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Path-integral theory of the scattering of He atoms at the surface of liquid He
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The path-integral theory of the scattering of a He atom near the free surface of liquid He,
which was originally formulated by Echenique and Pendry, has been recalculated with use of a

physically realistic static potential and atom-ripplon interaction outside the liquid. The static po-
tential and atom-ripplon interaction are based on the variational calculation of Edwards and Fa-
touros. An important assumption in the path-integral theory is the "impulse approximation":
that the motion of the scattered atom is very fast compared with the motion of the surface due to

o

ripplons. This is found to be true only for ripplons with wave vectors smaller than q -0.2 A
If ripplons above q made an important contribution to the scattering of the atom there would be
a substantial dependence of the elastic reAection coefficient on the angle of incidence of the atom.
Since this is not observed experimentally, it is argued that ripplons above q give a negligible
e6'ect and should be excluded from the calculation. %ith this modification the theory gives a good
At to the experimental reAection coefficient as a function of the momentum and angle of incidence
of the atom. The new version of the theory indicates that there is a substantial probability that an
atom may reach the surface of the liquid without exciting any ripplons. The theory is not valid

when the atom enters the liquid but analysis of the experiments shows that, once inside the liquid,
the atom has a negligible chance of being scattered out again.

I. INTRODUCTION

Measurements of the scattering of atoms at the free
surface of liquid helium are potentially a way to deter-
mine the properties of the surface. Such experiments
have been carried out on the He surface' using a beam
of He atoms and, to a limited extent, a beam of He.
The results„ in Fig. 1, show that the elastic scattering
probability 8 (k) for He atoms striking the surface with
momentum irik, depends only on the perpendicular" com-
ponent of the wave vector k, =k cos8. The probability
of inelastic scattering is found to be insignificantly small,
so that the probability of absorption into the liquid is
1 —R (k, ). We would like to find a theory which fits

these measurements and, if possible, gives information
about the He surface: the density profile, correlation
function, ripplon spectrum, or other properties.

The variational theory of Edwards and Fatouros' (the
solid line in Fig. 1) gives a very good fit to the earlier
measurements of 8 (k, ), and it predicted the rise to-
wards 8 (k, )=1 which was observed below k, =0.03
A ' in the later measurements at glancing incidence.
(These are shown in Fig. 1.) It also gives good results
for the bound states * of He on the surface of bulk He
and He films, and roughly agrees with the surface ten-
sion of bulk He. Nevertheless there is considerable
doubt as to the validity of the approximations made in
the theory, the accuracy of the density profile deduced
from it (which is probably too narrow ) and the role of
the ripplon and phonon excitations in the scattering.

The aim of the present paper is to investigate the role
of the ripplons in the scattering. The elegant path in-
tegral theory of Echenique and Pendry' (Ep) deals
specifically with this point and it apparently shows that

the creation of one or more ripplons is the principal
mechanism for the absorption of most atoms into the
liquid. However, the original calculation gave rather
poor agreement with experiment, and it was not clear
whether this was due to the central approximation in the
theory, the restriction to a certain class of trajectories in
the path integral, or to other simplifications.

%e have modified the EP theory to improve the accu-
racy of some of the approximations but without chang-
ing the choice of trajectories. The modified form of the
theory is much closer to experiment, although there is
still some uncertainty in its predictions. The uncertainty
is partly due to our poor knowledge of the efFective La-
grangian of the system and in particular the efFective in-
teraction between the scattered atom and the ripplons or
other modes of excitation of the liquid. Another,
perhaps more important, diSculty is with the "impulse
approximation. " This assumes the motion of the atom
to be fast compared with the motion of the surface due
to ripplons. %e find that this is not a valid approxima-
tion for a large proportion of the ripplon modes contrib-
uting to the scattering in the original form of the theory.
The efFect of these high-frequency modes is overestimat-
ed by the theory, and if they are omitted, the agreement
with experiment is very satisfactory. This version of the
theory shows that EP overestimated the number of rip-
plons produced by an atom, although it is still true that
the majority of atoms excite one or more ripplons before
reaching the liquid.

In the next section we review the theories currently in
the literature to establish the context of the present
work. Section III describes the EP theory in more de-
tail, and discusses the approximations involved. It is
pointed out that the impulse approximation implies that
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FIG. 1. The elastic scattering probability R as a function of
the perpendicular wave vector k, =k cos8, for He atoms in-
cident on the liquid He surface {from Ref. 2). The solid line is
the EF theory {Ref. 5) which was fitted to earlier data {Ref. 1)
from k, = -0.05 to 0.6 A and angle of incidence 8 from 13'
to 70'. The asymptotic behavior R~1 as k, ~0, observed
below k, -0.03 A, was predicted by the theory. In agree-
ment with the theory, neither set of measurements shows any
dependence on 8 within the experimental scatter.

