on the two-body ap-
proximation to describe the normal state of the electron gas and have determined the eft'ective po-
tential variationally. VAth the use of the effective potential thus obtained, we have evaluated all

terms up to second order for both V~(k, k') and 'Kl, . The pairing potential includes the plasmon-

mediated attractive and the paramagnon-mediated repulsive parts as well as many complicated
vertex corrections. %'e have solved the gap equation numerically and obtained the result that su-

perconductivity appears at rather low carrier densities (i.e.„r,~ 3.9). The highest transition tem-

perature T, in the range 30—60(M /60) K is obtained at r, =7, where m is the band mass in

units of the free-electron mass and eo is the dielectric constant. Our results might be useful to help
explain the mechanism of superconductivity in the high-T, oxide superconductors.

I. INTRODUCTION

At present, the most serious problem in the theory of
calculating the superconducting transition temperature
T, from erst principles is that we have only a little
knowledge about the efect of electron-electron correla-
tions on T, . ' The Coulomb efkct is usually treated by
the introduction of the Coulomb pseudopotential p'.
Ideally p* should be determined from an ab initio
theory, but actually it is regarded as a phenomenological
parameter. Furthermore, it is not yet known whether all
the Coulomb efkcts can be pushed into a single parame-
ter p* even in strongly correlated systems like heavy-
fermion superconductors.

Considerable progress in understanding the Coulomb
effect on superconductivity will be made by a thorough
investigation into the possibility of superconductivity in
the electron gas without phonons. It is apparent that in
the high-density limit, i.e., when the electronic density
parameter r, goes to zero, superconductivity does not
appear in the system. However, in 1978 the present au-
thor pointed out the possibility of superconductivity in
the electron gas for r, ~6 by treating the electron-
electron interaction in the random-phase approximation
(RPA) and evaluating T, by the numerical solution of
the gap equation in the weak-couphng Kirzhnitz, Maksi-
mov, and Khomskii lKMK) scheme. Later, Rietschel
and Sham showed that when the strong-coup1ing
Eliashberg equation was solved instead of the KMK
scheme, the superconductivity was favored to appear
even for r, «2;5. Thus we may conclude that the elec-

tron gas becomes superconducting in relatively low-
electron-density systems, when the electron-electron in-
teraction is treated in the RPA.

It is clear, however, that the RPA is not a good ap-
proximation for the electron gas having r, larger than l;
we must consider the local-6eld correction. Grabowski
and Sham tried to go beyond the RPA, but their calcu-
lation was far from a first-principles one. Possibly, the
ordinary Green's function method which they employed
will not provide reliable results for this problem, because
there are no good expansion parameters in the theory for
the electron gas with r, g 1. The coupled-cluster
method and the variational approach based on the
hypernetted-chain approximation, ' on the other hand,
are known to give excellent results for the correlation
energy c., in the range 1 &r, &20." ' There have been
several attempts' to employ these methods to describe
superconductivity, but none has made a detailed study of
the electron gas yet. One of the problems in these ap-
proaches is that although c., is given quite accurately,
the single-particle energy which we need to solve the gap
equation is rather inaccurate. ' Another problem is that
it is not easy to relate the theory of superconductivity,
thus obtained, with the mell-developed conventional
theory of superconductivity.

The method of effective-potential expansion for the
many-body problem' provides a very hopeful approach
to the present problem. In this method, an eiTective po-
tential V is introduced to de6ne a correlation operator
which acts on the noninteracting ground state 4O to
create a many-body trial function 40. Any physical

1988 The American Physical Society



YASUTAMI TAKADA

Here, V (k, k') and Z& are, respectively, the pairing po-
tential and the single-particle energy, and are given in
the power series of V in which each term can be calcu-
lated with the help of the Feynman diagrams. %'e can
relate these quantities easily with corresponding ones in
the conventional theory of superconductivity. From
such sn analysis, it is seen that V~ and Xz have the fol-
lowing structure:

VF(k, k')= V~'(k, k')/z~zq. (1.2)

quantity is expanded in terms of V, while V itself is

determined variationally. It has been shown previous-

ly, ' that the normal properties of the electron gss can
be described reasonably well even when we take a state
described by s plane-wave Sister determinant for 4O snd
neglect all terms higher than second order in V. (We
denoted as the two-body approximation the cutoff of the
cluster expansion at this level. } The relative error in e,
compared to that obtained by the Green's-function
Monte Carlo (GFMC) method' is less than 12% for
1 & r, &20. In addition, virtually exact results for e, are
obtained for 1 & r, & 10 when the ring and ring-exchange
terms in third snd fourth orders in V are added to the
terms in the two-body approximation.

%hen we take the BCS state ' for 40, we obtain a

theory of superconductivity in quite a straightforward
way. A gsp equation is obtained at T =0 for a gap 4~
of an electron with wave vector k as

b), ———g V~(k, k')hg /2[Kg +kg ]'

As a first attempt to apply the present theory to the
electron gas, we have tried to treat the problem as sim-
ply as possible. i.e., in the two-body approximation.
However, it is found that the two-body approximation
produces rather inaccurate results for V and Zk, in par-
ticular, near the Fermi surface. The problem is that the
Coulomb potential cannot be screened completely by the
sum of only a finite number of ring terms as is the case
in the two-body approximation. In order to overcome
this diSculty, the two-body approximation has been im-
proved by the division of V into long- and short-range
parts, VI and V, . All ring terms which are related with

VI are summed up to infinite order, but we consider
terms only up to second order in V, so as to make the
calculations tractable. (Hereafter this approximation
will be denoted as the modified two-body approxima-
tion. ) As a result of this improvement, we have obtained
c., whose relative error compared to the GFMC is re-
duced to 8% for 1 & r, & 20.

Even in the modified two-body approximation, we
have found it very difBcult at the present level of com-
puter technology to evaluate all terms in Vz* and ci',

without any approximation. Thus we have integrated
ring-exchange, ladder, and ladder-exchange terms for V*

and @i*, in an approximate way. However, this approxi-
mation does not produce a serious error. For example,
by calculating terms for c], at the Fermi level, we obtain
the correlation part of the chemical potential p, . This
can be compared with the value obtained by the GFMC,
p, ",which is related to the correlation energy given

by the GFMC, e, " c, through

(1.3)

where zz is a so-called renormalization factor. Thus,
despite its appearance, Eq. (1.1) is a gap equation for a
strong-coupling superconductor. In addition, both V~

and Zi, can be expanded in terms of a square of the gap
function:

V (k, k')= VF' '(k, k')

+ ~ y„v,"'(k,k;p, p g,,~,.+
PP

and

z„=z„' '+-,' gX'„"(p,p')& & + (1.5)
PP

Terms other than V' ' and Z&
' describe the effect of Auc-

tuations of Cooper pairs. Thus Eq. (1.1) goes beyond the
mean-field theory. In this paper, however, we will

neglect these Auetuation efFects snd evaluate V snd Ei,
in the normal limit, as has been done in the conventional
theory of superconductivity. Strength of instability for
superconductivity in Eq. (1.1) is measured by solving

~k'
hq ———g V (k, k') tanh

2Zi ~ C

%'e will call T, thus obtained as the transition tempera-
ture in this paper.

GFMC
GFMC GFMC

p =e
3 8p~

(1.7)

%e have found that the difference between p, and

p, " is less than 7'F for 1.& r, & 10, which is consistent
with the difference between c., and c, " . As for super-
conductivity, we have obtained the result that supercon-
ductivity appears in the electron gas for r, &3.9. As r,
is increased, T, increases first, reaches its maximum at
r, =7.2, snd then decreases. The peak value for T, is
about 58 K [m '/(m, eo)], where m ", m„and eo are the
band mass, the free-electron mass, and the dielectric
constant, respectively.

