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Intersubband Auger recombination in a superlattice
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It is known that the recombination mechanism in narrow-band-gap semiconductor lasers is
dominated by the Auger process. An attempt to use the intersubband transitions in the superlat-
tice for lasers is thus restricted by the Auger recombination process. The intersubband Auger
recombination process is difFerent from the conduction to valence-band Auger process since the
subbands have difFerent band structures, resulting in a difFerent overlap integral and probability
weighting function. The probability weighting function is comparable to that of the valence to
conduction-band Auger process for narrow-band-gap ( &0.3 eV) bulk material. The overlap in-

tegral can be reduced by adjusting the miniband bandwidth. However, there is a tradeofF in con-
trolling the bandwidth for a lower Auger rate (requiring narrower bandwidth) and for a larger car-
rier injection (requiring wider bandwidth). A closed form of the intersubband Auger rate is de-
rived. It gives a much weaker band-gap and temperature dependence. Due to the adjustable over-

lap integral, the intersubband Auger rate can be made much lower than that of the conventional
conduction to valence-band transition of the same band gap.

I. INTRODUCTION

The physics of intersubband optical transitions in
quantum mell structures and the device applications
have been extensively studied by many authors. ' ' The
term "intersubband transitions" is used to refer to the
subband-to-subband transitions occurring within only
the condition subbands or within only the valence sub-
bands. The intersubband optical transitions have many
unique features as compared to the usual valence- to
conduction-band transitions. First, the absorption or
gain coefficient is sharp, analogous to an atomic two-
level system. Second, the subband-to-subband energy
gapa as well as the bandwidths can be tuned. The inter-
subband in superlattices can be treated as a man-made
narrow-band-gap material with almost arbitrarily con-
trollable parameters. Indirect-band-gap material such as
Si and Ge can be used for lasing and it occurs as
"direct" transition regardless of the nature of the host
bulk material.

In order to access the merits of the intersubband tran-
sition for lasers, tmo problems remain to be solved. One
is the pumping for population inversion; the other is the
reduction of nonradiative recombination rates. The for-
mal will be discussed briefly later. As for the nonradia-
tive recombination process, me Srst consider the transi-
tion energies of intersubband transitions, which are typi-
cally on the order or less than a few tenths of eV, corre-
sponding to the transition frequency in the infrared
range. In narrow-band-gap semiconductor laser materi-
al, however, the nonradiative decay of the injected car-
riers at the lasing condition is dominated by the band-
to-band Auger recombination. " It is thus important to
study the Auger process in the intersubband transition
in superlattices. This paper proceeds to analyze the
dominant nonradiative Auger recombination process.

The fundamental theory of the Auger recombination

was first treated by Beattie and I.andsberg. ' Since then
several authors have calculated the band-to-band Auger
rates involving the light hole' and the split-off' band
hole. ' More complex calculations for phonon-assisted,
trap Auger and second-Auger processes have taken into
account nonparabolic bands, Fermi statistics, and
screening eff'ects in the case of bulk semiconductors. '

In this paper the intersubband Auger recombination was
treated. It, however, is difFerent from the above calcula-
tions in that the intersubband case has difFerent band
structures and a difkrent overlap integral and a proba-
bility weighting function. The probability weighting
function is shown to be comparable to the conduction-
to-valence Auger process for narrow-band-gap cases;
mhile the overlap integral can be reduced by adjusting
the miniband bandwidth. An analytic form has been ob-
tained for the intersubband Auger process, and it shows
that the recombination has a much less band-gap and
temperature dependence. From this formulation we
show that the intersubband transition has a significantly
lower Auger rate than the conventional semiconductor
lasers of the same bandgap due to the adjustable overlap
integral, although the Auger remains to be the dominant
recombination process.

