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We propose a novel statistical-mechanical approach to a system of strongly correlated electrons
in a partially filled narrow band which reproduces rigorously the situation in the atomic limit. In
this approach the doubly occupied configurations are excluded both in the real and in the recipro-
cal spaces. Employing this principle we calculate the thermodynamic properties of those elec-
trons. The metallic state, corresponding to a partially-filled-band case, exhibits a Fermi-
liquid—type behavior at low temperatures and transforms into a spin liquid at high temperatures.
This feature of our results is reminiscent of the behavior in both magnetic metals and heavy-
fermion systems. Additionally, the approach reproduces correctly the statistical properties of the
system of localized moments in the limit of the half-filled band, corresponding to the Mott insulat-
ing phase. These results are not obtained if one starts from the Fermi-Dirac distribution for the
quasiparticles. The last assertion is reinforced by an explicit derivation of a statistical distribution
function for correlated electrons which reduces to the Fermi-Dirac distribution in the limit of
weak interactions, as well as to the distribution for the spin liquid derived earlier in the limit of
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strong correlation between the particles.

The problem addressed in this paper can be formulat-
ed as follows: Suppose we have a correlated metal
represented by a half-filled (n =1) narrow band.! As the
ratio U /W of the intra-atomic Coulomb interaction U to
the bare bandwidth W increases, the system transforms
either continuously’ (at temperature T =0) or discon-
tinuously® (at 7 >0) into the lattice of localized magnet-
ic moments (for U > U, ~W). The metallic phase near
the transition may be represented by an almost localized
Fermi liquid,* while the insulating phase has an entropy
S =S; =R In2 per mole. For the case of partially filled
band (n < 1) the ground state is always metallic because
charge transport takes place via holes in the lowest
Mott-Hubbard subband.” However, one may inquire
into the nature of the correlated liquid for U > U.(n)
(herein after called briefly the spin liquid, SL) corre-
sponding to the spin lattice for n =1. Will this liquid
differ from the Fermi-liquid state? This type of question
is of fundamental importance for its own sake. Addi-
tionally, it is relevant to the heavy-fermion systems,
since it has recently® been proposed to represent them
via an almost half-filled and very narrow band of strong-
ly correlated electrons. It is this particular situation of
an almost half-filled narrow band we concentrate on
here.

The difference between the correlated electron liquid
(SL) and the Fermi liquid (FL) can be characterized easi-
ly in the high-temperature regime U>>kpT >>W*
=®W, where W is the quasiparticle bandwidth and @ is
the band-narrowing factor.” Namely, if we have N, elec-
trons and N states available then the number of
configuration for SL state (with the double occupancies
of each state excluded) is 2N9N!/[Ne!(N——Ne N} which
yields the molar entropy

S;=R[nIn2—nInn —(1—n)In(1—n)], (1)

with n =N,/N. It reduces to S; =R In2 for n =1. By
contrast, the corresponding entropy for the Fermi liquid
is

Sg=R[2In2—nlnn —(2—n)In(2—n)] . (2)

Hence, for n =1, Sp=25;. One should emphasize that
only Eq. (1) correctly reproduces the value of S in the
atomic limit. The purpose of this paper is to propose
the statistical distribution function of the energy levels
for the quasiparticle states which reproduces correctly
the behavior of electrons in both the atomic limit and
for the arbitrary filling, as well as the properties of local-
ized spins in the Mott insulating phase, corresponding to
the half-filled band case. These features are absent when
we start from the Fermi-Dirac distribution, as illustrated
in Appendices A and B.

To describe SL state at low temperatures (e.g., S; —0
for T —0) we make a basic assumption that for a strong-
ly correlated electron liquid (U /W — « ) the double oc-
cupancies are excluded not only in real space but also in
reciprocal (k) space. This is because the quasiparticle
states representing the two Mott-Hubbard subbands with
energies {€] and {e+4 U]} are separated energetically, as
has been demonstrated with the example of a Lorentzian
density of states (DOS) in the bare band.’ In other
words, the energy manifolds {¢;} and {e;,+U} for
U/W >>1 are disjoint, independent of the quantum-
mechanical representation {i} labelling these energies.
One can also use a phase-space type of argument by not-
ing that for U/W >>1 the doubly-occupied (spin-
compensated) configurations should be projected out