In these equations, m is the mass of a He atom, po is the
density in the interior of the liquid, and I.„ is the bind-

ing energy in the ground state, I.4/kz ——7.15 K at zero
pressure. EF constructed a formula for a(z) which in-

terpolates between the asymptotic behavior far above the
liquid, where V,&~ —a/z, and deep inside the liquid,
where V,&~ —I &..

a (z) = 1/I 1+exp[@ (z) ]I,
p (z) =Pz —g, +A. /[4P(z'+g, ) ~ .

Here p=1.087 A is defined so that L~=gipi/2rr. t

The van der %'aals potential above the liquid is
—rz/z = —trt A, /(2mz ), where EF used the value A, =20
A. The constants g, =2.5 and g2 ——8.5 A were adjusted
to give a 6t to the first set of elastic scattering data.
The resulting eft'ective potential is shown as the curve
EF in Fig. 2.

Although the variational wave function 4' is unsym-
metrized with respect to the scattered atom at r, , an ex-
tremely good fit to experiment is obtained (Fig. 1}. EF
also tried a completely symmetrized Feynman wave
function. In the liquid region of the coordinate space
the symmetrized wave function represents a single pho-
non or roton formed by the absorption of the incident
atom. The single-particle Schrodinger equation becomes
an integro-differential equation. Even when elaborated
to allow for the production of many phonons„ this ver-
sion of the theory predicts a large reflection probability
for incident atoms with transverse momentum greater

no transverse momentum is exchanged between the atom
and the ripplons. Sections IV and V describe our
modi6cations of the EP theory and the results, and Sec.
VI gives some conclusions.

II. CURRENT THEORIES

There are four theories of atomic scattering at the sur-
face of liquid He in the literature.

(1) The theory of Edwards and Fatouros (EF) is varia-
tional, with a trial function in the form suggested by
Feynman" to represent a single impurity atom in liquid
He: 0'=f (r, )%o(r„. . . , r~), where tPo is the ground-

state wave function for N He atoms and f (r, ) is a func-
tion of r„ the position of the scattered "impurity" atom.
Minimization of the energy gives a single-particle
Schrodinger equation with an efFective potential V,tr(z}
which is related to the density p(z} in the liquid He
ground state:

V,rr (fi /2m)a "/a L4, ———

a (z) =Qp(z)/p&,

a "(z)=d a/dz

4
Q)
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FIG. 2. {Top): The density profile p/po in the Edwards-

Fatouros theory. {Bottom): The real and imaginary potentials
in various theories. The solid curve labeled EF is the effective
potential in the Edwards-Fatouros theory. The dashed curve is
the static potential —u/z used by Echenique and Pendry
{EP). This was truncated by Usagawa at —L~, the energy per
atom in the liquid {the horizontal dashed line). The dotted
curve labeled &is the imaginary part of the potential iW(z) ln
the EP theory for an atom with k, =0.2 A,while 8' z is the
corresponding quantity in the present work calculated for
k, =02 A and q =3 A
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FIG. 3. The reflection coefBcient 8 as a function of k, in
the EF theory (solid curve}, and in the theory of Usagawa (the
circles}. The original Eehenique-Pendry theory is labeled EP,
awhile "EP-vel" corresponds to the trajectories given by Eq.
(19). The experimental data agree with the EF curve.

case the two potentials agreed only for z & 8 A.
(4) Echenique and Pendry EP show that multiple

ripplon production occurs when an incident atom ap-
proaches to within a few angstroms of the surface. The
effect of the ripplons in the Feynman path integral is
eventually reduced to an imaginary and therefore ab-
sorptive part iW(z) of the potential which adds to the
static van der %aals potential V, in a one-particle
Schrodinger equation. The reflection coeScient calculat-
ed from the EP theory, shown in Fig. 2, is much larger
than experiment. (Note that this curve is not the same
as the one published by EF. The published curve was
calculated using an intuitive truncation' of both iW'(z)
and V,. at small z, which was not described in their pa-
per. )

III. ECHENIQUE-PENDRY THEORY

%e now describe the formalism of the EP theory, with
some comments on the approximations. The Lagrangian
includes the incident atom at position r, the ripplons
with horizontal wave vectors q and normal coordinates
Aq, and the interaction P A between the ripplons and
the atom due to the van der %aals interaction:

L=g —— (A —co A ) —P (r)A
q q q q

+ —,'m I r
~

—V, (z) .

The ripplon frequency ~ is given by the dispersion rela-
tion ~ =(o/po)q, o is the surface tension' (0.354
erg/cm ), po is the bulk liquid mass density (po=0. 145

gem ), and V, (z) is the static van der Waals potential

than a critical value. Since this is not observed, EF con-
cluded that the production of one or more ripplon exci-
tations must be a dominant factor in capturing most
atoms into the liquid.

In the Appendix, we show that EF's treatment of the
situation where the incident atom has suScient energy
to generate rotons, as well as phonons, is incorrect. The
Appendix shows that, if the atom is totally rejected
below the threshold energy, as the threshold is reached
the symmetrized theory predicts a dramatic reduction in
the reflection coeScient. The data of Nayak et a/. in

Fig. I span the region of total reflection at several angles
both above and below the threshold, which is at k=0.50
A '. The reflectivity is small and shows no sign of total
reflection, or a break at the roton threshold. This
demonstrates that the excitation of ripplons is a dom-
inant effect in the scattering.

