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The phenomenological relations usually employed to describe second sound in pure nonmetallic
solids at temperatures 0 near that at which the thermal conductivity attains its maximum value

were recently found to imply a quadratic dependence of the internal energy density e on the mag-

nitude of the heat Aux q, i.e., e =eo(8)+a(8)q . The coeicient a(8) can be calculated from mea-

surements of the temperature dependence of the speed 0(8) of second-sound pulses in media for
which the unperturbed temperature field is uniform. The studies of second-sound pulses in NaF
crystals by Jackson, %'alker, and McNelly and in Bi crystals by Narayanamurti and Dynes yield

a(8) &0 and da(8)/d8&0. The theory of pulse propagation along temperature gradients is exam-

ined here in detail. For a(8) ~0 the theory implies that a small pulse propagating in a body con-

ducting heat will travel more slowly in the direction of heat Row than in the opposite direction.
The magnitude of the effect is estimated for NaF and Bi crystals.

I. INTRODUCTION

In a unidimensional Now of heat with the heat Aux q,
the temperature 8, and the internal energy density e
functions of x and t, if the accompanying deformation is
not appreciable, balance of energy yields

e, +q„=O,
where the subscripts indicate partial derivatives with
respect to t and x. Material behavior is described by
constitutive equations relating q and e to the tempera-
ture field. In Fourier's theory,

and

e =eo(8}, i.e.„e,=co(8)8, ,

with co=co(8)&0 the heat capacity per unit volume
and tc(8}&0 the thermal conductivity. (The prime here
indicates the derivative of a function of a single real
variable. ) The system of partial differential equations
governing the evolution of q and 8 in the classical theory
1S

q+tt(8)8„=0,

q„+co(8)8,=0 .

%'hen ~ and co are independent of 6I, this system yields
the familiar linear parabolic equation, co&, =a&„„ for
8=8(x, t)

It is often observed that Cattaneo's equation,

r(8)q, +q = a(8)8„, —

with r(8)&0, supplies a generahzation of Eq. (2) that
yields field equations which, because they are hyperbolic,
are free from the "paradox of instantaneous propaga-
tion. "' In 1963, Chester suggested Eq. (5) as a model of
second sound in nonmetallic crystals with ~ set equal to

3~V cz ', where V is the root-mean-square phonon
speed. At that time second sound had not yet been
observed in solids. In 1964, Guyer and Krumhansl '

showed that Eq. (5) with r the relaxation time for pho-
non processes that are dissipative because they do not
conserve phonon momentum, can hold only when

hatt &«, where stan =rtt(8) is the relaxation time for N
processes, i.e., phonon-phonon interactions that conserve
momentum. If one maintains terms 0(stan }, Guyer and
Krumhansl's use of the linearized Boltzmann equation
for phonons in the Debye approximation yields the rela-
tion

q, +w q +—'co V 8„=—,w~ V q„

which reduces to Eq. (5) with tt= ,'rcoV in the—limit of
small values of (K7 ~/cp~)q„„.

Heat-pulse experiments have shown that second sound
can propagate in high-purity crystals of the following
substances: He, 'u He, " NaF, ' and Bi.' Equation (6)
and equations obtained from it by modifying the
coeScient of the term linear in q„have been used to an-
alyze the shape of the pulses recorded in such experi-
ments. ' ' A purpose of such analyses has been to ob-
tain information about the dependence of ~z on 8. For
two materials (NaF and Bi) in which the velocity of
second-sound pulses has been measured over an appre-
ciable range of temperature, ' ' it appears that there are
intervals of values of 8 in which stan(8)/r(8) is
suSciently small that the observed pulses are governed
by Eq. (5); in each case the interval contains the value of
8, 8, at which tt(8) attains its maximum value,
a =tt(8 ).