1532 ©1988 The American Physical Society



37 STATISTICAL THERMODYNAMICS OF STRONGLY ...

from the physical space,® independently of the represen-
tation (Bloch or Wannier) chosen to describe the single-
particle states. In other words, the same number of de-
grees of freedom, corresponding to compensated spin
configurations, must be removed from either k space or
real space. For n =1 (i.e., for the Mott-insulator case)
this amounts to removing N configurations out of avail-
able 2N states. Implementation of this principle will
lead to corrections to the Fermi-Dirac distribution, since
the latter contains no correlation between the quasiparti-
cles. Hence, our approach differs at the outset from the
Fermi-liquid perturbative approach to the interacting
electrons. The nonperturbative nature of the ground SL
state derives from the qualitative difference (for n =1)
between the metallic and Mott insulating states. We as-
sume this difference persists also for n <1, i.e., the
screening effects are insufficient to reduce drastically U.

The number of configurations for the system of {N,}
fermions distributed over {g,} states and with the dou-
ble occupancies excluded is

8k
Ny

N!

W= — k.
I1 Nit!Ng !

k

where N, is the number of electrons with spin o,
Nie=Ng1+Nyy
and

8k
Ny

8!

=N—k,[(gk—Nk mn-t.

This leads to the expression for the entropy (per site)
R
SL = — 2 [(1——nk )ln(l—nk )+nkT lnnkT
N %
+ng,Inn ], (4)
where n;,=N,,/N, and n; =n;;+n; . This expression

should be compared with that for noninteracting fer-
mions

SFZ—'

= |

2[(lwnko)ln(lmnka)‘*‘nkalnnka] N (5)
k,o

for which the doubly occupied states |k1l) have not
been excluded from the phase space.

Taking Eq. (4) as a starting point and using the
method of the most probable distribution one obtains the
set of optimal occupation numbers {#;,} in the form

= 1

—(1—7 , 6
Moo ==k e p B By — )] (©

where E,, denotes the quasiparticle energy, p is the
chemical potential determined from the condition
(1/N 3, ,x,=n, and B=(kzT)~'. This distribution
function differs from the ordinary Fermi-Dirac formula
by the factor 1—# ,_, which expresses the conditional
probability that there is no second particle with spin —o
if the state o is already occupied. If E;,=FE, we find
that either 77 1 +# =1, or
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For T =0 each occupied state is singly occupied. This is
the principal feature by which the present formula
differs from the Fermi-Dirac distribution, as is illuminat-
ed in Fig. 1. It leads also to the doubling of the volume
enclosed by the Fermi surface in the SL state compared
to that for the FL state.”® Hence, the Luttinger
theorem®?’ is violated, since we regard the SL state as
the one which cannot be obtained perturbatively, start-
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FIG. 1. Schematic representation of the difference in the k-
space occupation for the ordinary fermions (top) and the
strongly correlated electrons (bottom). The spin subbands are
not symmetric in the magnetized state. This distortion does
not appear in the paramagnetic state.
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ing from the Fermi-Dirac statistic. Also, it is worth not-
ing that one obtains the distribution (7) when consider-
ing the statistics of single-electron donors, with the
difference that {ko} then labels the donors in real space.
Hence, one can say that the proposed function (6) de-
scribes the statistical distribution of particles near the
atomic limit in the same way as does the Fermi-Dirac
distribution in the complementary regime of weakly in-
teracting quasiparticles describing the Landau-Fermi
liquid state. In other words, our basic equation (3)
expresses directly the localized-moment behavior at high
temperatures and as such assumed to hold true also at
low temperatures. Thus, the function (6) describes
correctly T—0 and T— o limits. It may represent a
first step towards the correct formula for the entropy of
the strongly interacting electron liquid. It is natural,
that we have called the liquid it describes the spin liquid
state, since it incorporates some of the properties of both
the Fermi liquid and of the localized (spin) moments.