In Sec. II, we give a basic formulation of the problem.
We consider only ring terms in Sec. III and clarify the
relation between the present theory and the conventional
ones, especially the KMK theory. Section IV is devoted
to the detailed account of the modified two-body approx-
imation. Calculated results for cc and zi,

' are given
here. In Sec. V, we provide an expression for Vz' and c&

ow numerical results for IM

The present study may provide useful information about
the mechanism of high-T, superconductivity in I.s-Sr-
Cu-0 and Y-Ba-Cu-O, although at present we admit
that the electron gas is not proven to be a good model
for these systems. %e discuss this problem in Sec. VI,
together with other related problems.
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II. VARIATIGNAI. STATE FOR SUPERCONDUCTIVITY

A.. Bogoliubov transformation

The Hamiltonian for the electron gas in a uniform
positive background is written, in second quantization,
as

~ —k~ ="kc-kl+Ukck&

where uk and Uk satisfy the relations

Ok+Uk =12 2

(2.2b)

(2.3)

(2.4a)

+—,
' g g g V(q)Ctk+q Ck q Ck Ck

q&O ko k'e'
(2.1)

Uk =U (2.41)

with ak ——k /2rn' and V(q) =4ne/e. ~ As .usual, A' is
taken to be unity, Ck is the destruction operator of an
electron specified by wave vector k and spin 0. The Bo-
goliubov transformation 5 is defined by

&k~ —~kck& Ukc —kj

Q:—S '(H —pX)S =Qo+ Q2+ Q4, (2.5)

~here p is the chemical potential, Qo, 02, and 04 are
given, respectively, as

%'hen we apply the transformation 5 to the operator of
the thermodynamic potential at T =0, we obtain

Qo ——+ 2(ek —p)vk —g g V(k —k')vkvk + g g V(g )uk+qvk+qukvk
k k k'(~k) q~O k

(2.6)

Q2= g Ek(CXktQkt+Q k)Q kg )+ Q Dk(leak(R k(+(X k(CEk) )

k k

(2.7)

1Q4 2 g P + V(P )I k+q krak +q k Ak+qQR k q+ A k + Ak+ + P P P V(Q}Pk+q kPk +q k CKk+q(CE k)A —k')Ak +qt
q~O ko k'o' q&0 k k'

1+I X X X V(&)l k+q, kl'k+q, k«k+qt&-«&-k-qt&k)+«)
q&0 k k'

with

+ y y y V('v)~k+q, k~k'+q, k'(+k+qf+ —k L+ —k' —q
'+ —k' '+C'e)

q~0 k k'0'
(2.g)

ek —p —y V(k —k )vk (uk —vk) —2 y V(q)uk+qvk~qukvk,
2

'
2 2

k'@k q~O

Dk ——2 ek —p —g V(k —k')vk ukvk+ g V(q)uk+qvk+q(uk —vk),
k'~k q~O

~k+q, k= ~k+q~k —Uk+qUk

(2.9)

(2.10)

(2.11)

I k+q, k= ~k+qUk+ ~kUk+q (2.12)

B. Trial function

For the ground-state wave function, we consider the following trial function
tj

~4, )= g, g U (0, — l co),
n=O m=j

J

where 4o is the vacuum state of ak, i.e.,

&k
1

@0&=0 (2.14)

and the correlation operator, U, is defined with the use of the long- and short-range parts of the e8'ective potential,
V& and V„as
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0 0+&
U (0, — )=, J e 'dt, I eo ™CtT[V,(t, ) V, (t )]

( —i) 0 0+&, 0 0+&

, J e 'dt, I e dt T[V, (ti)VI(t2) . Vi(t )]L . (2.15)

Here, V,(t) and V, (t) are, respectively, defined as

V (t)= exp(iHot )VI exp( —iaot } (2. 16a)

V, (t)= exp(iHot ) V, exp( iH—ot ), (2.16b)

Ho fez(a——z,az, +a „,a z, ),
k

V(= ,' g g V-l(q)I"i, +q, i,I'i +q, ~
q~O kk'

X(ai+q&a' z&a z q&az &+c.c. )

(2.17)

+ g g V, (q)1 k+q i I i +q i ak+q, a i„a i,a&+q, ,
q&0 kk'

(2.18)

with some suitably chosen noninteracting Harniltonian
Ho. The symbol T and the subscript I. represent, re-
spectively, the T product and the instruction to collect
only terms described by linked graphs. [It should be
noted that each cluster enclosed by the T operator does
not link directly to other clusters in the definition of Eq.
(2.13), as in previous publication. '7's 2 ] In this paper,
we choose the following forms for Ho, VI, and V, :

pansion. As a result, we obtain an expression for (Q)
which is almost the same as in Refs. 18 and 20. The
only di6'erence is that the effective potentia1 V in these
references is replaced by V, with some appropriate
screening factor induced by the sum of ring terms in V, .
%e can sum these ring terms up to infinite order by the
same procedure Gell-Mann and Brueckner used in
1957.

III. SUPERCONDUCTIVITY
IN THE RING APPROXIMA TION

A. Total energy

Before we try to solve the full problem described in
Sec. II, we consider the problem in the ring approxirna-
tion. For the purpose, we may take V, (q) to be zero and
calculate 0' ' by taking only ring diagrams into account
[we will not assume that Vi(q) becomes negligibly small
for large q in this section].

In accordance with the division of Q in Eq. (2.5), there
are three contributions to O' '. The 6rst one is Ao itself
and others come from (Qz) and (Q4). Let us consider
(Q4) first. First-order terms in VI are given in Fig. 1(a)
in the Goldstone diagram and can be described as

V, =-,' g g V, (q)I „„I„
q~O kk'

X (at +q~a —k ~a —I
' —q ~at'i+ c c) ~ (2.19)

where ek is defined by

ei = Isi pH I— (2.20)

with the use of the Hartree part of the chemical poten-
tial pH =—kF/2m in which kF is the Fermi wave vector.
The efFective potentials VI(q) and V, (q) will be deter-
mined variationally, but we assume that VI(q) becomes
negligibly small for q larger than 0. 1kF.

C. Energy expectation value

(c)

The expectation value for the thermodynamic poten-
tial (Q) with respect to

I 40) can be calculated with
the use of the linked-cluster theorem, as shown in Ref.
17. We will write (Q) in power series of V, as

&Q&—= &4, IQI4, &x&4, I4, &= y Q'"'. (2.21)

Here, 0'"' is the nth-order term in V„but it can still be
expanded in VI up to infinite order. On the assumption
that Vt(q) vanishes except for very small q, an important
contribution will come only from nng terms in the ex- FIG. 1. Goldstone diagrams for Q( '.
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C'1'o(Q4)+Co', 1(Q4)= —g g V(q) Vi(q)l k+qkl k+, , k /( k+ek+q+ k +'k+q j .
q~O kk'

By introducing the polarization function, H(q, co), defined by

I

H(q, co)= g f . I k+qk2&l —67 +l0 —ek &+M +lO —ek+q

1 1

6) + l 0 —e k
—6) —co + l 0 —e k +q

2 1 1
X ~k+q, k +m —iO +ek+ek+ co+i0 —ek —ek+

we can rewrite Eq. (3.1) as

C', 0(Q4)+Co i(Q4)= ——,
' g f . V(q) Vi(q)H(q, a))

2&l

(3.2)

(3.3)

Second-order terms are composed of three diagrams in Fig. 1(b). We can sum these terms to get

C~0(Q4)+C'1,'(Q4)+Co 2(Q4)= —,
' y f . V(q)V1(q) H(q, co)

2&l
(3.4)

Higher-order terms are also written in a similar way. By summing all these terms, we obtain

&Q, ) = ——,
' g f . V(q)V, (q)H(q, ~)2/[1+ V, (q)H(q, m)] .

2&l
(3.5)

Now, we will calculate ( Q2). It is easily seen that terms connected with Dk in Eq. (2.7) always vanish for the trial
function in Eq. (2.13) with Vi and V, in Eqs. (2.18) and (2.19). The first nonvanishing contribution to (Q2) is given in

Fig. 1(c) and written as

Cl, i(Q2) rf X ~l(q) ~k+q. k~k'+q, k'(~k+Ek+q+~k'+Ek'+q)/(ek+ek+q+ek'+ek'+q j
q&0 kk'

f . V, (q) H(q, co)QI „+qkEk
q~o «k (~—10 +ek+ek+q j (~+'0 —ek —ek+q)

By considering higher-order terms in Fig. 1(d), we obtain

(3.6)

d~ 1 1(Q, &= —y f yr„'„„z„
q~o 2« 1+ V, (q)H(q, co) k

' (~—10++ek+ek+q)' (~+1'0+ —ek —ek+q)'

In the ring approximation, Ek in Eqs. (3.6) and (3.7) should not be the form in Eq. (2.9) but rather

Ek ——(ek —tuH) (uk —vk) —2 g V(q)uk+quk+qukuk .
q~O

(3.7)

(3.8)

(The Fock term in Ek produces the self-energy diagram in the notation of Refs. 18 and 20 and should be neglected. )

B. Determination of VI(q)

We can obtain Q' ' by the sum of Qo in Eq. (2.6), ( Q4) in Eq. (3.5), and (Q2) in Eq. (3.7) with Ek in Eq. (3.8). In
the normal limit, i.e., Uk ——nk and u k

——1 —nk with

1 for ski &kF

0 for ~lt~ ~k~, (3.9)

Q is rewritten as

Q' '= g 2(ei, —p, )nk —g g V(It —k')nknk. + —,
' g f In[1+ V&HO(q, j~)]

k k k'(~k) q~O

1+ V(q) Ho(q, i co)—V, (q )Ho(q, i co )
1+ V, (q ) Ho(q, i co )

where the polarization function for the. imaginary frequency icy in the normal limit Ho(q, ice) is given by

Ho(q, iso) = g nk(1 n)k( +q—~ ekeqk)/[cu +(ek+q —ek) ] .
ko

(3.10)

(3.11)
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In deriving Eq. (3.10), we have used the identity

5IIO( q, i co )
gn„(1 —ni, +q)(e„+q—s„)[(e„+q—ei, ) —co ]/[(e„+ —si, } +co ] =— + —,'IIO(q, imp),
ka 2 BOP

and performed an integral by parts to obtain a ln term.
When we take a functional derivative of Eq. (3.10) with respect to V, (q), we get

5n' ' d~ llo(q '~)
5Vi(q)

' o ir [1+Vi(q)IIO(q, iso)]

(3.12)

(3.13)

Thus, in the ring approximation, 0' ' is minimized when Vi(q) is taken to be V(q). By substituting V(q) for Vi(q) in
Eq. (3.10}, we have an expression for the total energy which is just the same as that in the RPA in the ordinary
Green's-function method.