The theory we discuss here is based on Eq. (5) and
may be called the elementary phenomenological theory
of second sound in solids. ' %'e emphasize that, be-
cause the theory can be applied only when the rate of X
processes greatly exceeds the rate of dissipative process-
es, whether they be umklapp phonon-phonon interac-
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tions or phonon-defect interactions, it is useful for only a
small class of pure crystals, and for them in narrow tem-
perature ranges. Moreover, as has been emphasized by
Mikhail and Simons, ' derivations of Eq. (5) [or its ex-
tension, Eq. (6)] from the Boltzmann equation rest on an
assumption that the relaxation time v. for dissipative
phonon processes be independent of the phonon wave
number, which suggests that values of v (and v~) ob-
tained from pulse-propagation data may be expected to
depend somewhat on the initial pulse shape. '

Coleman, Fabrizio, and Ow'en have pointed out
that the constitutive relation (5) is compatible with the
laws of thermodynamics only if the densities of the inter-
nal energy e, the entropy g, and the Helmholtz free en-
ergy f=e —8' (all per unit of volume) are not functions
of 8 alone but are instead given by functions F,g, P of 8
and q with the forms,

e =F(8,q )=eo(8)+a(8)q2,

ri=ri(8, q }=rio(8)+b(8)q2,

0=4(8 q) =40(8)+
28

The steady st-ate solutions of the system (15), i.e., the
solutions (8,q) with q,:—8, —=0, are the same as those of
the classical system (4}based on Eqs. (2) and (3). In fact,
a pair (8,q) is a steady-state solution of (4) and (15), if
and only if q is constant in space, i.e., q(x, t)=q(t), in
which case both (4) and (15) yield

q =q—:const,

8, =0, 8„=—»(8) 'q (19)

When q =—0, the solution (8,q ) has the form (80,0), with
8 constant in space and time, and is called an equih bri'
um state.

As ~ and ~ are both positive, each equihbrium state
has a neighborhood in which the system (15}is hyperbol-
ic. Whereas linearization of (4) about an equilibrium
state (8,0) yields a parabolic system that shows instan-
taneous ropagation of disturbances, linearization of (15)
about (,0) yields the hyperbolic system,

q+r(8 )q, +»(8 )8„=0,
q„+co(8 )8, =0,

z(8) =~(8)/»(8),
z(8) z'(8)

8 2

b(8) z(8) z (8)
2e'

(10)

which was put forth by Cattaneo and others, ' ' and
for which it is known that the slopes of the characteris-
tic lines, i.e., the characteristic velocities, are +0(8 )
with

(8 )=+
r(80)c (8 )

These functions obey the relations,
=+[z(8')c,(8')]-'" . (21)

(13)

(with Fe ——c)F/88, etc.), which imply the familiar rela-
tions 8rio=co, $0= —go for the equilibrium functions,
Qo, iso, aiid co =eo.

Equation (7) implies that e, is not given by the classi-
cal formula, e, =co(8)8„but instead by

e, =[co(8)+q2a'(8)]8, +2a(8)qq, , (14)

q+~(8)q, +»(8)8„=0,

q„+co(8)8,+a'(8)q 8, +2a(8)qq, =0 .
(15)

It follows from Eqs. (7)—(13) that on each smooth solu-
tion of the system (15) the rate of production of entropy,
i.e., the quantity

and hence, jf one assumes the constitutive relation (5),
one is lead to the conclusion that the evolution of q and
8 is governed by the system,

a(8) &0,
a'(8) &0 .

(22a)

Because co(8) is positive, it follows from (22b) and (7)
that, for each value of 8,

~ q ~
has a critical value

The heat-pulse experiments mentioned above yield
pulse speeds that can be identified with 0, provided the
temperature is such that Eq. (5) holds; for in those ex-
periments the pulse is propagating into an equilibrium
state, (8,0), and, when viewed as a perturbation of
(8,0}, the pulse appears weak enough to permit lineari-
zation of the system (15}.