In order to calculate thermodynamic properties we
must specify the quasiparticle energies which we take to
be in the form>” 10

Ey,=®,€6,—pupH, 0,
where

Q,=(1—n)/(1—n,), n,=N"'37,,
k

up is the Bohr magneton, H, is the applied magnetic
field, and €, the energy of electron in a bare band. The
internal energy is then

E(T)= EEkaﬁka ’
k,o

and the specific heat C,=0E(¢)/3T. Explicitly, for
H, =0 we find

E(T)zzﬁkf

k.o

‘?ﬂ ®)

f(x) being the Fermi-Dirac function with the shifted
chemical potential for the spin liquid Z=p+kzT In2,
determined from

=n, 9)

We see that Egs. (8) and (9) formally coincide with those
for either nN spinless fermions or with those for the Fer-
mi liquid containing 2nN particles but with & corre-
sponding to nN particles in the system.

The Eqgs. (8) and (9) require an explanation. First, we
use the identity

1 _ 1
1+(3)exp[B(E —p)] ~ 1+ exp[BE —f1)]

with T=p+kgT In2. This is to show a formal connec-
tion of the distribution function derived here with the
ordinary Fermi-Dirac function. Second, strictly speak-
ing the quantity 7, describes the number of electrons in
the singly occupied configuration. So the operators n,,
correspond to the entity nl (1—n?__) in the terms of

’
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Fermi operations n :C,:UC,W, in the same way as the
atomic-operator rePresentation big=C,(1—n9_,),
bit,b,-azC,-t,Cw(1-C,-_0C,_o) corresponds to the fer-
mion operators (C;,,n. ) in the real space.>*® Hence,
one can say that in Egs. (8) and (9) the summation is
over singly occupied configurations in the reciprocal
space rather than over independent Fermi quasiparticle
states.

The temperature dependence of C, and C, /T is shown
in Figs. 2(a) and 2(b), respectively. The rectangular form
of DOS in the bare band has been used. The specific
heat has a pronounced maximum below which the linear
dependence,

C,=(m2/3)Rp%py) ks T/W)d~ ' =yT , (10)

is obtained [p%gy,) is the density of bare states at
po=p/P]. The value of y is enhanced by the factor
®~'=(1—n/2)(1—n). The position of the maximum of
C, is determined by the width of the unoccupied part of
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FIG. 2. (a) Temperature dependence of the specific heat c,
for strongly correlated electrons for the band fillings n =0.45,
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dence at low temperatures. (b) C, /T as a function of T2 in di-
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the band, W®/2—u. Thus the distribution (7) leads to
an enhanced linear specific heat particularly for n—1
which is of the same type as for FL state'® (except for
the additional factor due to the exclusion of half of the
configurations). For comparison, in Figs. 3(a) and 3(b)
we have plotted C, and C, /T for the Fermi-Dirac distri-
bution case. The maximum is connected with the ex-
istence upper band limit [( W /2)®] for the thermal exci-
tation of the electrons.

One of the features of SL is the value of the entropy in
the regime kg T >>W®. In Fig. 4(a) we have plotted the
value of S; (T — ) as a function of n [cf. also Eq. (1)],
while in Fig. 4(b) the dependence S, (T) is drawn. The
temperature dependence of the entropy for the Fermi
gas is shown in Fig. 4(c). One should notice that
S; (T — o ) per mole grows rapidly from the value R In2
as soon as n starts deviating from unity. However, for
T =0, f;,=0 or 1 (cf. Fig. 1) and hence S, (0)=0.
Thus, S;(T) expresses both the Fermi-liquid behavior
for T—0 (where S; ~T), and localized-moment behav-
ior for n =1 (where S; =R In2) of the SL state. Despite
these similarities in this particular situation one should
be aware of the basic difference for n=£1 of the spin
liquid with either the FL (for T— o« ) or with the system
of localized paramagnetic moments [for T—0, cf. Figs.
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1 and 3(b)]. The full entropy of FL is recovered in the
limit k5 T >> U, here regarded as unphysically large.

The correlated liquid responds to the magnetic field
both by changing the population of the spin subbands (as
in FL) and by distorting the subbands due to the spin-
dependent band narrowing factor ®,. Namely, the sub-
band with the moment M|H, becomes broader for
growing H,, eventually recovering the full bandwidth W
of the bare band for upH, * Wn. This broadening is re-
sponsible for the linear dependence M ~H, over a wide
field range. It also leads to decrease of the specific heat
coefficient ¥ with the field for strong fields.