C. Gap equation

For a given Vi(q), a gap equation can be obtained by the optimization condition for Ui„ i.e., 50' '/5ui, ——0. We can
express it in the form

2g„u„uz ——g V (k, k'}us Ui, (ui, —Ui, ),
k'

(3.14)

where in the normal limit, the single-particle energy Zi, and the pairing potential V (k, k ) are given, respectively, as

~k sk + (ek O'H )~k (3.15)

with

V~(k, k') = Vp'(k, k')+ V(q)(dpi, +Axed, ), (3.16)

V (q)+ Vi(q)'rlo(q, im}
ei', ——ei, —p, —g V(k —k')nz+ g I™ ~ —V(q)

iI'~k q~o o ~ [1+Vi(q)IIo(q i ])2

y (1,—2n „+ )(ei, +ei,+q )/[co +(ei, +ei,+q ) ], (3.17)

V(q)+ Vi(q) Ilo(q, i r0)
V„'(k,k'=—k+q)= V(q)+ I —dm —V(q) (e„+ei,+q)/[co +(ei, +ei, +q) ],[1+Vi(q)IIO(q, iso)]'

(3.18)

hzk= g dc@ — [n&(1 n&+q)+n&—+z(1 n&)][(e—i, +e&+&) —co j/[co +(e&+ei,+&) ] . (3.19)
-2 2 2 2 2 2

1+V, (q)II (q,
'

%hen we introduce the gap function 5& by

b„=—g V (k, k')ui, Ui, ,
gt

and solve Eq. (3.14) in terms of hi, as

u f, =[1+Ek/(Zi, +bi, }' ]/2

U2 [I ~ /(g2+g2)i/2]/2

(3.20)

(3.21a)

(3.21b)

bare single-particle state. Although we have expressions
for Xi, and V~ in Eqs. (3.15) and (3.16), in which this re-
normalization efkct has been included only for the bare
single-particle energy c&—p& and the bare potential
V(q), it is physically more reasonable to include this
effect even for other parts of the single-particle energy
and the pairing potential by the redefinition of e.& and V
in the form of Eqs. (1.2} and (1.3), where sk and V have
already been given in Eqs. (3.17) and (3.18), respectively,
and the renormalization factor z&

' is de6ned by

(3.22)
we can change Eq. (3.14) into the form Eq. (1.1).

The second terms in Eqs. (3.15) and (3.16) arise from
the derivative of Ei, given in Eq. (3.8) with respect to uk.
These terms correspond to the renormalization of the

with Mi, given in Eq. (3.19). In the present approxima-
tion, z& is related to the occupation number in the nor-
mal state, Nk = ( Ci, Ci, ), through
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—,'( I+zz '
) for

~

k
~

& kF,

—,'(1—z„') for
i
k

i
&kF.

(3.23)

~(zk -0++zk +0+
) '

F F F+
(3.24)

When V, (q) is small, to make bzi, defined in Eq. (3.19)

At the Fermi surface, there is a discontinuity in Xk, as
well as in z&, but the magnitude of the discontinuity in

the occupation number is equal to the average of z '
+

and z '
+ which de6nes the renormalization factor at

F+
the Fermi surface zk '.

also small, it does not matter whether we use Eqs. (3.15)
and (3.16) for 'E& and V (k, k') or Eqs. (1.2) and (1.3). In
the ring approximation, however, VI(q) is equal to V(q)
and is not small. Thus, the physical quantities like T,
depend on the choice of equations for Ez and V~(k, k').
We will see how much T, changes with the choices of (a)
Eqs. (1.2) and (1.3), (b) Eqs. (3.15) and (3.16), and (c)
e& —pH and Vz'(k, k') for sz and V~(k, k'). In general,
choice (a) gives the lowest T, .

D. Relation with the KMK theory

When we substitute V(q) for VI(q), we can rewrite Eq.
(3.18) as

2
d

V(q) ei +ei+q
0 n 1+V(q)IIe(q, ico) co~+(ez+ez )2

= V(q) 1+2 f Im
o m 1+V(q)IIO(q, co)

(3.25)

Thi»s just the same pairing potential in the RPA as derived by KMK. ' [Even if we include phonons into the sys
tern~ we obtain the resui«f KMK for V~'(k, k') in the ring approximation. The present author discussed the super-
conductivity in SrTi03 in this formalism. ] Thus we have found that the KMK pairing potential can be derived, not
only fro m the Ehashberg equation, but also from the present variational procedure.

In the usual KMK scheme, Ei, and 'V~(k, k') are, respectively, taken to be ei, —pH and V~' in Eq. (3.25). In our
theory, however, we should use Eqs. (1.2) and (1.3) [or at least Eqs. (3.15) and (3.16)] for Z& and V (k,k'). The
difference is the appearance of the renormalization factor zz . The correction of the KMK theory by the introduc-
tion of zz ' seems to be quite natural and is consistent with the discussion of Khan and Allen and Schuh and Sham3'

who examined the validity of the KMK approximation.

E. Meaning of the single-particle energy

According to the Landau s Fermi-liquid theory, the single-particle energy cl, is given by the functional derivative of
the total energy in the normal limit with respect to ni, In the R. PA, we can rewrite Eq. (3.10) as

0"'= g 2(s„—p)n„—g g V(k —k')n„n„+-,' g f . I »[I+ V(q)llo(q, co)]—V(q)110(q, co)I,
k k k'~k @0 cc 2%i

(3.10')

where
f

IIc(q, co) = —g f . Gg(co')Gg+q(co+co'),
fA

(3.11')

with

G&(co') =
N —$0 —Eg+ pH

1 —n~
+

~ +N +l0 —E] +JMH
(3.26)

Thus, by taking the same procedure as Rice, we obtain

I 1 5Q ddt 1
=ei, —)Lc

—g V(k —k')nz —g . V(q) — —1
2 5n], 2mi 1 + V(q)IIO(q, co)

"V+q 1 —pl g+q
+ + -+

co —EO +Ei —Eg+q QP+ l 0 +E) —Eg+q
(3.27)
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present variational theory, we have introduced artificial
quantities like Zi, and Vz(k, k') rather than the real
single-particle energy and physical effective potential be-
tween the Cooper pair in order to make the numerical
evaluation of T, (or the gap at the Fermi surface at
T=0) much easier. This situation seems to be quite
analogous to that in the density-functional theory in
which we use unphysical Kohn-Sham single-particle en-
ergy eigenvalues to obtain the physically meaningful
charge densities and the ground-state energy. [Al-
though the Kohn-Sham eigenvalues do not represent the
real energy levels quantitatively, they quite often give a
qualitative structure of the density of states near the Fer-
mi level. Thus we may expect that by evaluating the
single-particle energy (gi, +b, i, )' at T=0, we can ob-
tain at least a qualitative structure of the density of
states near the Fermi surface in the superconducting
state. j

-0,&5—
k

-Q20
0

I I i I i i I i I i i i i

0.5 &.0
k (kF)

FIG. 2. Various single-particle energies evaluated at r, =6
in the RPA. Solid, dashed, dotted-dashed, double-dotted-

dashed, and dotted curves correspond to, respectively, Ez

defined in Eq. (1.2), E„ in E'q. (3.15), E„ in Eq. (3.17), the real

part of c~ in Eq. (3.27), and the bare single-particle energy,

cz —pH, All energies are in units of R *.

F. Numerical procedure to obtain T,

Once Zi, and V~(k, k') are obtained at T =0, we can
evaluate T, by solving Eq. (1.6) by the following pro-
cedure: Since both hi, and Zi, are a function of k =

~

k ~,
we first integrate over the angular parts Qi, of the k' in-
tegral in Eq. (1.6). Then we divide the infinite integral
for k' into small intervals, (k, , k, +, ). Assuming that hk
is constant in each small interval, we can rewrite Eq.
(1.6) into

~„- = —g f„d k' O'
' K(k, , k, )tanh

J k' e

(3.29)

where k;-=(k;+k;+i)/2 and the kernel K(k;, kj) is
defined by

(Note that the factor —,
' in front of 50' '/5ni, takes ac-

count of the spin factor. ) When we compare si, with si
in Eq. (3.17) with V&(q)=V(q), we have

K(k;, k )=
j+&

L
F F

(3.28)

This indicates that the chemical potential p can be
determined by the calculation of either ck or ck, how-