For the two solids, NaF and Bi, for which there are
available pulse speeds as functions of 8, ' ' values of
z =~/» can be obtained from Eq. (21) in the temperature
interval in which Eq. (5) holds. Once z is known as a
function of 8, a in Eq. (7) can be calculated from Eq.
(11}. The results of such calculations are given in Sec.
III; they yield

y =g, +(q/8)„, q, (8)=+ I co(8)/[ —a'(8)] I
'~

for which

(23)

y =q /[»(8)8~],

and hence vanishes with q and is positive wherever q is
not zero.

&0,
~ q ~ &q, (8),

88
F(8,q} =0,

~ q ( =q, (8),
&0, iq i &q, (8) .

(24)
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It is our present point of view that the constitutive rela-
tion (5), and thus Eq. (7) and the system (15), are not
applicable to solids when

~ q ~
exceeds q, . We there-

fore emphasize here cases in which
~ q ~, although it has

a significant effect on e, is less than q, .35

We study here consequences of the relation {7), with
a(8) as in (22), for the propagation of heat pulses into
media which are not in equilibrium states. In the ele-
mentary theory of second sound, the relation (7) implies
that the underlying heat Aux can influence the speed of a
small perturbing pulse; our goal here is to calculate the
sign and magnitude of the effect.

u z(8)e()(8,q }+ue~ {8,q ) = 1, (25)

II. THK EFFECT OF q ON THK SPEED GF PUI.SKS

The function F of Eq. (7) determines the characteristic
curves of the nonlinear system (15). Each real root u of
the equation,

with the initial condition g(t, ) =x;. In Eq. (28),

u(g, t)=u+((, t)=U(8(g, t),q{g,t)), if x„&x;, (29)

i.e., if the pulse is traveling to the right, and

u(g, r ) =u (g, r ) = —U(8(g, r), —q(g, r)),
1fX~& X; ) (30)

i.e., if the pulse is traveling to the left. Thus
u+ ——U(8, q) is the speed with which the infiuence of a
small disturbance propagates in the direction of increas-
ing x, and —u = U(8, —q) is the speed with which the
influence of such a disturbance propagates in the oppo-
site direction. If we write hu for the amount by which
this latter speed exceeds the former, we have, by Eqs.
(27) and (26),

hu = —u —u+ ——U(8, —q ) —U(8, q )

=2UO(8, q )(}()(8,q ) =2UO(8, q ) a(8)q
is the slope of a characteristic curve through the point at
which 8 and q have the values shown. %hen q =0, the
solutions of Eq. (25) are +0'(8) with 0(8) as in Eq. (21).
The relevant cases in which q&0 are those in which ei-
ther (i) a'(8) &0, or (ii) if a'(8) &0, then

~ q ~ &q, . In
such cases we define Uo(8, q }& 0 by

2a (8)q
z(8)[co(8)+q a'(8)]

It follows that

q &0 U(8, q) & U(8, —q),

(31)

(32)

U()(8, q ) = [z(8)P()(8,q )]

[co(8)+q a '(8) ]

When (i) or (ii) holds, the system (15) is hyperbolic, for
Eq. (25) then has two distinct roots, u+ and u; these
roots are of opposite sign and are given by

u+ ——U(8, q ), u = —U(8, —q ), (27a)

U(8, q) = Uo(8, q ) I [1+/(8, q )']' ' P(8,q) I (2—71)

with

(t}(8,q ) = ,' Uo(8, q )e~(8, q —)= Uo(8, q )a (8)q . (27c)

When a'(8) &0, for
~ q ~

=q„(8) the system (15) is para-
bolic with its single characteristic slope agreeing in sign
with q and its magnitude given by

~

u
~

= [2a(8)q„(8)]
Let us now assume, in accord with experience, that

(22a) holds for all 8 and, in addition, that on the solution
(8,q ) under consideration (i) or (ii) holds, so that the sys-
tem (15) is hyperbolic everywhere at each time. Suppose
that (8,q ) is perturbed by a small pulse, i.e., by a distur-
bance of low amplitude and narrow width. If the per-
turbing pulse is located at an initial point x, at time t;, it
will arrive at another, not too distant, point x„at a time

r„&r;, provided x„=g(t, ), where g is the solution of the
differential equation,

(u+ )(u ) = U(8, q )U(8, —q ) = Uo(8, q)

u+'+u ' = U(8, q) ' —U(8, —q) '=2a(8)q .