An observation made by EF concerns the insensitivity
of the reflection coeScient to V,z in the "liquid" region
where plpo=a (z) is not very small compared to unity.
For the EF profile this region is approximately z & 3.5 A.
Adding to V,& a large real or imaginary term propor-
tional to a (z) has no measurable effect on R (k, ). This
means that the surface region where rotons and phonons
are produced, and where the width of the density profile
is defined, is "screened" from observation in elastic
scattering measurements. This explains the discrepancy
between the width of the EF density profile and that cal-
culated by rigorous microscopic methods. Changes in

V,s proportional to the amplitude a (z) do affect R (k, ),
showing that the boundary of the "screened" region is
quite well defined.

(2) Usagawa' calculated the reflection coefficient us-

ing the Born approximation assuming that the produc-
tion of only one ripplon is important. This is in contrast
to the EP theory which indicates that multiple ripplon
production dominates. The Usagawa theory reduces to
a one-dimensional Schrodinger equation which includes
a nonlocal or velocity-dependent potential in addition to
the static van der Waals potential V, . The results (Fig.

0
3) show a dip near k, =0.07 A ' not seen in the experi-
ment. Usagawa attributed the dip to his use of a cutoff
in the static potential near the surface where
V,. = —a/z is joined to the binding energy L~ (see-
Fig. 2). For k, above the dip the theoretical reAectivity
is larger than experiment.

(3) In a recent paper Goodman and Garcia' (GG)
show empirically that the effective potential, introduced
by EF, can be replaced by a different formula without
spoiling the agreement with experiment. The formula
consists of U(z), the expectation value of the potential
energy for one atom in the ground state, truncated near
the surface to —L4, as in the Usagawa potential. GG
thus show that the dip in Usagawa's reflection coeScient
was not caused by the truncation in his potential.

To calculate U(z), GG assume a simple step-function
form for the two-body correlation function in the ground
state. A more realistic correlation function might
change the results significantly. A comparison between
V,s(z) and a reahstic U(z) for a hydrogen atom near the
He surface was made by Mantz and Edwards. In that
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acting on the atom. In the first version of their theory,
where the density profile p(z) at the surface is assumed
to be a step function at z=0, EP take V, (z) to be

QV—
Z3

Ak
2p7zz

with A, =20.25 A, slightly larger than the EF value. In a
second calculation the density profile was assumed to
be linear in z over a width of 5 A, but the npplon
spectrum and interaction were left unchanged. We con-
sider only the first version of the theory.

In the path integral method the state of ihe system
f(Xi(t2)) at time t2 can be derived from a previous state

P(X, (t, )):

g(Xq)= fF(Xi,Xi)f(X, )dXi, (5)

The assumption that the motion of the atom is very
fast compared to the ripplon motion (the impulse ap-
proximation) simplifies Eq. (6). In this case the propaga-
tor depends only on the initial and final positions of the
scattered atom:

P+(r2)= fF(r2, r, )g (r, )dr, .

Here g (r, ) is the incident wave packet and F(r2, ri) is

the Feynman propagator for an isolated atom moving in

the potential V, (z) but modified by a factor y:

F(r2, r, )= f e' ~"yDr(t), (9}
rl

S= f [mr /2 —V, (z})dt .
1

The factor y, which is a functional of the trajectory of
the atom, is the probability amplitude for not exciting
any ripplons:

(10)

where the X represent the generalized coordinates (in

tliis case r and A ), and F(X2,X, ) is the Feynman prop-
agator, or path integral:

X2
F(X„X,)= f e"" DX( r). (6)

X)

This is the sum over all possible paths, from Xi (t i ) to
X2(tz), of the probability amplitude exp(iS/A) with the

action S for each path given by

S= f I. (X,X, t}dr .

3 RA, qcos(q-r~~) K2(qz),g 2m ~~ z' (13)

The integral over time in (12) is found by substituting
from (14) and integrating over z. The cos(q ri) term in
(13) is set equal to one. This precludes any angular
dependence in the r exsection coeScient. %'e have
veri6ed numerically that this approximation is valid up
to =70'. With these simplifications y is found to be

y(zo) =exp

=exp

2Ame,
nh'Qpocrk z"
1363 A"

k 2g 15/2

where e is the numerical constant:

e= f"dxx"" f"dy
K, (y)

0
=0.390 .

%e have calculated e to a higher accuracy than EP who
used a value of 0.308. Equation (9) now becomes

r2

F(rz, r, )= f e' ~"Dr(r) „ (16)
1

S = ,mr —V, (z—)+i%
~

z
~

d lny(z)
dt .

2cfz

with K2 the modified Bessel function of the second kind.
The central assumption in the EP theory is that the

summation over paths can be approximated by a sum
over the "classical" trajectories shown in Fig. 4. The
atom follows a path with constant velocity except that z
is reversed at some height zo which characterizes the
trajectory:

flak,
z(r)= ~r ~+z, .