II. MATRIX ELEMENT

For a two-level system, all the possible Auger interac-
tions are depicted in Fig. 1. In Fig. 1, 1(a) and 1(b) are
the recombination processes, while l(c) and 1(d) are their
corresponding inverse processes, the impact ionization.
If we consider the upper (U} level as a conduction band
(C} and the lower level (L) as heavy-hole valence band
(H), then processes 1(a} and 1(c) involve three states in
the conduction band and one in the heavy-hole valence
band, and are conventionally called the CHCC process.
Similarly, 1(b) and 1(d) are called the CHHH process.
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verse direction, q is the wave vector along z, and u, and
u are the periodic parts of the host Bloch functions for
the conduction and light-hole bands, respectively. I',
and F are the envelope functions along z. Using the
Fourier expansion in the transverse direction as was
done in Ref. 12, and neglecting the terms which have a
product of two vanishing small (zero) terms in the over-
lap integrals, the matrix element for the ULUU process
of the intersubband transition becomes

62) V(1, 1')V(2, 2')
7Te

(g 2+ g2)1/2

FIG. 1. All the possible transitions of two electron interac-
tion in a two-level system. (a) and {c) are the CHCC process.
{1)and (d) are the CHHH process. Each pair consists of one
Auger process and one impact ionization. 1 and 2 are the ini-
tial states. 1' and 2' are the final states.

X@z(r )d2r, d r2,

where C))(r) ),42(r2) denote the initial states of electrons
1 and 2, and 41(r, ),4z(r2) denote their final states. The
quantities b,» ——6)2——1 when electrons 1 and 2 have the
same spins, preserved in the transition, 52& ——1,5&2——0
when they have opposite spins preserved in the transi-
tion and 62) ——0,5)2——1 when they have opposite spins
but are both changed by the transition; b2, ——b 12

——0 oth-
erwise. The quantity A, in the screened Coulomb poten-
tial is the reciprocity of the Debye length which is given
by15
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4me n
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1/2
12m, e n

eA 9m
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(2)

for the Boltzmann and Fermi statistics, respectively. AH

the symbols have their usual definition. Using a two-
band envelope function in the growth direction z, the
superlattice wave function becomes

4(k, q, r, z) = [F,(q, z)u, (k, q, r, z)

+F (q, z)u (k, q, r,z)]e'"',

where k is the two-dimensional wave vector in the trans-

For the intersubband cases, they are referred as ULUU
and ULLL, respectively.

Since the Auger recombination is a two-electron in-
teraction via their Coulomb potential and it is a short-
range interaction, the screened Coulomb potential is
used. ' The matrix element after summing over the sing-
let and triplet states of electrons 1 and 2 is of the follow-
1ng form:

I;f=J I[@)( ))C'2(r2)~2) —C'2(r))@)( 2+)21

&& [e exp( —Ar)2)/er)2]4I(r) )

5)2V(2, 1')V(1,2')

(h 2+g2)l/2

y5(k)+k2 —k', —k2)dz)dz2, (4)

where g =
~
k, —k', ~, i) =

I k) k2
I

and the quantities
V (i,j ) are defined by

V(1, 1')=FU(q), z) )FI (q', ,z) ),
V(2, 2') =F)'/(q»z2 )FU(q 2,z2),

V(2, 1') =FU(q2, z) )FL(q),z)),
V(1,2') =FU(q), z2)FU(q 2,z2 ),

i.e.,

exp[ —A(r, 2+z2)2 )]'/2

I2

2

I 2

2 I I2

(r2 +z2 )I/2

I exp( A.r )2)—e"p( 'r)2'g)" 12d"12de

exp( i r,2g cos8)r )2dr )2d8—
2'

( 2+F2)1/2

For the ULLL process, the matrix element is the same
as Eq. (4) except that V(i,j) are replaced by

V(1, 1')=FU(q, ,z, )Fl (q', ,z, ),
V(2, 2') =Fr'(q2, z2 )FL (q 2, z2 ),
V(2, 1')=FL'(q2, z, )Fl (q', ,z, ),
V(1,2') =FU(q„z2)FL(q2, z2) .