(33a)

(33b)

Consider now a small pulse that is perturbing a
steady-state solution (8,q ) of the system (15), with the
constant q in Eqs. (18) and (19) not zero. Take x, =0,
t; =0, and x, =1 ~0, so that the arrival time t„ is the
time required for the pulse to travel from x =0 to x =i
with velocity u+(x)= U(8(x), q ). For each pair of tem-
peratures 81,I92, with 0~6I1g82, let 8' ' and 8' ' be the
uniquely determined steady-state temperature fields

obeying the conditions

8"'(0)=8,, 8"(i)=8, ,

8'(')(0) =8„8(i')(i)=8, .

Clearly, e„' ' ~ 0, e„'~' ~ 0,

8(i')(x) =8"'(i —x),

(34b}

(35)

and for the corresponding spatially and temporally con-
stant fluxes of heat, q' ', q'~', we have

q(a) &(8(a))8(a)

[P) (a) (37)

If we write t,' ' for the arrival time at x =I of the pulse
when the underlying (unperturbed) temperature field is

i.e., ~

u
~

exceeds
~ u+

~

when heat is fiowing in the
direction of increasing x. Thus, in the present theory, a
small pulse propagating in a body conducting heat will
trauel more slowly in the direcrr'on of hear jfow than in the
oppasi ie direction.

The following formulas follow from Eqs. (27):
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8' ', and t„'~' when the underlying field is 8'~', then, by
Eqs. (28), (29), (35), and (37),

r(a) f U(8(a)(g) q(a)) —)dg (38a)
0

r(p) J U(8(p)(g) (p) }
—

)de
0

J U(8(al(g) (a) )
—ldg (38b)

As q' '~0, (32) yields t,( )
& r,(p) T. hus, the time it takes

a small pulse to traverse a steady-state temperature field
8' ' in which the pulse propagates into colder regions
exceeds the time the pulse requires to traverse 8'~', the
reversal of 8' ', given by Eq. (35). For the difference of
these times, we have, by Eqs. (38), (27), (33), (34), and
(36), the remarkably simple formulas,

Sr =1„" 1(p—)=2q" J a(e("(g)}dg (39)

hr =1(8)58+0((b,e)'),
where

(42)

I (8)=2K(8)a (8) ~ 0, (43)

and 8 is an arbitrary number between 8~ and 8z, such as
(8, +81)/2. When 8, &8 ~ez, the difference ht in
transit times is governed by the temperature dependence
of the relaxation time for dissipative processes, v", for, if
in Eq. (43) we set 8=8, Eqs. (10) and (11) yield

2 r(8 ) r'(8 ) . — (44)I'(8 ) =

Of course, the time required for a pulse to traverse a
sample of length l in equilibrium with q:—0 and 8 con-
stant is 1 =l /0(8). As 0(8)= U(8, 0)= Uo(8, 0), when

b,e in Eq. (42) is small, Eqs. (38) and (27) yield, for
(1( )+r(p))/2

+0(58)=l/0(8)+0(be), (45)

where 8 again may be assigned any value in the interval
(8„81). In this same limit of small b,e, we have, to a
good approximation, at each point, 8„' ' = —8„'~'

= —58/I. Eqllat1011s (42) and (45) yield

=I (8)(8)+0(g), (46a)
tg

or, by Eqs. (10), (11), (21), and (43),

= —K(e)e'[z(e)c,(e)]-'"
de g'