2
z

y =exp — —

q dq
2 IT 0 2 @co

where 0 is the area of the surface and —
Pq is the classi-

cal impulse given to the ripplon mode q as the atom
traverses the trajectory:

((}q
——f Pq(r(t))dt . (12)

The ripplon-atom interaction Pq is found, to first order
in the ripplon amplitude Aq, by integrating the 1/r van
der Waals interatomic potential between the incident
atom and the atoms in the liquid:

Zo

FIG. 4. The trajectory of an atom in the Echenique and

Pendry theory. The horizontal and vertical components of the
velocity are constant except at z =zo where i is reversed.
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A. Impulse approximation and conservation
of' transverse momentum

An important approximation in the EP theory, which
greatly simplifies the calculation, is the assumption that
the trajectory of the atom is traversed very rapidly com-
pared with the motion of the ripplons: the impulse ap-
proximation. The characteristic time for an atom
traversing the lower part of the trajectory in Fig. 4 is
v.o=mzo/A'k, . For a ripplon mode of angular frequency
cu, the impulse approximation requires ~vog&1 or„ in
terms of q,

q & q, = (poli k, /m z o cr )
' (20)

Taking zo-5 A, k, -0.5 A, we find q &0.2 A ' for
the impulse approximation to be valid.

The impulse approximation has important physical
consequences. The ripplon modes assumed by EP corre-
spond to the standing waves Aq(t)cos(q x) and
8 (q)t1s(n'q )x, wllcrc x represents tllc horizontal posltloli
on the surface. If x=O at the lowest point of the trajec-
tory of the atom (Fig. 4}, the coupling of the atom to the
sine modes, with normal coordinates 8, is zero in the
impulse approximation. The atom does not couple to
the standing-wave state

~ q) —
~

—q), only to
l
q&+

l

—q& w"cre
I q& is the ripplon travelhng-wave

state with momentum hq. This shows that EP chose the
appropriate set of' standing-wa. ve states and that there is
no exchange of transverse momentum to the ripplons in
the impulse approximation. The atoms which lose ener-

gy to the ripplons enter the liquid with their transverse
momentum intact.

%'hen the impulse approximation breaks down, the
atom may transfer some of its horizontal momentum to
the ripplons. For instance, a. ripplon wave-packet travel-
ing with a velocity which matches the horizontal motion
of the atom is more strongly coupled than others which
are mismatched. Therefore ripplon modes for which the
impulse approximation is invalid should produce a
dependence of the re6cctivity R (k, ) on 8 as well as k, .

Thus the e8'ect of ripplon production is the same as that
from an imaginary term in the potential,

iW(z, k, )=i(fr
~

z
~

/2)d iny/dz,

proportional to 1/(k, z ' ). The elastic reflection
coefficient R (k, ) is found by numerical integration of
the one-dimensional Schrodinger equation with potential
V, (z)+i@'(z,k, ). The solution is started at small, posi-
tive z where the absorptive part of the potential is very
strong. Provided z is small enough it does not matter
where the solution is started.

The resulting reflection coeScient is labeled EP in Fig.
3, which also shows the efFect of using a slightly difFerent
"classical" trajectory which conserves energy as well as
transverse momentum:

~

z
~

= [III k, —2m V, (z)]'~ /m .

These variable velocity trajectories give a result which is
only a small improvement over the original theory.

The experimental data show little or no 8 dependence in-
dicating that ripplons with q q, =0.2 A have little or
no efFect on the scattering.

The prediction that there is no horizontal momentum
given to the ripplons is consistent with the experiment of
Edwardsj Ihas, and Tarn' who observed the angular and
time-of-Aight distribution of the phonons and rotons
produced in the liquid by a beam of He atoms. The re-
sults indicated that the atoms, on average, lose energy to
the ripplons but conserve their transverse momentum.

IU. MODIFIED ECHENIQUE-PENDRY THEORY

The disagreement between the EP theory and experi-
ment could be due to the oversimplified static potential
V, and ripplon-atom interaction ((tq, both of which have
singularities at the liquid surface z=O. These singulari-
ties remain when the density profile is not assumed to be
a step function. EP argued that the singularities do not
matter because the beam is rejected or absorbed a few
angstroms above the liquid, so that the results are in-
dependent of V, and 8' very close to the surface. Our
numerical calculations show that this is not true and, in
any event, EP found it necessary to truncate V, and 8'
to obtain a result closer to experiment.

The singularities in V, and Pq are due to neglect of the
correlations between the incident atom and those in the
liquid. The correlations are, at least approximately, tak-
en into account in the variational wave function used by
EF. Therefore, in our version of the path integral
theory, we replace the static potential V, by the EF
effective potential V,z. This also takes into account the
approximate width and shape of the density profile p(z)
at the surface.