Quantitatively, introducing the factor ®, into the
quasiparticle energy for H,0, we obtain the following
formula for the zero-field susceptibility (per site)

2 —1
175:) EB(2—n/2)
=% ' T kT | an

X

where Eg =, f W/zdepo(e)f(e) is the band energy of

quasiparticles. Aysyﬁle temperature decreases, the system
approaches ferromagnetic instability, in agreement with
the rigorous Nagaoka result!! for U = . This instabili-
ty disappears if the kinetic exchange interaction® be-
tween the correlated electrons is included for large but
finite U (see the comment under Ref. 12). In the oppo-
site limit T— o we get the Curie law X=npu3 /(kpT),
i.e., the value for the system of localized spins.

Finally, we discuss briefly the relevance of our results
to the heavy-fermion systems, in terms of the strongly
correlated (SL) liquid. We have shown before that the
SL state is stable with respect to the FL state in the low
T range. The high-temperature value of S ~R In2 has
been observed in UBe,; and interpreted by introducing a
phenomenological correction to the entropy of
fermions.®®’ This value follows naturally from our ap-
proach for n — 1. Furthermore, it has been argued very
recently'? that the value of S(T— o) for this system
can be substantially higher than R In2. This feature can
be explained by noting that the saturation value for the
entropy depends on n, as shown in Fig. 4(a). We believe
that the filling of an extremely narrow band can be per-
turbed easily by a technological process; hence, the
difference in the results. Furthermore, if the f"
configuration is recovered at high temperature then the
entropy will approach the limit R In(2J +1)>R In2,
where J is the effective angular momentum.

In summary, we have proposed a novel description of
strongly correlated electrons based on the removal of the
compensated spin configurations from the phase space
for the quasiparticles. The description combines normal
Fermi-liquid behavior for T—0 (i.e., enhanced Pauli sus-
ceptibility, large ¥, entropy ~7, M~H,) and
localized-moment type of behavior of T — « (the Curie-
Weiss law for susceptibility,'* S ~R In2). It would be of
interest to develop a more microscopic justification for
those systems, e.g., by an identification of the large or
divergent values of the Landau parameters'® with the ex-
clusion of some of the quasiparticle states assumed in the
present work. Also, an application of the distributions
(6) or (7) to the description of the superconducting state
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would be of interest,

From the theoretical point of view our model treats
the correlated narrow-band electrons in a different way
compared to the approach in Ref. 6(a). Namely, the au-
thors in Ref. 6(a) correct in a phenomenological way the
entropy in order to reproduce the limiting, value R In2
as T— «. This amounts (in statistical-mechanical treat-
ment) to the removal of the doubly-occupied
configurations for the excited quasiparticle states only.
In this paper, the doubly occupied (spin-compensated)
configurations have been explicitly removed from both
the ground and the excited configurations. Under this
sole assumption we reproduce an overall behavior of the
entropy and the specific heat for the correlated (e.g.,
heavy-fermion) system in the full temperature range.'®
Despite the principal difference between the statistical
approach presented here and that of Refs. 6(a) and 18,
the obtained results are similar. This is because at low
temperature the same low lying excitations contribute to
thermodynamics in both cases [cf. Figs. 1(a) and 1(b)].
The difference in the basic assumptions concerning the
statistical treatment of the quasiparticles in the two ap-
proaches follows from the lack of knowledge of the de-
tailed value of U for those systems. Namely, since in
heavy-fermion systems hybridization is quite important!’
in forming the effective narrow f band, the value of U
may be much smaller than that in the atomic limit. In
any case, we have assumed that it is far above the value
needed for the Mott localization of the corresponding
states.

As has been stated above, our approach reproduces
the statistical mechanics of electrons in the localized
states. In Appendix A we derived the equation for the
magnetization for localized electrons. It is also easy to
show that the distribution (6) describes correctly the
statistics of single donors.!® In Appendix B we propose
a more general distribution function for the correlated
electrons which reduces both to the Fermi-Dirac distri-
bution function in the limit of weak interactions, as well
as to the new distribution function introduced in this pa-
per in the limit of strong correlations between the parti-
cles. This analysis provides a further support for the
physical concepts proposed.
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APPENDIX A: MAGNETIZATION
IN THE LOCALIZED-MOMENT LIMIT