8~
b,t=2 I a(8)K(8)de. (40)

8i

If 68=81—8, is small and if the interval (8),ez) con-
tains 8, the temperature at which x attains its max-
imum value, K =K(8 ), then Eq. (40) yields

82
l))t =2K f a(8)de+0((be) } . (41)

l

More generally,

where g =58/l is the mean temperature gradient.
When 8 is in (8),81), we can write

= I (8 )0(8 )+0(g)
tg

2r(8 )= 0(8 ) r'—(8 ) +0(g) . (47)

To measure b, r and b, r/v=2(r„( ' —1(p))/(1,"+1„(p)),
one may, in principle, use a single sample and one
steady-state temperature field 8' ' but measure transit
times for pulses moving in opposite directions; I;,' ' is
then the transit time to x =I of a pulse originating at
x =0 when the unperturbed temperature field is 8' ', and

t,' ' the transit time to x =0 of a pulse originating at
x =I for the same unperturbed field 8' '.

III. ESTIMATES OF a {8) AND I {8)

We now seek to calculate the magnitude of the eit'ect
described by Eqs. (39), (40), and (46) using published
studies of heat pulses propagating into regions in equilib-
rium with q =0 and 8=const.

The propagation of second sound in the (100) direc-
tion of NaF was demonstrated by Jackson, Walker, and
McNelly' shortly after evidence for the phenomenon in
NaF was obtained by McNelly et al. The NaF crystal
studied by Jackson, Walker, and McNelly was of excep-
tional purity with 8 =16.5 K, and K =K(8 )=2.4
&(10 ergs sec ' cm ' K '. In the temperature range
10.0&8& 18.5 K, heat pulses were observed with prop-
erties expected of second sound. The speed of such a
pulse is taken to be the ratio of the observed transit time
to the sample length I in the direction of propagation.
(Here, 1=0.83 cm. ) It appears appropriate to set the
transit time equal to the time of arrival of the pulse
peak, which is better defined than the leading edge of the
pulse. For our present calculations, we consider each
pulse speed so obtained to be a value of 6"(8), where 8 is
the (equilibrium) temperature of the sample in which the
pulse is propagating. We have found that the values of
0 obtained in this way from the data given in Ref. 12
can be described by a relation of the form,

0(e)-'= ~+re",
where, for 8 in K and 0 in cm sec

~ =9.09X10 ", 8=2.22y10-"

(48)

(49)

c()(8)=ae (50)

See Fig. 1. [The reader will note that, , in view of Eq.
(21), an empirical relation for 0'(8) with the form seen in
Eq. (48) gives an algebraically convenient expression for
z(8)co(8), namely 3+88";as z' occurs in Eq. (11), this
convenience was sought. No deep physical significance
should be attributed to the form of Eq. (48).] In the
range in which second sound is observed, the values of
eo calculated for NaF by Hardy and Jaswal are satis-
factorily described by

+0(g), (46b) with '
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o.=23 ergs cm K (51)

30

E

20

10

10
I

15

8 (K)

In a pure Bi crystal, the concentration of free carriers
is small at low temperatures and heat transfer is eft'ected

by phonons. Kopylov and Mezhov-Deglin reported
that for a Bi sample of high purity, 0 =3.5 K and

vm =3.0X 10 ergs sec cm K; they remarked that
in the range 1.3 —6 K, Bi obeys Eq. (50), with

a=550 ergs cm K

%orking with Bi crystals of apparently comparable puri-

ty, Naryanamurti and Dynes' observed second-sound
pulses in Bi in the temperature range 1.4&0&4.0 K.
The pulse speed at 8=3.4 K (which is close to 8 ) was

found to be approximately independent of orientation,
i.e., was (7.8+0.5})&10"cmsec ' for each of the three
mutually orthogonal axes along which propagation
occurs. For one case Narayanamurti and Dynes report
data from which 0 can be computed as a function of 8.
The data are given in a plot of observed arrival times of
pulse peaks versus temperature for propagation along
the three-fold axis of symmetry of a Bi crystal with
I =0.386 cm; we have found that the data can be de-
scribed by Eq. (48) with

n=3. 75, A =9.07~10 ", 8=7.58X10-" .