The variational theory could also be used to find a
more accurate formula for P, the interaction between
the scattered atom and a ripplon of wave vector q. One
would use a trial wave function which represents the
scattered atom and the liquid with one ripplon excited.
Rather than attempting this, we have constructed an ap-
proximation for Pq which is correct at all z for q=0, and
for q & 0, has the correct asymptotic properties as z ~ oo .
This approximation replaces 3aKI(qz)/z in Eq. (13) by
(z —z, ) V',~El(tl

~

z —z,
~

):

cos(q r~~} dV, II
Pq~= — — (qs) ICI(qs),

2 Q dz
(21)

where s:—~z —z, ~. The quantity z, =l/(2P)=0. 46 A
appears in these formulas because the efFective EF poten-
tial V,s~ —a/(z —z, ) for large z. This means that, as
seen by the atom, the efFective position of the surface is
at z =z, rather than z=0.

A ripplon mode with q=0 corresponds to a transla-
tion of the surface up or down so that Pq o, to first or-
der, is given by

o=(1/&Q)d V,tt/dz .

Equation (21) agrees with this since (qs) E, (qs)=2 at

q =0.
Equation (21) also has the correct asymptotic form for
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large z where V',ff~3a/(z —z, ) . In this limit, pq
reduces to the same form as that calculated by EP, but
with the surface at z, .

In contrast with the original formula (13), Eq. (21) is
well behaved at all values of z. Although we have no
way to determine the real particle-ripplon interaction
when z —z, is close to zero or negative, (21) gives a Pq
which is smooth at the surface and goes to zero inside
the liquid.

For simplicity we have retained the ripplon spectrum
co =(o'ipo)q although deviations from this simple for-
mula become substantial' for wavelengths approaching
the thickness of the surface. Although it would have
been easy to carry out the numerical calculations with a
different co(q), consistency would require the inclusion of
the coupling to the phonon and roton modes as well.
The simple formula co =(o/po)q' is appropriate to a
llquNi with a sharp surface and which 1s 1ncompresslble,
so that it has no phonon modes.

With the simple ripplon spectrum there is an infinity
in the integral over q in Eq. (11) at q~ oo and z =z, .
This can be suppressed by taking an upper limit q for
this integral, so that the e8'ects of ripplon modes with

q ~q are not included in the scattering amplitude. %e
6nd that q -3 A eliminates the efkcts of the in6nity
while at the same time the results are independent of q

1Ripplons with q ~ 3 A ' correspond to energies greater
than -60 K according to the ripplon spectrum we are
using. The energy available to excite a ripplon is only
L4+fi k, /Zm: no more than —10 K. Therefore the
value of q does not matter provided it is suSciently
large.

The cutoff q~ may also be used in another, more phys-
ical way: to eliminate ripplons with wavelengths smaller
than the thickness of the surface. The ripplon spec-
trum" co(q) and the interaction tt}q are largely unknown
in this range. In addition the impulse approximation is
invalid for ripplons with q larger than q, . In the EP
theory q„given by (20}, depends on the trajectory and
on k, but is approximately 0.2 A ', corresponding to
ripplons of energy -1 K. By choosing q -q, we can
study the contribution to R (k, } from ripplons outside
the impulse approximation. As we shall see, the numeri-
cal results show that including these ripplons gives large
deviations from experiment and, in particular, a substan-
tial dependence of R (k, ) on 8. The absence of any 8
dependence in the experimental data seems to indicate
that the efkct of ripplons with q ~q„ if it could be
properly calculated, is actually quite small.

One should note that, of course, decreasing q always
shifts the results closer to experiment since, in the limit

of q ~0, the eff'ect of the ripplons disappears and the
theory reduces to that of EF. The EF potential was ad-
justed to fit the data without the ripplons, so that it may
not be the correct e8'ective potential. %e have not tried
to readjust V,z.

With these modifications the impulse transferred to
the atom P q

becomes

$ cff J Jef(r(t))dr

1 d Veff'(z)= —2
" —cos(q. r~~)'0 2&Q

X(qs) E2(qs)
dz

(22)

The velocity
~

z
~

is given by the analog of Eq. (19) with

V, replaced with V,z. To keep the angular dependence,
the term q ri must be calculated as a function of z:

tl r~~(z}=q r~~(z)r (z,zo, k, )

haik,
=q tan8 t (z, zo, k, )cosg,

m

with

dz'/m
t( z zo, k)=

zo [i}I k —2m V,ff(z')]

where g is the angle between q and rt.
The effective attenuation factor y,z, which replaces y,

is given by

oy„=exp —,J'" dg I dqq' (24)

The derivative of 1n(y, ff) with respect to zo contributes
two terms to W,ff [see (18)]. One term comes from the
integral over z in (22). The second comes from the
dependence of q.

r~~ on zo in (23). The second term is
zero for 8=0 and we have verified numerically that it is
negligible for 9~0. Thus the effective imaginary poten-
tial is

i d V.ff(zo)
iW, ff(zo, k„8)=— I dq v'q (qso) I(.2(qso)

4a+poa dzo

d V,ff(z) Jo[q (Ak, /m)tan8 t (z,zo, k, )]

[iri'k,' —2m V,ff(z)]'~'/m
(25)
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FIG. 5. The imaginary part of the potential in the
Echenique and Pendry |,'EP) theory and the same quantity in

the present work for two values of the ripplon cuto8'q

with

so=
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FIG. 6. The probability
~ y, (z)

~

of completing a trajectory
with the creation of only one ripplon, and the probability
1 —

~ yo ~

' of creating one or more ripplons, for an atom with
o }

k, =0.2 A at normal incidence (8=0). The solid curves are
the present theory calculated with the ripplons above q =3
o

A omitted. The dashed curves are the EP theory calculated
with the variable velocity trajectories of Eq. (19).