In this Appendix we make a simple observation about
the localized-moment limit, viewed as a limiting situa-
tion of either the system of particles obeying the Fermi-
Dirac distribution or the distribution (6). For that pur-
pose we define the magnetization per particle.

oL s A —Hyy

. (Al)
2N A+
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In the localized-moment limit corresponding to Mott in-
sulator we have n—1 (and %=0), and hence
E,,=®,, —pugH,0 > —ugH,o.  Substituting this
value for E to the distribution (6) we obtain

.U'BHa

SZ= +tanh R (A2)

while for the case of the Fermi-Dirac distribution we
have

:u'BHa

(STZ)FD:-—;—tanh ZkBT

. (A3)

Only the result (A2) is correct for system of localized
spins. The additional factor } in (A3) comes from the
circumstance that for noninteracting fermions two
configurations appear which are absent for the lattice of
localized spins. These are the configurations with no
particle and two particles in the same state. One has to
notice that the result (A2) has been derived starting from
statistical distribution in the k space. Usually, one
derives it starting from the canonical distribution of in-
dividual moment directions (o ==*1) in magnetic field.

APPENDIX B: GENERALIZATON
OF THE DISTRIBUTION FUNCTION

Let us assume we have N,; doubly occupancies of N,
particles distributed among g, states. Then, the number
of physically distinct configurations for the whole system
is

w11 8!
i (Nip =Ny MNy | —Nig IN Mg —Ni +Nig )t

(B1)

By applying the same procedure of maximization of W
as in the main text with respect to {N,,}, we obtain the
most probable distribution of the particles in the form

_ l—n,_,
e = T explB(Ey—p)]

where n,;,=N,,/g,. We recover distribution function
(6) for the spin liquid in the limit n;;=0. Also, in the
limit of weakly interacting particles, i.e.,, for
Mg =Ry =H; 1A, the distribution function reduces to
the ordinary Fermi-Dirac distribution function, and the
entropy (per site) of correlated liquid

R
S——Ng

+ nkd , (BZ)

2 (Ao —Fpg) In(Fy s — Ay )+ Ay Inity
ag

+(l—'ﬁk +ﬁkd)ln(1-r—1k +ﬁkd) ) (B3)

to the entropy (5) for the Fermi gas.
In the limit E, ,=FE, we have that

Ey—p
I+n, |14 exp P
Ay = (B4)
k 1+ (3)exp v —p

For n;; =0 it reduces to the distribution (7).

Depending on the value of n,; we recover either
Fermi-Dirac distribution or that for the spin liquid.
Hence, n;,; is an extra variable which should be deter-
mined variationally by minimizing the free energy

F(T)/N=(1/N)S Ey A, —TS/N . (BS)
k,o

For that purpose we need an expression for the quasipar-
ticle energies E, ,=FE;,{ni, "y}, representing the
correlated electrons. This poses a problem at the mo-
ment. The simple minded type of estimate of n;,; can be
achieved by noting that we must have that

Z(n,-,nu):%ﬁkd .

In other words, the average number of spin-compensated
pair states is independent of the representation. Noting
that 3. (n; n;, ) =N, where n={n;n;;), we have

1 _
77=7V“§”kd .

For the sake of simplicity we assume that for sufficiently
large U, n,y~7y, i.e., is independent of k. Then n=r7,.
This means that 7i; can be determined from the ap-
proach devised before,”? equivalent in the paramagnetic
case to the Gutzwiller approach?*. In particular, for the
Mott insulating state =7, =0, as assumed in the paper.
Moreover, from (B2) we have that

Mpo=(1—My _ )AL, +0y, , (B6)

where 7 is the Fermi-Dirac function. In other words,
the statistical distribution function for k <k is dimin-
ished by the k-dependent factor 1—7, _,, superposed on
k-independent value #,;. For fi; =0 the Fermi volume is
twice of that for noninteracting fermions (cf. Fig. 1).
All of these features can be obtained also within the
Gutzwiller approach, as has been demonstrated recent-
ly." So, there is a similarity between the two ap-
proaches. However, one should keep in mind that our
simple approach is equally valid for both T'=0 and
T > O situations.

'We refer often to the Hubbard model as representing correlat-
ed electrons in a narrow band, here analyzed in U— o lim-
it. However, the main results in this paper are independent
of the particular model chosen, since they are obtained un-
der the only assumption that some configurations are pro-
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