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Wake potential of a swift ion near a metal surface
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The scalar electric potential due to a point charge having constant velocity parallel to a solid
surface is calculated explicitly. The calculation is based on the random-phase-approximation
theory of the dynamic electronic-response properties of a semi-infinite solid-state plasma. The
classical infinite-barrier model is used to represent the surface.

Although several important advances have been made
in the theory of the scalar electric potential in a homo-
geneous, isotropic medium due to a swift charge having
constant velocity, there has been no work reported so far
on the scalar potential of an ion moving near a solid sur-
face. The work reported in the present paper is con-
cerned with the scalar electric potential due to a swift
charge Ze moving with uniform velocity v parallel to the
surface of a semi-infinite solid-state plasma. The first ex-
plicit calculation for the oscillatory wake potential
which is produced by an ion moving in an electron gas
was given by Neufeld and Ritchie' 30 years ago. The
most recent analysis for the interaction of fast ions with
an electron gas has been carried out by Ashley and
Echenique,? who calculated the influence of damping on
wake binding energies. (For a list of references, see Refs.
2-9))

The quantum plasma fills the half-space z >0 and the
charged particle moves with uniform velocity v =vi
parallel to the xy plane at a distance |z, | from the pla-
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Here 7, (x) is the Heaviside unit step function, and the
surface dispersion formula D (g,w) is given in terms of
the bulk dielectric function €;z(7,q,;w), where g, is the
component of the wave vector perpendicular to the sur-
face:
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nar surface at z=0. The impressed Coulomb potential
Ul(r,t)=Ze |r—vti—zyZ | ! at the space-time point
(r,t) is dynamically screened, resulting in the induced
electrostatic potential ( Z is a unit vector perpendicular
to the planar surface)
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where €~ is the inverse of the longitudinal dielectric
function. Since the system is translationally invariant in
the rn=(x, ») plane and time, we may Fourier transform
with respect to space ry—r;—g and time t —t' —>o.

We take the response properties of the semi-infinite
solid-state plasma to be given by the classical infinite-
barrier model with bulk properties characterized by the
random-phase approximation (RPA). In this approxima-
tion, which neglects the off-diagonal density-response
matrix elements, € '(z,z;§,w) is given in the semi-
infinite limit of plasma thickness by!®

1

gz
8z —z2')— ———[8(z") =27 . (z')k_(2";F, @)
2= e Mg w)]

vw(z;q,w)—-——?—“[ﬁ(z')—2Kw(z’;¢7,a))'q+(z’)]+[Km(z +zq,0)+k (z —2";3,0)]n (') | .

(2)
-
_ 1 w cos(g,z)
K (z;qw)=— f dg, ———, (4a)
T 20 €3(q,q,;0)
_ 1 rw cos(q,z)
vw(z;qw)z—f dg,—5—— 9 . (4b)
m 0 (qz +q )GB(q!qz;w)

The step functions 7, (z) and 5, (—2z) in Eq. (2) separate
the contributions to the scalar potential when the field
point (r,z) is inside or outside the quantum plasma.

Assuming that the charged particle moves parallel to
the surface at a distance z, outside the plasma, we sub-
stitute Eq. (2) into Eq. (1) and obtain
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for the inside case (z >0). Here Re(x) stands for the real part of x and R=(x —ut,y).

In the high-speed regime, we use the local approximation €5(q,w)~(w? —, 2)/»? in Egs. (3) and (4) and then substi-
tute the results into Egs. (5); @, is the bulk plasmon frequency in the long- wavelength limit. For z <0, we obtain
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where X =x —vt. Doing the g, integral first, we obtain (see p. 17, No. 27 of Ref. 11)
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where K,(x) is a modified Bessel function and the integral in Eq. (7) is a Cauchy principal value. Using Parseval’s
trick to perform the integral in Eq. (7), we obtain the electrostatic potential outside the plasma for a charge moving at
high speed outside as
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where Ly(x) is a modified Struve function, Io(x) is a  length 2V 270 /w, associated with the surface-plasmon

Bessel function of imaginary argument, and frequency for small wave number, w,/ V2.
| sin[a(u —1)] To obtain the induced electrostatic potential inside the
B)= f du —[———(u 2, g)1/2 9) plasma due to a very fast particle, we substitute the

long-wavelength approximation for €z(q,) into Eq. (5b)
The first term in Eq. (8) exhibits oscillations of wave-  and obtain
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After performing the integrals in Eq. (10) (see Ref. 11, p. 16, No. 26), we obtain the electrostatic potential inside a
semi-infinite plasma due to a fast charged particle. The result is
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where the function and ®y(x) is