where F's are the F, in Eq. (3) with U, L denoting the

upper and lower levels, respectively. The terms involved
with I'~ are negligibly small, i.e., the one-band model is
valid. For the conduction- to valence-band transition in
quantum wells, V (i,j ) have the same definition as in Eq.
(5) with FU and FL replaced by U, and U and the in-

tegration is over r, and r2. Thus the conduction- to
valence-band transition in a quantum well has the same
overlap integral as the bulk case' while the intersub-
band transition has an overlap integral determined only
by the envelope functions, which can be easily tuned. In
deriving Eq. (4), we have assumed that most of the con-
tribution to the integral arises from small z, 2 (Ref. 17),
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In the discussion above, we have considered only the
transitions involving two rninibands, i.e., an ideal two-
level system. If, however, either one of the four states
involved in the process are in the third band, there will

be a product of two negligible small terms in the overlap
integral. The transitions involving three bands are thus
treated as forbidden in the first-order approximation.

As discussed in Ref. 21, an upper bound for the ma-
trix element of Eq. (4) may be written as

2
'2 V 1, 1' V 2, 2' dz, zz

HAMI
/z&8

g +k

where g may be replaced by kz for the most probable
transition so that the integration can be evaluated easily.

III. OVERLAP INTEGRAL

The overlap integral in Eq. (8) can be evaluated by
constructing the superlattice envelope function F(q,z) in
terms of the isolated quantum well wave function fo(z)
by a tight-binding scheme,

cc

F(q,z)= g e'qj"fo(z —jd),
N)

where d is the period of the superlattice and N is the
number of periods in the superlattice. The conservation
of momentum is required for nonzero results; thus we
may write the overlap integral as

f V(1, 1')d&, =f Fv(q, », )FL(qI,z, )dz)

=f Fv(q „z, )FI (q I,z, )5(q, —q', )dz,

=+2cos(pq&d) f fvo{zi)fi.o

tion making up the superlattice. For a square-mell su-

perlattice, the overlap integral can then be approximated
by

&&v&L,f f V(1, 1')V(2, 2')dz, dz2 = cos(q, d), (12)
2V,

where BU,BL is the miniband bandwidth for the upper
and lower bands, respectively. For a parabola well as in
the doped superlattice, the wave function may be ap-
proximated by the simple harmonic-oscillator model, ~

F (z)=n ' a ' e '~ '(2'j!) '
H, —, (13)

Q

where a =Aim, coo, coo (e N——diem, )', and Nd is the
doping. The two lowest-order Hermite polynomials are
Ho(x )= 1,H, {x) =2x. Then the overlap integral be-

comes

f f V(1, 1') V(2, 2')dz, dzz —— e cos(q, d) .

(14)

IV. PROBABILITY WEIGHTING FUNCTION

Using Fermi's golden ru1e, the Auger rate is
'4

f ~
~,I ~

'P(1, 1', 2, 2')5(E; EI)—
d2k dzkI d2k2 dq)

Xdq2 dq, dq&,

X(z~ +pd)dz&

Similarly, we have

f V{2, 2')dzz ——f Fv(q2, z2 )Fv(q 2, z2 )dz2 = 1 .

We notice that the miniband bandwidth is approximated
to be"

8 =4 f fo(z)V, (z)fo(z —d)dz, (11)

~here V, is the conduction-band offset of the heterojunc-

I

P=(l occupied)(2 occupied)(1' empty)(2' empty)

where I' is the difference of the probabilities of the
Auger process and the inverse process. In the following
we will derive the most probable transition probability
for different intersubband as well as the conventional
band cases.

A. Case 1: CHCC for conventional band

I et us assum, e that all the energy levels are referenced
to the valence-band maximum. For a conventional band
in Fig. 2(a), the probability weighting function is

—(1 empty)(2 empty)(1' occupied)(2' occupied)

1 —exp —(EI EI )IkT—
2 I

(1+exp(E, EI )IkT)[1+exp&—Ez EI )IkT][1+exp—(E', EI )I—kT]— (16)

where Fermi-Dirac. distributions are assumed for
quasiequilibrium, and EI,EI are the quasi-Fermi-levels

for the upper and lower levels, respectively. In the non-
degenerate limit, Eq. (16) reduces to

2E~ Ikr —(E~ Ef )EkT
P=e ' e ' (1—e ' ' ).