The result of evaluating Eq. (25) numerically
is shown in Figs. 2 and 5 for k, =0.2 A ' and q =3
A . Note that IW,tr(z} is positive for some values of z.
A positive imaginary potential indicates the "creation"
of particles in the beam. This corresponds to a multiple
interaction between an atom and a ripplon mode. The
atom loses some energy interacting with the ripplon field
and is knocked out of the beam. The atom interacts
again with the ripplon field regaining its energy and
resuming its place in the beam. This process also ex-
plains why ripplon modes of energy Rm larger than the
energy available from the atom 1.4+fr k, /2m can, in

principle, inAuence the reAection coe%cient. However,
the behavior of 8',z below z=3.5 A is mostly academic
since EF showed that 8 (k, ) is not sensitive to this re-
gion.

An important conclusion from the EP theory is that
atoms approaching within approximately 5 A of the sur-
face always produce one or more ripplons. A plot of
1 —

~ yo ~

= 1 —
~ y ~, the probability of completing a

trajectory with the creation of at least one ripplon, is
shown in Fig. 6. Also shown is a plot of

~ y, ~, the
probability of creating one and only one ripplon. The
probability of exciting n ripplons

~ y„~ is related to
i yoI

'
by

! y. I'= Iyol'L' —» IyoI'j"«'.
The probability of exciting no ripplons

f yo ~
may be

calculated using Eq. (24), or by integrating Eq. (18):

W,s(z)
po =exp —2 dz

'o A'fz
f

Our results, the fuB curves in Fig. 6, are calculated for
q =3 A '. Note that 1 —

) yo ~

—
~ y, ~

is the proba-
bility for creating Inore than one ripplon. As in the

original EP theory, we find that this is appreciable below
z-5 A.

Figure 7 shows the dependence of 1 —
~ yo ~

on q
the cutoff in the ripplon spectrum, at two different
values of k, and at normal incidence, 8=0. The cutoff
has a strong effect, particularly at large values of k, .
The probability that an atom with k, =0.6 A ' excites
at least one ripplon is substantially reduced for q =0.2
A . This value of q is the most plausible one since it
excludes ripplons whose frequency is too high for the
impulse approximation to be valid. The absence of any
measurable 8 dependence in the experimental data indi-
cates that these ripplons do not contribute to the
reflection coeScient. Moreover it is clear that, if the
motion of the high-frequency ripplon modes were taken

10

z (A)

FIG. 7. The probability 1 —
~ yo f

-' of completing a trajecto-
ry with the creation of one or more ripplons, for an atom with

o 1

k, =0.1 or 0.6 A, for various values of the rigplon cuto8' q
The dotted curves are calculated for q =0.2 A, the dashed

o —l

curves for q,„=0.5 A, and the solid curves are for q =3
A
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q =0.5A

4 5

z (A)

6 7 8 910 10

FIG. 8. The efFect of the angle of incidence on the probabili-
ty 1 —

~ yo~ of completing a trajectory with the creation of
one or more ripplons, at constant total wave vector k=0.5
o 1

A . The solid curve is for 8=0 (normal incidence), the
dashed curve is for 8=70' (k, =0.17 A ), and the dotted
curve is for 8=87' (k, =0.026 A ).

+ [ V,tr(z)+i W,tt(z, k„8)]f=
2m d~2 2&l

(28)

into account, the impulse transferred to them by the
atom would be reduced below that given by Eqs. (12)
and (22).

The effect of the angle of incidence on 1 —
~ yo ~

is

shown in Fig. 8. For q =0.2 A ', the 6gure shows that
1 —

~ yo ~

increases considerably with 8, at constant to-
tal wave vector k. At constant k„ it decreases with 8
but, as we shall see, the predicted reAection coeScient
hardly depends on 8.

The rehection coeScient, R (k„8) is found by numeri-
cal integration of the one-dimensional Schrodinger equa-
tion:

0.4

FIG. 10. The reflection coeScient R t'k„8) calculated for
angles of incidence up to 87' with q =0.5 A . These curves
show an angular dependence not seen in the experimental data.

The solution is started deep inside the liquid where
V,&~ —L4 and i 8',&~0.

The reAection coeScient calculated for three values of
the cutoff q is shown in Figs. 9, 10, and 11 as a func-
tion of k, and 49. Only for q =0.2 A ' are the results
in satisfactory agreement with experiment, with negligi-
ble angular dependence, and in close agreement with the
EF theory.