F F
ever, they are different for

~
k

~

&kF. An example of the
calculated results for K& defined in Eq. (1.2), that in Eq.
(3.15), ei*„and the real part of ei, is shown in Fig. 2. It is

clearly seen that, except at the Fermi surface, neither Zk

nor zz is directly connected with the physical single-

particle energy c&.
From a viewpoint of numerical evaluation, ck has a

pole in the integrand, which makes the calculation much
more diScult than that for a&. The same is true for
V*(k,k'). For given k and k', V' has no singular points
in the integrand and is very convenient for numerical
calculations. However, V* has no direct physical mean-

ing except at the Fermi surface, i.e., (
k

~

=
~

k'
~
=kF, at

which V' is nothing but a statically screened potential
between electrons. Thus we can conclude that in the

D=(hk )
I

(3.31)

k. +1 kr2J= —K(x, ,x, ) f„dk' tanh
2 T~

(3.32)

respectively, and consider the following eigenvalue prob-
lem

(3.33)

For large enough T„all eigenvalues of J go to zero. As
the trial T, is decreased, the largest eigenvalue of J,

(3.30)

Now, for a given T„we can define a vector D and a ma-
trix Jby
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FIG. 3. The correlation part of the chemical potential p, in

as a function of r, in the RPA. The solid points indicate
the results in the GFMC,

FIG. 4. The renormalization factor at the Fermi surface zk
'

F
as a function of r, . The solid and dotted curves represent the
results in the modified two-body approximation with

q, =0.06k+ and 0.4k+, respectively, while the dashed curve
shows the results in the RPA. The results given by Rice (Ref.
27) and Hedin (Ref. 28) are also indicated by the solid circles
and the crosses, respectively.

r, =m'e /aeokz, (3.34)

A, ,„, increases. If we can find T, to make A, ,„equal to
unity, we find a solution of Eq. (3.29) and the assumed

T, is the superconducting transition temperature. (Of
course, there are cases in which k,„ is always less then
unity for any positive T, . This corresponds to the sys-
tem in which there is no instability for superconductivi-
ty. )

In actual calculations, we have divided the k' integral
into one hundred intervals. The smallest interval is tak-
en to be 4X 10 kF at the Fermi surface. The infinite
integral is cut off' at k'=11.2k~. We have checked that
the relative change of T, is less than 10 for other
choice of the intervals.

G. Numerical results

For the electron gas, we usually measure wave vectors
and energies in units of kF and 8 '( —=m 'e /2eo ), re-
spectively. Then the system is described by a single pa-
rameter r„de6ned by

with a—:(4/9n )' =0.521. In Fig. 3, we give the results
for p„defined by

l 2Pc=8 +
~ r Kcf

(3.35)

as a function of r, . Compared to the results in the
GFMC, Itt, ",the relative error is about 30% at r, =1
and increases up to 58% at r, =10. The results for z„'
are given in Fig. 4 by the dashed curve. At r, =7.8, zA.

'

becomes zero, which indicates an occurrence of some
metal-insulator-type transition in this approximation.

%e have evaluated T, in various choices of E& and

V~ ( k, k' ). The KMK choice, i.e., 'g„=s„—IMH and
V = V in Eq. (3.18), is just the same approximation as
in Ref. 4 and reproduces the results in it. In Table I, we
have given the results of T, . In any choice of 'Ek and
V~(k, k'), superconductivity appears with T, of the order
of 0.1K* or higher, when r, becomes sufBciently large.
Here E' is defined by

TABLE I. Results of T, in the RPA for various choices of Zk and V~(k, k'). %'e have not obtained
superconductivity for T, & 10 I( when r, is less than 10 in any choice, where 1E =6.33&10 6R

with R =rn e /2eo. T, is given in units of I!' . The entries with a dash indicate that we have not
obtained superconductivity for T ~ 10 E

10
15
20
30

ZI, in Eq. (1.2)
V in Eq. (1.3)

&k =&k —PH
V~ in Eq. (1.3)

1.4
15

E& in Eq. (3.15)

0.037
0.080
0.061
0.048

k =&I —PH
Vp

——Vp* (KMK)

0.0013
0.22
0.89
2.1
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FIG. 5. Goldstone diagrams for (a) the ring-exchange and

4,
'b) the self-energy terms in Q( '.

K*=6.33&10 8 (3.36)

(In the case in which m ' is m, and eo ——1, K* is nothing
but 1 K.) Although we have not shown it in Table I, T,
has also been evaluated with s& and V~(k, k') in Eqs.
(3.15) and (3.16), respectively. The results of T, are
1.1&10 E* and 1.4&10 K' for r, =6 and 10. This un-

reasonably high T, stems from the unphysical treatment
in Eq. (3.16) in which the repulsive part V(q) is reduced
by the renormalization efkct, while the same reduction
factor is not operated on the attractive part, i.e., the
second term in Eq. (3.18) for Vz'.

H. Discussion

In this section, we have performed a first-principles
calculation of T, for the electron gas in the ring approxi-
mation. This approximation is found to be very con-
venient to see that our present theory of superconduc-
tivity is an extension of the KMK theory to the strong-
coupling region by the inclusion of the renormalization
factor in the gap equation. %'e have obtained the result
that superconductivity appears for r, g20 with the ex-
change of the polarization waves of the electron gas it-
self between a Cooper pair. However, the e8'ect beyond
the ring approximation, usually called the local-6eld
correction, is quite important in such low-density sys-
tems. %e wiB treat the effect systematically in Sec. V.

FIG. 6. Goldstone diagrams for 0"'.

grams in Fig. 1 become important. Thus the discussion
in Sec. IIIB indicates that V, (q) should be equal to
V(q). For larger q, it is better to make Y&(q) vanish so
that other terms like the ring-exchange [Fig. 5(a)] and
the self-energy [Fig. 5(b)] diagrams give negligible contri-
butions compared to the ring diagrams. For the pur-
pose, we assume that V, (q) has the form

V, (q) = V(q) exp( —q /q, ), (4. 1)

in which the cuto6' q, will be determined variationally.
%e have evaluated the contributions of the terms in
Figs. 5(a) and 5(b) with V&(q) in Eq. (4.1). The ratio of
the contribution to that of the ring terms does not
exceed 1.0% for q, smaller than 0.1kF. Therefore, as
long as we confine ourselves to exploring the optimum q,
in the region less than 0.1kF, we can employ the expres-
sion for 0' ' given in Sec. III A with VI(q) in the form of
Eq. (4. 1).

IV. MOMFIED TWO-BODY APPROXIMATION

A. Choice of the long-range part of effective potential

In this section we will perform the calculations out-
lined in Sec. IIC. In the small-q limit, only ring dia-

8. First-order term 0'"
In Fig. 6, we have given important diagrams for 0'".

For the direct processes Figs. 6(a) and 6(b), we can easily
obtain the sum of these diagrams by

sn'"—
V, (q) = ——,

' g f . V(q) V, (q )II(q, co) /[1+ V (q)III(q, co)]~
~0 5f')(q) o 2ni

d~ 2 2f . , g[(eq —pH)(~q —U~) —2 g V(q')uz U„u„u„]
27Tl [1+V((q)11(q~&)] q'~0

-2 1 1+ ~k+q, k + 2 ~ + 2(co iO++e„+—e„+q) (co+iO —e„—e),+ )
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In the normal limit, we can use Eq. (3.10) for Q' ' and obtain Q""' as

Q''"'=
—,
' g J Ilo(q, i') [ —V(q)+ Vi(q}]V,(q)/[1+ Vi(q)IIO(q, ia))]

q~o 0
(4.3)

In the actual evaluation of Eq. (4.3), we introduce a static approximation for the screening function E(qi,ei),defined

by

«q, ice) =1+ V&(q)11 0(q, ice),

and write n"~' as

Q"e'= —y„y y [V(q) —V/(q)]V, (q)nk(1 nk—+q)nk (1—nk+q)/h(q;k, k'),

(4.4)

(4.5)

V, (q) = V, (q)/e(q, O) (4.6)

a(q k k')=e, +e„+q+e„+e„,,q (4.7)

The expression (4.5} is the same as Eq. (13a) for 2CI"c'(V) in Ref. 18, when V —VI and V, are replaced by Vand V, re-
spectively.