The maximum of I' is obtained by minimizing E2 with
the constraint that both energy and momentum are con-
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Compared to Eq. (18), the intersubband transition has a
much larger probability than the conduction- to
valence-band transition, especially for wide band-gap
material at low temperature. However, for the narrow
band-gap material in the lasing condition (usually in de-

generate case), they are comparable. For example, for
E~=0.1, p=0. 15, and E& —EG ——0.05 eV, the ratio of

P,„ for interband and conventional band transitions are

1.3 at 300 K and 1 at 77 K.

(a) cHcc

(c) ULLED

FIG. 2. (a) CHCC process in conventional band. (b) UI. UU
process in intersubband, corresponding to the CHCC process
in the bulk case. (c) ULLJ process in intersubband, corre-
sponding to the CHHH process in the bulk case.

C. Case 3: UI.I.I. for intersubband

For the ULLL process shown in Fig. 2(c), which cor-
responds to the CHHH process in the bulk case, the
probability is

exp —(Ez E& ) I—k T
P= [1—exp —(Ef Ef )IkT] .

1+exp(E, EI ) Ik T— 2 1

(22)

served. The result for the nondegenerate case is'

—2(EG —F~ )/kTP,„=exp — E6/kT e
p+1
—{E~ —E~ )/kT

X(1—e ' ' ), (18) Pmax =
E~ /kT

1

—{EG —E~ )/kT ~(1 .

Here we assume that electrons in state 1 are degenerate
while those in others are treated as nondegenerate. P,„
occurs at E, =EG, E2 ——0,

where p =m, /m„ is the ratio of effective masses of elec-
trons and holes. The prefactor exp[ —(p/@+1)EG/kT]
is the major cause of the band-gap and temperature
dependence of the Auger rate. The rate of CHCC is usu-
ally larger than CLCC, where L stands for the light hole,
simply because p is smaller in CHCC. For the degen-
erate case, one may also assume that P,„occurs at the
same condition as in the nondegenerate case such that

E', = — EG,
(2@+1)(@+1)

P
(2@+1)(p+1)

B. Case 2: UI.UU for intersubband

If Ef Q( 0, then P,„ for the ULLL process is much
1

smaller than P,„ for ULUU. This condition is usually
valid in the intersubband transition. In the following
calculation, we will consider only the ULUU process.

V. AUGER RATE AND DISCUSSION

The Auger rate is given by Eq. (15), where the matrix
element

~
M,I ~

is evaluated by Eq. (8) for the most
probable transition, such that g =k z

—kG /2, where

EG ——A kG/2m, . Then the remaining part of the in-

tegration in Eq. (15) is

I =I P(1, 1', 2, 2')5(E; EI )5(k, +kz ——k', kz)—
x5(q, —q', )5(q, —q,')d'k, d'k, d'k', d'k,'

For the band shown in Fig. 2(b), in the lasing condi-
tion we will assume states 1,2 in degenerate while states
1', 2' in nondegenerate for simplicity. This case corre-
sponds to the CHCC process in the conventional band.
The probability function is

1 —exp —(EI E& )IkT-
P=

[ I +ex( plEEf ) IkT][1+exp(Ez Ej )IkT]—

&(dq, dqz dq', dqz, (24)

where P is given by Eq. (20), and is only a function of E,
and E2, and all the delta functions come in when

~ M;I ~

was evaluated. The difference of the initial and
final energies taking the miniband energy into considera-
tion is

—2{Eg—F~ /kT) —{EI —EI )/kT
(21)

whose maximum value P,„occurs at E2 ——E& ——E6,
Ez 3/2EG, E', =1/2E——G. In the nondegenerate limit,
we have

E; —EI ——E, +E2 —E') —E2
2

(k, ~kz+kG+kq pkI —p, kz ), (2—5)
2mc2

where p =m, 2/m, I, p, =m, 2/m„, and m, &
is the

efT'ective mass at the lower subband E], and m, z and m„
are those at E2 and E2, respectively; k is defined by
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For the convenience of integration, two new variab1es
h =k&+k2 and j =k& —k2 are introduced, and
m„=m, z ——m„=m, are assumed. Then Eq. (25) be-
cornes C:
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which is always true
with respect to k, and k2, the 6nal result for I becomes