(See Fig. 1.)
Equations (48), (50), (21), and (11) yield

az(8) = A 8 +88" (54)

200—

aa(8) =—'A 8 + 88"
2 2

As u, 3, and 8 are positive, and the data for NaF and
Bi yield n ~4, the relations (22a) and (22b) both hold
here, and the critical value of q in Eqs. (23) and (24) is

q, (8)=a8 [10M + —,'(5 —n }(4 n)88"]—
Let us now suppose that 8, and 82 in Eqs. (34) are

such that 8, g8 ~82. The general formula, Eq. (40),
then yields Eq. (41), and if we use Eq. (55) to evaluate
a(8) in Eq. (41), we have, to within an error O((b, 8) ),

~m 5A
a 3g

Substitution of Eq. (55) into Eq. (43) yields, by Eq. (42),
to within O(b8),

=1 (8 )=2m a(8 )

[538 +(5—n)88" ], (58)

FIG. 1. Comparison of the empirical relation seen in Eq.
(48) ( ) vnth observations of transit times for pulses in

high-purity crystals in equilibrium at q =0. For NaF the data
were obtained from Ref. 12, and n, A, 8 are as in Eqs. (49).
For Bi the data are from Ref. 13, and n, A, B are as in Eqs.
I'53).

and, by Eq. (47), to within O(g) with g = b,8/1,

5 ~ 8 '+(5 n)a8"-—
=P8 ) (8 )= (a+@8")'"~
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Employing the values of the material parameters 0
a. , n, A, 8, and cx given above, we 6nd that, for NaF,
I (8 )=9.9X10 sec K ' and I (8 }U(8 }=0.021
cm K ', for Bi, I (8 ) =2.0X 10 sec K ' and

I (8 ) U(8 ) =0.15 cm K '. Therefore,

b, r /r' =0.0216,8/I for NaF,

b, r lro -=0. 156,8/I for Bi .

Here, t, the transit time through a sample of length I in

equilibrium with q =0 and 8=8, differs by 0(b8)
from F. [For the NaF crystal of Ref. 12, r =3.9X10
sec. For the Bi crystal of Ref. 13, we take 8 to be 3.5
K which yields 5. 1 X 10 sec for r = I /0(8 ).j

Using Eq. (60a) we find that, for the NaF crystal of
Ref. 12, if 82 ——17.5 K and 8i ——15.5 K (so that
b,8/1 =2.4 Kcm '), ht/t (i.e., ht/7t should be -S%.
[The ratio of the steady-state heat flux to the critical
value given by (56), i.e., the ratio q' '/q, , should then

be —3.4%.] Equation (60b) implies that, for the Bi
crystal of Ref. 13, if 82 ——3.562 K and 8i ——3.438 K (so
that 58/I =0.321 Kcm '), ht/t should be —5% (and
q' '/q, -3.5%). Thus we find an appreciable value for
the ratio ht/r under conditions in which the tempera-
ture gradient b,8/I and the steady-state heat Aux are

large, but not nearly large enough to imply inapplicabili-

ty of the theory because of failure to meet the condition

~ q ~ &q, . As n in Eq. (S8) is sensitive to crystal puri-

ty, larger values of At/t are expected for the same
values of 50/I when samples of higher purity are stud-
ied. Moreover, for a given material and value of 50, At

is approximately independent of I, and hence larger
values of ht can be obtained at smaller values of the
temperature gradient, if samples of greater length are
used. Because our calculations are based on data for
samples of a purity and size known to be realizable, and,
in fact, obtained some time ago, they yield conservative
estimates for attainable values of ht and ht /t.
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