In the same spirit of the static approximation, we can give an expression for the exchange process [Fig. 6(c)] as

Q'"'= g g V(q)Vs( Ik'+k+ql )I k+ kl'k+ klk+ kl k+ k/~(q'k k'»
q~o kk'

with

(4.8)

V(q) —= V(q)/e(q, 0)

In the normal limit, Eq. (4.8) is rewritten as

Q""= g g g V(q)V, (
t
k'+k+q

~
)nk(1 nk+q)nk—(1 nk—+)q/h(q;k, k') .

q~o kk' «r

(4.9)

(4.10)

C. Second-order term 0' '

Diagrams for 0' ' are drawn in Fig. 7. They will be calculated in the static approximation. The direct term for
(Q2) is written by

Q'"'=-' X X V.(q)'«q 0)I k q,
kl') q, k«k+Ek q+&k+&k q)/~(q'» k'}'

q+0 kk'
(4.11)

In Eq. (4.11), the factor e(q, O) appears to avoid double counting of the screening factor. In a similar way, we obtain
the exchange term for (Q2) as

Q'"'= ——,
' g g V, (q}V,( lq+k+k'I )I k+, ,kl k+, ,kl k+, kl k+, k( k+ k+ +&k+ k+ '/ (q"*"'}

q@0 kk'

the ring term as

Q' "= g g V(q}V,(q) s(q, O)I k +q k I k + k I k +q k /h(q;k„k2)h(q;k„ki),
q~O k, k,k,

the first ring-exchange term as

V(
l

k2 —k3 I
) Vs(q)'«q 0)l k, +q.k, l k, +q, k, l k, +q, k, l k, +q, k, +q"k, .k, /~(q'ki kz)~(q'ki k~'

q~o k)k2k3

the second ring-exchange term as

(4.12)

(4.13)

{4.14)

V(q) V, (q}V,(
l ki+k3+q I }«q 0)l k, , k I k, k I k, ,k I k + k I k k, /~(q;ki k2)~(q;ki, k3»

q~o klk2k3

(4.15)

the nng-double-exchange term as
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Q" '= —2 2 2 V( Ikz —k3 I
)V.(e)V. ( Iki+ki+tII )I«, +q, «, +qi «„«,

q&0 klk2k3

+ ~«,«+q~«, «+ ~«,«+q~«+q, « /~( I kl k2)~('9 kl k3)

the ladder term as

I
}Vs(e) Vs(e )I'«+q, «+q'I «'+q, «'+q'I «, «+ql «,«'+qi «, «+q'I «', «'+q'/~(a k k )~(a

qq' kk'

the 6rst ladder-exchange term as

Q' "'=—g g V(
I
k+k'+q+q'

I
)V (q}V (q')I „« I „~« I « „ I ««

qq' kk'

X I'««+q 1 « „+q /b, (q;k, k')b, (q', k, k'),

and, 6nally, the second ladder-exchange term as

Q'"'= g g V(
I
k —k'

I
) Vs(v) V, (e')I «, «+ql «,«+ql «, «+q I'«, «+q

qq' kk'

x I «« I « ~ « /h(q;k, k')b(q', k, k') .

(4.16)

(4.18)

(4.19)

(a) n""
Vs Vs

(b) n'2b'

(c) A(2c)

D. Determination of q, and V,

In the normal limit, all terms in 0"' and 0' ' reduce
to the expression very similar to thai in the two-body ap-
proximation. ' Thus we can evaluate ( Q ) with the
same technique as in the previous works. %'e take the
following procedure to determine q, and V, (q). First,
we give a trial q, and determine V, by the numerical
solution of

V
XE

(d) n'2d'

V- xc = +,.

(e)n""

(~ )g(2& )

FIG. 7. Goldstone diagrams for O' '. Diagrams associated
with the symbol "Xc" indicate that we should multiply c(q„O)
in the 6nal expression to avoid double counting of the screen-
ing factor.

s(Q)
5V, (q)

(4.20)

and calculate (Q) with V, (q) thus obtained. Next, we

change q, so that we can find a minimum of (Q) in the
region of 0&q, &O. lkF.

In Fig. 8, we have plotted the correlation energy of
the normal electron gas, c.„which is nothing but
((Q) —Qo)/N, where N is the total electron number.
For 1&r, &20, c., has a local minimum at q, =0.06kF.
(This value seems to be independent of r, .) Since this
value satis6es the restriction 0 & q, & 0. 1kF, we will

choose it for q, in the calculations of physical quantities
like zk, p„and T, . However, c., shows a rather interest-
ing behavior as q, is increased: Near q, -0.15kF, c., has
another local minimum, but for q, larger than 0.2kF, c,,
decreases monotonically and becomes lower than the
value in the GFMC for q, ~0.45kF. Thus it is obvious
that we should consider terms other than the ring ones
in VI in order to make the variational procedure work
even for q, ~ 0.2kF. However, we may also choose
0.4kF for q, to calculate physical quantities and compare
the calculated results with those for q, =0.06k+, al-
though we do not have a physically sound reason to
choose it for q, except that s, is always very close to the
value in the GFMC. An example of the obtained V, (q}
is given in Fig. 9 for r, =6. The solid, dotted-dashed,
dashed, and dotted curves represent, respectively, the re-
sults for q, =0.06kF, 0.4kF, 0 (i.e., in the. two-body ap-
proximation), and the bare potential.
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FIG. 8, Correlation energy of the normal electron gas in 8 *

in the modified two-body approximation as a function of q, .
Cases for r, =2, 4, 6, 10, and 20 are shown. The result in the
GFMC for each r, is indicated by a dashed line.

FIG. 9. An example of the calculated short-range part of
the effective potential normalized by 4me~/eokz as a function

of q for r, =6. The solid, dotted-dashed, dashed, and dotted
curves represent, respectively, the results for q, =0.06kF,
0.4kF, 0 (i.e., in the two-body approximation), and the bare po-
tential.

~'„z"=2 g y v, (q)v, (
i
q+k+k'

i
)

q&0 k'

&([nq(1 ng+q)ng—(1 ng+q—)

+(1 nq)n—„+ n), +„(1—nq ))/b(q;k, k')

K. Numerical results for a, and the renormalixatioa factor

The obtained minimum values for c, with q, =0.06k~
are given in Table II, together with the values in the
two-body approximation and in the GFMC. ' The rela-
tive error between the present results and those in the
GFMC is at most 8% for 1 & r, &20. Although they are
not so good as those in Ref. 20, the present results for c,
have been much improved on those in the two-body ap-
proximation, especially for r, y 6.

%e can calculate the occupation number
Nk=—(Ct Cz ) in the same approximation as that for

Once we obtain Ez, we can calculate the renorrnal-
ization factor z&

' with the use of Eq. (3.23) as

(4.21)

(4.23)

It must be noted that the contribution to zz ' in first or-
der of V, (q) is given by

TABLE II. Correlation energy e, for the normal electron
gas in the modified two-body approximation with q, =0.06kF.
The columns indicated by "two-body" and "GFMC" give the
results in the two-body approximation and in the GFMC
method, respectively. All energies are in 8

X [nq(1 ni+q)+nq+—q(1 ni)]-
Xn„(1—n„+q)/b (q:k, k') (4.22)

where Mz is defined in Eq. (3.19); MI, ' and MI, ' are,
respectively, given by

' ———4 g g V, (q) e(q, O)
q~o k'

1

2
3

5
6
8

10
15
20

-0.113
—0.0834
—0.0683
—0.0587
—0.0520
—0.0468
—0.0395
—0.0344
—0.0265
—0.0219

e, (two body)

—0.111
—0.0821
—0.0671
—0.0575
—0.0506
—0.0455
—0.0380
—0.0329
—0.0249
—0.0203

c,, (GFMC}

—0.119
—0.0902
—0.0738
—0.0636
—0.0563
—0.0507
—0.0427
—0.037 22
—0.028 30
—0.023 00
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FIG. 10. A.n example of the occupation number Nk
= (Ci', Ci, ) (dotted curve) and the renormalization factor zx '

(solid curve) as a function of k =—
~
k

~

for r, =6.

-2
{C) O(V, )

)) Fr~ n(2a)

XC/

2) From 0(2bj

i+x c

,
''~';xc

00 2 V, (q)az'„" = g "—dro
o Ir [1+VI(q)II(q, iso)]2

X [III,(1—III,+q)+nI, +q(1 n„)]— 3) From a'2"

(eIi +8Ii~ ) —CO

[(e +e )2+~2]2
(4.24) 4)prom 9

In the static approximation, we may replace
V, /[1+ Vl(q)llo(q, ice)]2 by V, (q) and obtain that MII,"
vanishes.

In Fig. 10 we have given an example of N& and z& '.
We have taken r, =6 and q, =0.06kF. The values of zk

'

are shown in Fig. 4. The solid and dotted curves corre-
spond to the cases of q, =0.06k~ and 0.4k~, respective-
ly. It is remarkable that although V, (q) for q, =0.4k+ is
very difFerent from that for q, =0.06kF as shown in Fig.
9, the results for zk

' do not change so much. When we

use 0.06k„ for q„ the metal-insulator —type transition in-
dicated by zk

' ——0 does not occur until r, =14.3. This

value is considerably larger than the value r, =7.8 in the
RPA. This difference is due primary to the contribution
of the exchange term, hz& '.

5)pro

6)From a(2"

7)prom n(29'

8)prom Q

9)From 0"

j~ xc

FIG. 11. Diagrammatical representation for ck.

U. SUPERCONDUCTIUITY IN THE KI.ECTRQN GAS

A. Single-particle energy and pairing potential

As in Sec. III C, we can obtain expressions for 'Kz and
V~(k, k') by taking the functional derivative 5( 0) /5UI, .
We will express them in the form of Eqs. (1.2) and (1.3)
in which the renormalization factor z&

' was calculated
1I1 Sec. IV E. CGIltI'lbutlolls to el aIld Vp ( k, k ) fl oIIl
QI ' have already been given in Eqs. (3.17) and (3.18), re-
spectively. [Diagrammatical representations are given in

Figs. 11(a) and 12(a).]
The contribution to c& from 0" ' is given by

oo V, (q)11,(q, I ~)
eI,

' "=g f dry[ —V(q)+ V&(q—)]
0 c(q, i co)

el +ek+q
X 2(1—2nl, +q) .

ro +(eIi+eg+q)
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In the static approximation, Eq. (5.1) is rewritten as

[ V(q) —V&(q)] V, (q)e(ld)e 4 y e(q, O)

(1—2n), ~q)n), (1 n—), + )x
b(q;k, k')

Similarly, Q'"' gives r~&"" as

(5.2)

e),
"'*——2+ V(q)V, (

[
q+k+k'

f
)

qk'

X[(1—na+ )n), (1—nk+ )

—n), +q(1 nk —)n), +q]/b(q;k, k') . (5.3)

Diagrammatical representations for ck'"'* and c.k"" are
shown in Fig. 11(b).