® © ilq.% exp[ —(g2+¢2)"*(zy+2)]
q:)o(x)_:_xZ:F wdqx f wdqye (g, +qy}') p[ q qy 0 (12)

(g7 —x")g7+g,)""*

The wake potential induced by a swift charge in a homogeneous electron gas has been studied by several authors.'?
However, to interpret the various terms contributing to Eqgs. (8) and (11) we evaluate the induced electric potential in
the local approximation. We obtain
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where 7, =(y24+2z?)!/2. These calculations show that the
electric potential inside the electron-gas plasma consists
of the direct unscreened Coulomb potential between the
moving charge and an electron inside the plasma as well
as a dipole term which has no counterpart in the bulk
case. The long-wavelength electron-density fluctuations
screen the Coulomb potential giving rise to the oscilla-
tions which are exhibited in the electric potential. The
potential in Eq. (15) for the homogeneous electron gas
exhibits oscillations of wavelength 27v /w, associated

»
with the long-wavelength bulk-plasmon frequency.
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Referring to Egs. (8) and (11), the electric potential for a
semi-infinite electron gas has an oscillatory behavior of
wavelength 2V 2mv /w, associated with the low-wave-
number surface-plasmon frequency o, / V2.

Figure 1 shows the wake potential V(z,R)/Zegy for
y =0 in the R,z plane, as derived from Eq. (5b). One
sees the distinct oscillations parallel to the R (i.e., X)
axis. The total potential is shown with contributions
due to particle-hole excitations as well as surface-
plasmon modes. The parameters used in computing Fig.
1 are given in the caption.

—7? |[e Yz,2";G,0)—8(z —2") U (2";7,0) . (16)

3z2

This results in a force exerted on the moving charge by the quantum plasma given by

F=e [ drp(r,0V[V(r,)+U(r,0],

an

where V(r,t) and p(r,t) are obtained from Egs. (5) and (16), respectively. In a straightforward way, we obtain the
components of the force parallel (||) and perpendicular (1) to the surface. These are
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A detailed study of the force may be carried out with
the use of Eq. (2) for the inverse dielectric function.

Substituting Eq. (2) into Eq. (18), calculation shows
that
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where Im(x) stands for the imaginary part of x. The
different factors in Eq. (20) are intuitively understand-
able. Im(1/D) takes into account the process in which
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T
energy is transferred to electrons by a probe coupled to

the density fluctuations. The factor exp(—2gz,) charac-
terizes the decay of the force F as the distance z,, of the
charge Ze from the surface in the region outside the
metal increases. The friction parameter obtained by Fer-
rell et al.!? for the specular reflection model of a bound-
ed electron gas may be immediately obtained from Eq.
(20) since the fractional momentum loss of the particle
per unit time is F-v

Mahanty and Summerside,'* as well as Muscat and
Newns,' have calculated the force on a charged particle
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FIG. 1. Scalar electric potential inside a semi-infinite quan-
tum plasma. A charged particle travels with velocity
v =0.50,=0.4x10® cmsec™! outside the plasma in the posi-
tive x direction at a distance z,=3¢; ! from the planar surface
located at z =0. The interparticle spacing in units of the Bohr
radius is r,=6 and the effective mass of the electron is set
equal to the bare mass m,. The potential values were comput-
ed from Eq. (5b) with the use of the RPA longitudinal dielec-
tric function of a bulk plasma at zero temperature.

moving with constant velocity parallel to a planar metal
surface. The purpose of their calculation was to exam-
ine the effect of spatial dispersion on this force. The hy-
drodynamic model was employed in their calculations.
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In our treatment of spatial dispersion within the quan-
tum plasma, both particle-hole excitations as well as sur-
face and bulk-plasmon modes contribute at arbitrary ve-
locity of the charged particle. Expressing the surface
dispersion formula D (g,) in terms of its real and imag-
inary parts, D =Dy +iDy, the surface-plasmon contribu-
tion corresponds to Im(1/D)= —m8(Dy ) and the contri-
bution of the electron-hole spectrum corresponds to re-
gions of frequency-wave-vector space where D is finite.

Harris and Jones'® have discussed the interaction po-
tential for a classical charged particle impinging on a
metal surface which is simulated by a classical infinite
barrier bounding a semi-infinite electron gas. There is
no need to underscore the completeness of the work in
Ref. 16. In the present paper we restricted our attention
to fast-particle motion parallel to a planar surface. This
may also be of interest to experimentalists. The closed-
form expressions which we obtained illustrate that the
general formulation of the problem may be applied to
any model for which the inverse dielectric function can
be derived in a tractable form. We hope that this pre-
liminary investigation will stimulate the interest of ex-
perimentalists. More-detailed numerical results and ap-
plications will be presented elsewhere.
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