The effect of our more realistic V, and Pq, and the
0

cutofF' q =0.2 A, is to reduce the ripplon creation
compared to the EP theory. According to Figs. 7 and 8
there is a substantial probability that an atom can

10

q =0,2A

N
)0 2

10

10
0.0 0.2 0.4

19
0.0

FIG. 9. The reflection coef5cient R(k, ) calculated with
o

various ripplon cutouts, q =0.2, 0.5, or 3 A . Ripplons with
o ]

wave vectors above 0.2 A are outside the range of the im-

pulse approximation. The Edwards-Fatouros (EF) curve,
which is a good 6t to the data, is shown for comparison.

FIG. 11. The reflection coeScient R (k, ) calculated for 0,
70', and 87 angles of incidence with q =0.2 A, the approxi-
mate upper limit in the impulse approximation. The 0' curve
is the highest of the three and the 87 curve the lowest. There
is very little angular dependence in good agreement with exper-
iment.
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penetrate the surface without producing a single ripplon.
It ~ould then be able to produce a roton or single or
multiple phonons, provided transverse momentum and
energy can be conserved. However, in the region of the
surface, the indistinguishability of the scattered atom
from those in the liquid becomes a dominant factor,
which the path integral theory does not take into ac-
count. Moreover we cannot calculate

~ yo ~

or V,s
when the atom enters the liquid.

VI. OISCUSSION %NO CQNCI. USION

A fairly clear and consistent picture of scattering at
the helium surface can be drawn from the path integral
theory, from the variational results of EF and from the
experimental data. Although this picture is not substan-
tially difFcrent from that drawn by EF (see their "Dis-
cussloll section), sorllc Rddltlollal dctRlls hRvc bccll add-
ed, %e describe this picture here.

The space where scattering takes place can be divided
into two regions: the "screened region" below z =3.5 A
on the scale defined by the EF effective potential, and
the "unscreened" region where z~ 3.5 A. The properties
of the two regions are as follows.

A.. Unscreened region (s&3.5 A )

According to EF, substantial changes in the real or
imaginary potential in the screened region have no ap-
preciable efFect on the reflectivity 8 (kz). Therefore all
the elastic reAection of atoms takes place in the un-
screened region.

According to the path-integral theory, excitation of
ripplons below the cutoff for the impulse approximation,
q~ -0.2 A ', takes place in the unscreened region. The
fact that ripplons above this cutoff, which corresponds
to a ripplon energy of —1 K, do not contribute much to
the scattering in the unscreened region is deduced from
the lack of any 8 dependence in R (k, ). Since the rip-
plon modes which are excited can be treated within the
impulse approximation, the transverse momentum of the
atom is conserved in the unscreened region. In addition,
Fig, 11 shows that the excitation of ripplons with q g0.2
A ' has little or no efFect on the reAection coeScient.

Although no explicit calculations have been carried
out, it seems plausible that the excitation of ripplons in
this region produces negligible inelastic scattering, in
agreement with the experiments.

The results in Sec. V show that, although the majority
of incident atoms excite ripplons in the unscreened re-
gion, there is a substantial probability for atoms to reach
the liquid without exciting a ripplon. This accounts for
the observation by Baird et al. ' ' of single phonon or
roton events: the evaporation of an atom by a phonon
or roton apparently with conservation of energy and
transverse momentum. This is the inverse of the process
in which an atom passes unscathed through the un-
screened region to create a single phonon or roton in the
liquid.

Note that, in the present picture, there is no contra-
diction between the observation of single-roton
events' ' and the absence of any measurable feature in

the reflection coefFicient or in the spectrum of evaporat-
ed atoms ' at the roton threshold. The creation of the
roton by the atom takes place in the screened region,
and consequently it does not affect the reQection
coeScient.

8. Screened region (z~3.5 A)

In the screened region of space, where the density of
the liquid is substantial, the effect of symmetry is impor-
tant: The symmetric EF theory differs from the unsyrn-
metrized version when the amplitude function
a(z)=Q(plpo) is not negligible compared to unity. In
the surface part of this region, where the width of the
density profile is defined, even the static efFective poten-
tial V,fr is unknown. However, it is clear that the
screened region is highly absorptive, or "black" as far as
scattered atoms are concerned. More precisely, the
probability amplitude, as defined in the context of the
path-integral theory, for an atom reaching this region
and to be rejected out is extremely low. This is inferred
from the atomic scattering data at glancing incidence.
No vestige of total reAection from the single-phonon or
multi-phonon channels is seen in these data either above
or below the roton threshold. %e deduce that, below
the roton threshold, any atom which does not produce a
phonon or phonons, produces ripp10ns in the screened
region.

If no ripplons have been produced in the unscreened
region, an atom which hss reached the screened region
has a high energy, at least 1.4 ——(7.15 K)ks. Consequent-

ly the ripplons produced in the screened region may in-

clude both high and low frequencies. There is no satis-
factory microscopic theory for the production of high-

energy ripplons (or even for their energy spectrum) or
for the production of protons or phonons in the surface
part of the screened region.