The pairing potential contributed from 0" ' is written
as

(~) O(i, )
V

+

(b) o(v, )
-1

~ ) F g(ld)

v~ (v -v~ )I~
h«

3) From n'2"
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+ Q%%
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XE,
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gP&% ~

+f--(I ii +I--(i(

~0%1

+ k& %~

9)From 9
il

I+

FIG. 12. Diagrammatical representation for V~ (k„k'). The plus (+ ) [minus ( —)] sign in front of each diagram indicates repul-
sive (attractive) contributions to V~ .
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ek+ek ~ ~ 3V"d'*(k,k':—k+q)= —2 f —dao, [V(q) —V&(q)]V, (q)IIo(q, isa)/s(q, ice)
co +(ei, +ek )

which is rewritten in the static approximation as

[V(q) —VI(q) V, (q) n (1—n + )
V(ld)e(k gi k ) g" y P P

e(q, O) ek+ek +ep+ep+q

On the other hand, Q~ '] provides the pairing potential as

nq+ (1 n—k+ )+ni, + (1—nk+ )V'""(k k'=k+q)=2V (q) g V(q')
q

ek+ek +ek+ '+ek+ '

ni, +q (1 ni,—+q )+ni, +q (1—ni, +q )

+2V(q) g V, (q')
I ek+ek +ek+q +ek+q

n„+ (1—n„+ )+ni, + (1—ni, +q )

+2+ V(q')V(
~

q'+k+k'
~

)

q
t ek +ek' +ek+q' +ek'+q'

(5.4)

(5.5)

(5.6)

These contributions to Vz are shown diagrammatically in Fig. 12(b).
Although the calculation is tedious, we can calculate the contributions from 0' ' in quite a straightforward way.

Since it is too lengthy to write down all terms here, we will give only the contributions from the direct term in (Q2),
i.e., 0' ', the ring term 0' ', and the ladder term 0' g' explicitly. These terms provide relatively compact expressions
for si', and V~'. All other terms are given only in diagrammatical representations in Figs. 11(c) and 12(c).

From 0' ', we obtain'fk as

EI, "=2+V, (q) (1 2ni, + —)Ie(q, O)[(1—2ni, )ez '+(1 2ni, —+ )ez+' ]+(1—2nk )ez '+(1 —2ni, +q)si, +qI
qk'

X ni, (1—ni, +q)/b(q;k, k') + g V(k' —k)bz'„'( —,
' —ni, )+si, 'Mk

kt

where Mz ' is defined in Eq. (4.22) and ei,
' is defined by

e&"=s~—g V(k —k')n~ —~n —i x
k'

(5.7)

(5.9)

with the exchange part of the chemical potential pz. The last term in Eq. (5.7) arises from the derivative of Ei, and as
explained in Sec. III C, this term should not be included in si', . Thus eI,

'" is given by the first two terms in Eq. (5.7).
Similarly, the pairing potential contributed from 0' "is written as

V~'~'(k k'=k+q)= V~ '"(k k')+ V(q)(bz' '+br' "')

V'z '"(k,k'=k+q)=4+ V, (q) te(q, O)f(1 —2ni, )sz '+(1—2ni, . )ez. ']
P

+(1 2n )e' '+(—1 2p nq+)
—

p sl+i'(n1 p n)+iq( +—eie+i@+e+eq)

The ring term 0' "gives the following ez" and V~'(k, k'):

(5.10)

ekIi"* ——4g V(q)V, (q) (1—2nk+q) gnp(1 p n)+/—q&(q;k p)
P

+g g V(q) V (q)i(1 —2n„)g n (1 n)n (1 n—)/&(q:k, p)—&(q:p, p')
PP

(5.11)

n(l —n+ )n (1 n+ )— 1 2V'""(kk=—k+ )=gyV( )V( P ' '+' ' '+' — +"+ '+ "+ "-. "+ '+ '+ '-. "+ "-.+ '+ '-.
(5.12)

Finally, the ladder term 0' g' has the following contribution:
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sI,
' '" =2 g V(

I q —q'
I )~, (q) V, (q')[(I —ng+q)(1 —n„+q )np(1 —n, +, )(1 —n, +„.)+n„,n„,, (1—n )n, ,n,

WP

—nz+qnz+q. n (1 —n + )(1—n +, )

—(1—n, +, )(1—n„+, )(1—n, )n, +,n, +,.]/a(q:k, p g(q;k, p)

V(q')V, (q)V, (
I q —q'

I
)[(1—n„)n„,(1 n)n— (1—n, )

qq 1

+na+q(1 ng+q')(1 np)np+q(1 np+q') (1—ng+q)nq+q np(1 —n + )n

—n&+q(1 n—&+q )np(1 —np+q)n + ]/[b(q;k, p)(e& +e& +e +e, )]
(5.13)

V(q')V, (q)V(
I
q+q'

I
)

V,"g"(k, k —=k+q) =4 y. (eg+eg +ep+ep+q)(eg+eg+q +ep q +ep+q)

X[np+ (1 np q
—)(1 np—)(1—n&. + )+(1—np+q)n .npn&. + ~

—(1 n+q—)np .n (1—nz. +q ) n+—„(1 np —~ )(1 n)n—„+q ]

+(k~k' in the above term)

V(q) V, (q') V, (
I q —q'

I
)

(ez+ez+q +ep+ep+q )(ez +ez+q +ep+q+ep+q )

X[(1—np+q)(1 np)(1 —n&—+q )np+q +np+qnpnz+q (1 np+q—)

—(1 np+q)(1 —np)n&—+q np+q —np+qnp(1 pn+)q(1 np+q )] (5.14)

8. Numerical procedure to evaluate az and V~

We will calculate T, by the procedure explained in Sec. III F. The key quantity is the kernel K(k, ,k, ) defined in

Eq. (3.30). There are problems in obtaining E(k, , k ) numerically. We have to perform six-dimensional integrals at
about ten thousand points. In addition, numerical errors in the evaluation of the integral should be very small. The
relative error must be less than 10 near the Fermi surface, because we need to calculate E(k;,k ) by changing k; by
only 4)&10 kF at k, =kF. From such considerations and a numerical test to estimate the computation time, we
come to the conclusion that we cannot perform the numerical integrations such as Eq. (5.13) as they are at the present
level of computers. Thus we will calculate sz and Vp' in the following way. (Note that zz ' is already known. ) For
the ring terms, e&'"", V" ",ek'*, V' '", s&'", and V' "', me make rigorous integrations, because these terms can
be reduced to at most three-dimensionsl integrals which do not have any singular points in the integrand. For the ex-
change terms, et&"' and V'"", we Srst rewrite Eqs. (5.3) and (5.6) as

sz""———2+ V(q)V, (
I
k —k'

I )nq+qn„(1 nz+q)/&(q;—k, k')
qk'

+2+ V(q)V, (
I
q+k+k'

I
)(1 nq+q)n—„(1 nq+ )/b—(q;k, k') (5.15)

qk'

np(1 np+ &-
Vp""(k,k'—=k+q) =2 + [ V, (q)[V( I

p+k'
I
)+ V(

I p —k
I )]ek+ek+e +e +

+ «e)[ V, (
I I +k'

I
&+ V, (

I I —k
I &]

+ V(
I
p+k'

I
&V, (

I p —k
I

&+ V(
I p —k

I
&V, (

I
p+k'

I &]
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respectively. Next, in Eq. (5.15), we replace V, ( I
k —k'

I
) and V, (

I
q+k+k'

I
) by V, ([k + &k &

]'/ ) and

Y, ([(k+q) +&k & ]' }. Here &k & is considered to give an average value of k —=
I

k'
I

in the k' integral. After the
replacement, Eq. (5.15) gives an integral which is essentially the same as the one for ek' " in Eq. (5.2). Similarly,
V'"" is evaluated approximately by the replacement of Ip —kl and Ip+k'I by (&k& +k )' and (&k& +k' )'

respectively, in Eq. (5.16}.
%e will employ the same approximation to evaluate other terms in c& and V'. Namely, we will use some average

value for the interactions in the integrand by introducing &k & in their arguments, but the Fermi factors, i.e.,
nk. (1 n—k+ ), and the energy denominators will be treated as rigorously as possible. For example, the ladder term

Vz
g" is calculated by changing Eq. (5.14) into

n(1 n+ —)
V(2g)e(k kr ) 4 y P P+q V (

, e&+e&. +ep+ e +q

t p+
S

p —k
V p' —k'—

2

p' —(p —k)/2) p'+(p —k)/2)/( k+ep+ p' —(p —k)/2+ep'+(p —k)/2)

+V, p' —k+ p+k' gt
V p+' "

2

+ np' —(p+k')/2np'+(p+k')/2/(ek +ep+q+ep'+(p+k')/2 +ep' —(p+k')/2 )

p+k—V p'—
S

p —k
y gl

2

+np' —(p —k)/2 p' (p —k)/2 k+ep+ep —(p —k)/2+ep+(p —k)/2

p+k—V p' —k+S 2
p —k'

p

p' —(p+k')/2( np'+(p+k')/2)/( k+ep+q+ep'+(p+k')/2+ep' (p+k')/2) (5.17)

and then by replacing
I
p' —(p+k)/2 I, I

p' —k'
—(p —k)/2 I, etc., with (p' +&k & /4+k /4)'
(p'+k'+ «&2/4+k'/4)'", etc.