FIG. 3. The recombination lifetime vs energy band gap.
Three lines are for intersubband Auger recombination time
with different injection levels. They are increasing functions of
the band gap. The spontaneous lifetime is a decreasing func-
tion of the band gap. The quantum eScieney is de6ned by Eq.
{34) using the data of N20 ——10"/cm . All other parameters
not speci6ed in the text are assumed to be for GaAs,

32,~ ~ / —fE), —EI )/kTI= {1—e ' ' ),f2
(29)

where F20 is the two-dimensional injected carrier con-
centration given by

m, kT (,E~ —Eg ))/kT

In(1+e '
) .

mA
lie 2

P =2 fig&m oco

(30)
(33)

Combining Eqs. (8), (12), and (29), the Auger rate
(/sec m~) for the intersubband transition is then

where f,, is the oscillator strength, assumed to be unity
here. The spontaneous quantum eSciency g defined by

m, e 8UBLR=
AV V, A, +k2

(1—e ' ' ). (31) +au

~sp+ +au
(34)

is also plotted in Fig. 3 as a function of energy. The
Auger recombination time as mell as the quantum
eSciency could be tailored by adjusting the miniband
bandwidth. Here we assume that BU ——10 meV, 8L ——j.

meV, and V, =0.24 eV. However, the miniband band-
width is hmited by the accuracy of the growth parame-
ters. Also, the choice of bandwidth is limited by the re-
quirement for eScient injection. The effective mass in
the growing direction of a superlattice is estimated to be
m, =2k /Bd . " As the bandwidth becomes small, the
effective mass increases and the mobility drops. In the
limiting case of quantum wells, the miniband bandwidth
becomes zero and the Auger rate is zero. However, the
current injection will then be impossible in this case
since the mobility of the structure is zero.

As for the pumping in the intersubband lasing transi-
tion, one possible way is shown in Fig. 4. The popula-
tion inversion is achieved by current injected through
the aligned superlattice minibands in the right-hand side.
%bile in the left-hand side, the injected carriers are

There again, BU,BL are the miniband bandwidth for the
upper and lower bands, respectively, V, is the
conduction-band off'set, A, is the reciprocal Debye length,
and k z is evaluated at the most probable transition such
that k 22 =kG2/2. The Auger recombination lifetime r,„,
de6ned by

%20 —Xo %20

Zl1 p QP g)
&he

(32) Active Region
SP

n+—doped
is also plotted in Fig. 3, where n is the index of refrac-
tion, g &

is the degeneracy factor, and p is the dipole mo-
ment given by

FIG. 4. Band-aligned superlattice 1aser using intersubband
optical transition and miniband alignment.

is shown in Fig. 3 as a function of the subband band gap
and Xo is the equi1ibrium value. It is a linear function
of the band gap, where the slope is inversely proportion-
al to the injection carrier concentration. Compared to
the conduction- to valence-band Auger recombination
time, which has an exponential dependence of the band

gap and the temperature, the intersubband Auger time
has a smaBer band-gap dependence and is constant in

temperature. As a result the threshold current for inter-
subband laser transitions mill have a much weaker tern-

perature dependence. The spontaneous emission life-

time, given by the expression



37 INTERSUBBAND AUGER RECOMBINATION IN A SUPERLATTICE 1333

blocked by the miniband discontinuity there. Such a
band alignment scheme allows convenient current injec-
tion for the intersubband lasing.

VI. CONCLUSION

smaller than the conventional narrow band-gap material.
High gain coeScient, smaller threshold current, less
temperature dependence of the threshold current, and
better tunability could be expected for the applications
in long-wavelength lasers using intersubband transition
in superlattices.

In conclusion, we have calculated the intersubband
Auger recombination rate in superlattices. An analytic
form is derived which shows much smaller band-gap and
temperature dependence. %ith the promising of an ad-
justable Auger rate by choosing the superlattice parame-
ters (composition, dopant, thickness, etc.), the intersub-
band Auger rate could be two orders of' magnitude
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