The picture we have drawn and the predictions of the
path-integral theory could be tested quantitatively by
measurements of the probability of the various absorp-
tion and excitation processes in the liquid. For instance,
it would be useful to know the fraction of the atoms
with incident momentum Ak which convert directly into
single excitations in the liquid. This fraction should be
no larger than the probability predicted by the path-
integral theory for such atoms to reach the liquid
without producing low energy ripplons (&1 K) on the
wsy. Alternatively the probability for a single-energetic
excitation to produce a single atom might be measured.
This is related by detailed balance to the probability of
the inverse process.
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In this appendix we treat the problem of calculating
the reAection coeScient in the symmetrized EF theory
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when the energy of the incident atom is above the
threshold for the creation of a roton. In this situation
there are three solutions to the single-particle
Schrodinger-type integro-diiferential equation [(21) in

EF] which have the same energy fico. These correspond
to a phonon in the liquid with wave vector q1 or a roton
with wave vector qz or q3.

This problem was analyzed incorrectly by EF because
they treated the three solutions as giving three indepen-
dent, degenerate N-body wave functions %', , %z„and 4'3.
In fact the 4I are merely three difkrent trial functions
in a variational theory. They may be combined to form
an improved trial function. %'hen optimized, the com-
bined function gives a lower energy and it also deter-
mines the reflection coeScient above the roton threshold
and the relative probability for conversion to a phonon
or one of the two roton states.

The improved function is

the phonon and roton wave vectors, are different from
each other, so the liquid region only contributes to the
diagonal matrix elements m =h —cg

Now consider the contributions from the vacuum re-

gion. These are proportional to

where the quantity D is independent of a and P. As ex-
plained in EF, each 4' represents a state in which the
particle current of atoms in the vacuum is equal to the
particle current of phonons (or rotons) in the liquid.
Consequently

I

A
I

and
I
R

I

are related:

(A6)

i=la=1
(Al)

If the phonon channel (a=1) is totally reflected, then

I R, I
=1 and

I
~, I

is infinite.
The reflection amplitude in the improved state 4' is

where %o(r, , . . . , rx, ) is the ground state of the liquid
containing N atoms and with a surface. The functions

P; =—P (r; ) are the three solutions to the single-particle
integro-differential equation in EF. The e are chosen to
minimize the expectation value of the energy
&E & = & 4

I
H

I

~Ii &/& ~p
I
i' &. Using the Lagrange multi-

plier e and minimizing & 4
I
H

I

4'
&
—s& 4

I
4 & gives the

three equations

R=gc„A R gc A, .

g(c A )(m &/A )=0. (A8)

The coelcients (c A ) are given by a modification of
(A2):

3

g c m &=0, (p=1,2, 3),
a=1

where

(A2) When
I
R,

I

=1, all the elements of the matrix
(m &/A ) remain finite except for m ii /3, . From (AS),
m i i /3 i has magnitude

m ~p A ~p Eg~p
I

m ii /~ i I

=D
I
~ i I

(1+
I

R i I

'), (A9)

ik x —ikz ik z

P =A e "(e ' +R e '
), z~oo

lk X —lg Z

go=e e, z —+ —oo

(A4)

~here k is the wave vector of the atom parallel to the
surface, and R~ is the complex reflection probability arn-

plitude in the state O' . The complex quantities 3 are
determined by the integro-dift'erential equation. As
shown below„ they are related to the 8 . The three q,

The matrix elements h p, g p have contributions from
the "liquid" and the "vacuum" proportional to the
volume of these regions. Because of the factors I/Qp;
in 4, the liquid and vacuum contributions are compara-
ble in magnitude. There is also a surface contribution
which is negligible for a large volume-to-area ratio.

The volume contributions to h p and g p may be cal-
culated from the asymptotic forins for $:

which is infinite because
I A,

I
is infinite. Consequent-

ly, from (A8), c, A, is zero and, from (A7), the reAection
amplitude is solely determined by the roton amplitudes
R 2 and R 3 If it were not for the excitation of ripplons,
this would give a very large decrease in the reAectivity at
the roton threshold if the phonon channel were totally
reAected.

Even when the roton wave vectors are close to the
value at the roton minimum qo, the contributions to the
matrix elements from each roton channel are unequal.
(Remember that the two kinds of rotons have diA'erent
momenta in the z direction, so that Wz and '03 are
diFerent evan at the roton minimum. ) This implies that
the "anomalous" kind of roton, whose velocity dao/dq is
opposite to its momentum Aq, is produced at a different
rate from that of the ordinary kind, where velocity and
momentum are parallel. The production of anomalous
rotons by atoms or the reverse process, the evaporation
of atoms by anomalous rotons, ' has not been ob-
served experimentally. It is plausible that the matrix
elements for these processes are smaller than for those
involving ordinary rotons, since much more momentum
must be transferred to the center of mass of the liquid.
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