As for the choice of & k &, let us consider the integral

&(k-k)'&
—:g(k —k') nk(1 nk+ ) —ink(1 —n), + ) .

k'

(5.18)

For q larger than 2kF, Eq. (5.18) is evaluated as

&(k—k }2&=k2+-', k,2,

Thus we should choose V'3/5kF =0.775kF for & k &. For
q smaller than 2kF, the integral has a complicated form,
depending on k =—

I
k

I

k q and q b« it is ~~~~~ that
&k & approaches k~ for very small q. Actually, we have
performed the integral in Eq. (5.14) as it is for several
values of k and compared the results with the approxi-
mate ones for various choices of &k &. The best choice
for &k & is found to be 0.78k'. However, it is probably
true for other more complicated terms in a& and V* that

I

the optimum value for &k & is different from 0.78kF.
Therefore, we will calculate c& and V~' for several values
of & k & and show how the physical quantities like )M, and

T, depend on & k &.

C. Numerical results

In Fig. 13, we have shown the calculated results for p,
as a function of r, for the cases of & k & =0.70kr, 0.78kF,
and 0.85k~. The results in the GFMC are indicated by
the solid points. These values are reproduced quite well
for 1&r, &10, when we choose 0.75kF for &k &. For the
preferred value & k & =0.78kF (the solid curve in Fig. 13),
the difterence with the results in the GFMC is less than
7% for r, &10. Although p, depends rather strongly on
&k &, the single-particle energy ek is virtually indepen-
dent of it as shown in Figs. 14(a) and 1.4(b) for the cases
of r, =5 and 8. For the latter case, we can see a
dilerence in Z& for k ~0.3kF and k ~1.3kF with the
change of & k &, but for r, =5 we cannot notice any
difference on a scale of the 6gure.

An example of the calculated kernel K(k;, k, ) is
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FIG. 13. Calculated results for p, in R as a function of r,
in the modified two-body approximation with q, =0.06kF. The
solid points give the results in the GFMC, while the dotted-
dashed, solid, and dashed curves correspond to, respectively,
the cases for (k ) =0.70kF, 0.78kF, and 0.85kF.
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drawn in Fig. 15 in which r, is taken to be 5, k, is fixed
to be 0.9999998kF, and k is swept. When (k) is de-
creased, the kernel hardly changes its shape, but shifts
upwards. In particular, for (k ) =0.78kF (the solid
curve in Fig. 15), the calculated kernel at the Fermi sur-
face is about the same as that in the RPA (the dotted
curve in Fig. 15). As k, moves away from the Fermi
surface, the present kernel is much more repulsive than
that in the RPA. Although superconductivity does not
appear in the RPA for r, =5, we have obtained s 5nite
T, in the present approximation even for (k ) =0.70kF.
(The values of T, are given in K in Fig. 15.) This ex-
ample illustrates that superconductivity occurs even if
the kernel is always positive for any k, and kj. In par-
ticular, we cannot discuss the occurrence of supercon-
ductivity only by the examination of the pairing poten-
tial at the Fermi surface. The important point is that
the kernel should change very rapidly near the Fermi
surface to have a strong superconducting instability.

The gap function 5& normalized by the value at the
Fermi surface 5k is given in Fig. 16. This function has

a discontinuous jump at the Fermi surface. This is due
to the similar jump in the renormalization factor z&
Thus we have defined 5k by

(5.20)

Q.10

k (kF)

(b)

0.05

K

Ql

C
UJ

0

CL
l

Op

Ql
C

I

l { I '. i I i l I I I I l IQ1AI 4P

0.5

The absolute value of 5k cannot be determined by Eq.
(1.6). We estimate this from T, by the BCS relation: '

hk ——1.764k~ T, . (5.21)

In Fig. 17, we have plotted the excitation energy
(Z'k+6k )' at T =0 for r, =5 {the sohd curve in Fig.

FIG. 14. Single-particle energy in A * as a function of k for
the cases of (a) r, =5 and C,

'b) r, =s. Solid curves give the re-
sults for (k ) =0.78kF. Results for other choices of (k ) are
given by the dashed {(k)=0.85kF) and dotted-dashed
((k ) =0.70kF) curves, but in (a) there are no noticeable
difFerences with the change of (k). The bare single-particle
energy cz —pH is shown by the dotted curve in each case.
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FIG. I6. ThThe gap function 6& normalized by hq for r, =5.
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FIG. 15. An example of the calculated kernel K(k;, k, ) at
;=0.9999998kF in units of R kF . Cases of (k)=0.70k',

0.78kF, and 0.85kF are shown by the dotted-dashed, solid, and
ashed curves, respectively. Corresponding results in the RPA

are given by the dotted curve.

k (kF)

&n near theFIG. 17. The excitation energy ('8'+5 }' ' '
R

ermi surface at T=0. We have taken 0.78k for (k)
p the cases for r, =5 and 8 by the solid and dottedlotted
curves, respectively.

17) and 8 (the dashed curve in Fig. 17), in which (k ) is

with 6
ta en to be 0.78kF and 5k is given in Fig. 16 to h

k in Eq. (5.21). Except for the jump at the Fermi
sur ace (which will disappear at finite temperatures), the
excitation energy behaves just as a usual BCS supercon-
ductor for r =5,=, but two extrema appear in addition to
one at the Fermi surface for r, =s. This is due to the
change in sign of Zl„as seen in Fig. 14(b). If this excita-
tion energy spectrum is true qualitatively, the density of
states might show divergence at three different energies
near the Fermi surface (it might diverge at four points
instead of three, because the excitation energy has a very
small slope for k =kF +0+).

%'e have given the results for T, as a function of r, in
Fig. 18. For the single-particle energy in the ga e ua-

e Kk in Fig. 18(a), but for comparison's
sake, we have employed the bare one c—
18(b). We

ne Eg —pH I 1g.
e have chosen (k) in three ways as 0.70k

0.78k and 0.F, an .85k+. All these calculations give essential-
as . F,

ly the same resuesults: Superconductivity appears in the
~ e

electron uas for r "s r, increases, T, increases
first, reaches its maximum at, =7.2, dr=. , an ten de-
creases. %'e have not given T, for r, ~14.3, because zk

'

becomes negative in that region f d'o r„ in seating some
metal-insulator-type transition. The peak value of T,
depends on (k), but it is in the range 10—100' ". We

features of t
have also calculated T, with q =0.40k .q, = . ~. qualitative
eatures of the results are the same, but quantitativel1 a lvey,

is a i erence: superconductivity appears for
r, ~6. The maximum T, occurs at r, =10 and is in the
range 1-10K
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The coherence length go at T =0 can be estimated by
the range of the k-value at which the excitation energy is
significantly modified from the normal-state value by the
appearance of superconductivity. From Fig. 17, we can
see immediately that gkF is about 100 and 20 for r, =5
and 8, respectively. This value gokF decreases rapidly
with the further increase of r, . At r, =14 this value is
about 5.
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FIG. 18. Calculated results for T, in units of E for the
electron gas as a function of r, in the modified turbo-body ap-
proximation with q, =0.06k+. The full single-particle energy
Zz is used in (a} but the bare one cq —pH is used in (1}. Cases
of (k ) =0.70k~, 0.78kF, and 0.85k~ are shown by the dotted-
dashed, solid, and dashed curves, respectively.

D, Consideration on mechanism of superconductivity

Compared to the results in the ring approximation in
Sec. III, we have seen that, as a whole, the inclusion of
the local-6eld correction brings about a stronger instabil-
ity for superconductivity in the electron gas. However,
there are 56 terms in V' as shown in Fig. 12, and it is
not conceivable that all of them are important. Thus we
have examined how T, is affected when we exclude some
terms in V' for the calculation of the kernel K(k;,kj)
intentionally.

The most important term to overcome the bare repul-
sive potential V(q) is, of course, V""",which includes
the plasmon-mediated attractive interaction. However,
this term is partially compensated by the contribution of
V' '" and V' '". Furthermore, the repulsive contribu-
tion of V"'" is so large that superconductivity does not
appear without some additional help from other terms.
This is true even after we include the contribution of
V&

' to compensate for V&"'*. There are three terms
in V'"". The first two terms are the contributions of
the vertex correction to the plasmon-mediated interac-
tion (or the exchange effect between the polarization
cloud and one electron of a Cooper pair), and the last
one represents the paramagnon-mediated interaction. In
Fig. 19, we have plotted the change of the kernel from
the full calculation which is given by the solid curve.
(We have treated the case in which r, =5, q, =0.06kF,
and (k ) =0.78kF. ) The dashed curve corresponds to
the kernel without the vertex-correction part of V~""
and V' '*. %e can see that the net effect of the vertex
correction is to shift the kernel upwards almost indepen-
dently of kj. This effect is quite harmful to the oc-
currence of superconductivity. On the other hand, al-
though it has a positive sign, the paramagnon-mediated
interaction is, in fact, favorable for superconductivity be-
cause this interaction gives a sizable repulsive contribu-
tion only when k, and/or k is not near k~, as illustrated
by the dotted curve in Fig. 19. Since the gap function
BLk is negative for k not close to kF, the larger repulsive
potential in such a region of k causes the stronger super-
conducting instability if the kernel near the Fermi sur-
face is about the same. It must be noted here that
though we have used the word "paramagnon, " the actu-
al contribution comes from the spin fluctuation with the
momentum transfer of the order of kF or larger for the
kernel E(k, ,kj) in the region where k; and/or k~ is not
near kF.

The dotted-dashed curve in Fig. 19 represents the ker-
nel without the first term in V' '* which is given by
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n (1—n +q)n (1 —np+q)
V,
'" "(k,k'—=k+q)= —gg V(q)V, (q)V, (

~
p+p'+qi )—

r ei, +Bi, +ep+ep+q ep+ep+q+ep +&p'+q
(5.22)
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It is found that without this term superconductivity does
not appear at r, =5, even if we take into account all of
the other 55 terms. In order to see what physical pro-
cess is involved in V' "'",we have to remember the na-

ture of V, (q) determined from the solution of Eq.
(4.20).' For small q compared to kF, V, (q) is essentially
the same as the screened potential in the Thomas-Fermi
type, but for large q, V, (q) takes account of the ladder
process. (For q values in between, V, (q) interpolates
these two limiting behaviors, together with the inclusion
of various exchange terms. ) In Eq. (5.22), there are two
V, 's: For V, (q), the small-q region is important, while

for V, (
~
p+p'+q

~
), the ladder process is dominant.

Thus, the important physical process involved in V'~""
is the type illustrated diagrammatically in Fig. 20. This
represents the exchange of the polarization waves in
which the strength of the polarization is enhanced by the
electron-hole multiple scatterings.

VI. DISCUSSIQN

%e have investigated the possibility of superconduc-
tivity in the electron gas by employing the method of
efFective-potential expansion. Superconductivity appears
when r, is larger than the critical value r„=3.9. %'ith

the increase of r„estimated T, shows a maximum at
r, =7.2. The peak value T, '" divided by I'/(m, eo) is
58 K. The plasmon in the sense of the RPA is impor-
tant to overcome the bare repulsive Coulomb potential,
but the efFects beyond the RPA, like the paramagnon-
mediated potential, are essential to bring about such a
strong instability for superconductivity. In particular,
the enhancement of the polarization induced by the local
multiple scatterings between the virtually excited
electron-hole pair is the most important process.
Without these efFects beyond the RPA, r„becomes
larger than 20 and T, '"/[m '/(m, eo)] is of the order of
1 K.

In order to estimate how accurate the present calcula-
tions are, we have compared the results for e, and JM,

with those in the GFMC and found that the relative er-
ror is less than 10% for 1 &r, &10. This indicates that
the kernel Ii has an error of the same magnitude.
Roughly speaking, T, is proportional to exp( —1/K).
Thus, near the critical value r„ in which T, is very
small, even a small change of E may produce a very
large change in T„ i.e., a change of more than several
orders of magnitude. Therefore, r„may not be reliable.
On the other hand, T, '" will have a relatively small er-
ror. Even if we change K by 10% artificially, the change
in T, '" is less than the factor of 10. We have also
checked the errors in r„and T, '" by changing the pa-
rameters q, and (k ) in our theory. We have found that
r„may be as large as 6 and that T, '"/[m '/(m, eo)] may
be in the range 1-10K.

I.et us consider the application of the present results
to real materials. Since almost all metals have the r,
value between 2 and 3, there are only a few systems to
consider. The 6rst one is the alkali metals Na, K, Rb,
and Cs. It is experimentally known that these alkali
metals do not show superconductivity at least for T & 1

mK. Discrepancy between experiment and the present

FIG. 19. The kernel E(k;,kj-) at k;=0.9999998kF in units
of R kF ' rvith the omission of some of terms in V~ (k„k').
The solid curve represents the full calculation, while the
dashed, dotted, and dotted-dashed curves sho~ the results
without the vertex correction, the paramagnon-mediated in-
teraction, and V~i

"'* given in Eq. (5.22), respectively. We
have taken r, =5, q, =0.06k+, and (k ) =0.78kF.

I I

I I I I
'

I

FIG. 20. Diagrammatic representation for the most impor-
tant process involved in V~i~""* defined in Eq. (5.22).
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theory may be explained in various ways. Firstly, a
model of the electron gas may not be suitable for super-
conductivity in these alkali metals in the following two
respects. (1) There are always phonons in the system.
These phonons may work destructively when they are
included together with the Coulomb interaction in the
system. (2) In our theory, the effects beyond the RPA
are important to bring about superconductivity for
r, g20, but all these efFects are very local in nature.
Thus the model of a uniform positive background may
give a very difFerent answer from the real situation in
which ions should be treated as point charges. Secondly,
these metals may already be in other ordered states like
the charge-density-wave or the spin-density-wave state,
which usually suppress the occurrence of superconduc-
tivity. Thirdly, r„may be larger than 5.62 which is the
r, value for C, . Lastly, although the conventional values
for r, are determined with the choice of m ' =m, and

Ep = 1 Fp may be larger than unity so that the actual r,
value may be smaller than 3.9 even for C, .

The second system which we must pay attention to is
the recent high-T, oxide superconductors. s Although
the r, value for these materials is not yet known, it is
probably correct that r, is larger than r„At. the
present, it is a general trend to emphasize the one- or
two-dimensional behavior of the electrons in the system.
However, to have real superconducting transition
without fluctuations, we have to consider the system in
three dimensions. Thus there is a reason to regard these
oxides as an aoisotropic three-dimensional electron gas.
Since the transfer integral along the c axis is small, m '
estimated by a geometrical average over the a, b, and c
axes will be much larger than m, . In addition, eo will be
of the order of unity, because no ferroelectric transition
has been reported, in contrast to the case of SrTios (Ref.
29) in which eo is as large as 10 . From these considera-
tions we expect that the factor m'/(m, eo) is of the or-
der of unity; thus T, is in the range 10-100 K.

Admittedly, to regard these oxides as an electron gas
will be too simple to explain all the details of experi-
ments. However, we cannot 6nd any apparent incon-

sistency between our viewpoint and experiments. On the
contrary, there are several experiments which are con-
sistent with our viewpoint. The details of the discussion
have already been published.

There are two diScult problems which are left for the
future. First, we have to develop a finite-temperature
version of the present theory to discuss physical proper-
ties like the ratio 6k at T =0 to k~T, . %e anticipate
that Eq. (1.6) will be derived by a finite-temperature for-
malism, but the dependence of 'E& on temperature might
be important, especially for the case in which Z), becomes
positive for k in the range from 0.96kF to kF, as in Fig.
14(b). Since Xi, in this region has the magnitude of order

kz T„ these positive region of Ez may vanish for T =T„
so that Z), may be very close to the bare one e), —pH.
When we used e),—izH in Eq. (1.6) instead of Z)„we ob-
tained a lower T, as shown in Fig. 18(b). Therefore, the
ratio 2b, k /kttT, might be larger than the BCS value,

3.52.
Another problem is to include phonons into the sys-

tem. This is quite important in order to discuss the
efFect of Coulomb interaction on superconductivity in or-
dinary metals. It may be incorrect to assume that the
efFect of Coulomb potential can be treated separately
from that of the phonon-mediated potential. However,
if we assume it, the present result indicates that the
Coulomb pseudopotential p* becomes negative in rela-
tively low-carrier-density systems, in contrast with a
naive belief that p' will become larger than 0.1. One
important consequence from the possibility of negative
p' is that the strong-coupling limit of Allen and Dynes'
can be reached rather easily. According to Cai et aI. ,
T, is proportional to [A, /(1+2. 60@,')]'~ when the
electron-phonon coupling constant )(, is large. This indi-
cates that we will obtain the same value for
A, /(1+ 2. 60p' ) with A, = 1 and iz' = —0.25 as with
A, =3.6 and )M" =0.1. The negative p' also paves the
way to explain the observed T, and the isotope-efFect
coeScient a simultaneously in the recent oxide super-
conductors without resorting to the use of unreasonably
large values of A, .
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