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%'e analyze theoretically the oscillator strength and the third-order optical polarizability 7' '

due to excitons in semiconductor microcrystallites. The nonlinear optical polarizability is shown
to be greatly enhanced for an assembly of such microcrystallites as the exciton is quantized due to
the confinement effect and the excitons in a single microcrystallite interact strongly enough to
make the excitons deviate from ideal harmonic oscillators.

I. INTRODUCTION

Finite-size effects on optical properties have been ob-
served for small colloidal CdS crystallites' and semi-
conductor microcrystallites embedded in a glass ma-
trix. ' On the other hand, zero- and one-dimensional
semiconductor systems, which are called quantum-box
and quantum-wire systems, are made artificially and
studied extensively. The electronic structure was also
studied theoretically and was shown to depend sensi-
tively on the size of the microcrystallites relative to the
electron and hole efFective Bohr radii. From an en-
gineering point of view, material with a large optical
nonlinearity " is required for optical shutters or opti-
cal information processors.

In this paper we will discuss how to obtain very large
oscillator strength and optical nonlinearity for an assem-
bly of semiconductor boxes or spheres so small that the
quantum confinement effect storks in all three directions.
The oscillator strength of the relevant optical transition
increases with the size of the crystallite as long as the ex-
cited state is coherent. However, an exciton in a bulk
crystal behaves almost as a harmonic oscillator which
does not show any nonlinear optical response. Deviation
of the electronic excitation from an ideal harmonic oscil-
lator increases as the size of the microcrystallite de-
creases. As a result, we can imagine that there is an op-
timum size for obtaining the most effective optical non-
linearity, This will be clarified in this paper and it will
also be shown how the radiative decay rate of the excita-
tion depends on the size of the microcrystallite.

We derive the electronic structures of the excited
states in a quantum box and quantum sphere of the
semiconductor in Sec. II. The condition to obtain very
large oscillator strength is presented in Sec. III together
with the size-dependent decay rate of the excitation. It
is discussed in Sec. IV how very large optical nonlineari-
ty results from competition between the effect of large
oscillator strength and the deviation of the exciton from
an ideal boson. Discussion is given in Sec. V of how to
observe these effects.

II. EI.KCTRQNIC EXCITATION
IN MICRQCRVSTAI. I.ITK

There are several energies characterizing a microcrys-
tallite. The first are size-quantization energies of elec-

tron EE, and hole hE, . The second is an average of the
Coulomb attraction between an electron and a hole in
the microcrystallite. This is denoted as the exciton ener-

gy V,„,. The third is the interaction energy V;„,working
between two excitations when they are formed in the mi-
crocrystallite. This characterizes the deviation of an ex-
citation from an ideal boson. We have three limiting
cases depending upon the relative sizes of the exciton en-

ergy and the quantization energy. Expressions are given
for the electronic structures in these limits.

3

F,(j ) = — sin
~ 2 mn, j„

sin
Any Jy

+sin
nz jz

The quantum number n=(n„nr,n, ) and the site index
j=(j„,j„,j, ) are chosen from positive integers between l

and X. The ground state of the quantum box is given by

4 =PA(r;).

For the parabolic conduction and valence bands with
effective masses m, and II„respectively, the size quanti-
zation is governed by the relationship among the sample
size I. =Nu, and the effective Bohr radii of electron
a, =—A eo/m, e and hole aI, =A eo/wee, where u is the
length of the unit cell and eo is the static dielectric con-
stant. The size-quantization energies can be expressed
for the electron and the hole, respectively, as follows:

A. V,„,~~ h,E„hE„
In this limit the size quantization of the exciton is

brought about. First, we consider a cubic box which
contains X unit cells. The electronic excited state is de-
scribed by the Frenkel exciton as

4,= QF„(j)W'(r ) g W,"(r;),
j (i~j)

where 8'," and W& are Wannier functions of the valence
and conduction bands, respectively, and F„(j) is the en-
velope function in the quantum box:
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3m R
hE, =E,(2, 1, 1)—E,(1,1, 1)=

2m, L

3m A
hE, —=E„(2,1, 1)—E„(1,1, 1)=

2mI, I.

The exciton energy V,„,is given by

2 e 2

~exc =
eoa eo(ae +ai, )

where a is an exciton Bohr radius. The condition (a)
( V,„,»hE„hE„),is equivalent to V,„,» b,E, +hE, .
This latter condition is rewritten in terms of Eqs. (4), (5),
and (6) as

ko„Ro=mn (n=1,2, . . . ).
The energy of the exciton in the quantum box is

A'm nEb
2MI.

where E,„,:pe —/2A eo is the exciton binding energy,
p=m, mi, /(m, +mi, ), M =m, +mi„and n=(n„,n, n, )

with n„,n~, n, &1. The energy of the optically allowed
exciton with I =m =0 in the quantum sphere is similar-
ly given for n & 1 by

b Ap'n
2MB. o

L Q&Qq+ag =0

The electronic excitation is expressed in this case as

+„=Q Q F„(j)P(j,)IV,'(r;) g IV,"(r;),
j j ~I&3 ~

mn„R„
I.

mnyR

I.

mn, R,
csin

where p( j„)describes the electron-hole relative motion
with j„—=j—j' and F„(j)describes the center-of-mass
motion of the exciton with j:—(m, j+mi, j )/(m, +mi, ).
%hen the electron-hole relative motion is well localized
at the same unit cell, p(j„)=5,;, so that Eq. (8) is coin-
cident with Eq. (1}. On the other hand, the electronic
excited state of the semiconductor microcrystallite can
be described by the e8'ective-mass approximation in
terms of the Bloch functions u, (r) at the bottom of the
conduction band and u„(r}at the top of the valence
band. Then the center-of-mass motion and the electron-
hole relative motion are approximated as

3

F,(R)= — sin
2

s1n

B. V,„,~~ h,E„h,E„
This is opposite to the case (a), and is equivalent to

the condition I «min(a„ai, ). Here the size-
quantization effect of the electron and the hole is much
larger than the exciton effect so that the latter effect is
neglected. Then the wave function of the excited state is
given by

%~=g gF' (j)F"„(j')W;(r;} g W,"(r;}, (12)

(13)

where F' (j) and F,"(j') are envelope functions of the
conduction-band electron and the valence-band hole, re-
spectively, and have the same form as Eq. (2} for the
quantum box. In the case of the quantum sphere, F' (r)
and F„"(r' ) have the same forms as Eq. (11) with
m=(n, l, m), n=(n', 1',m') but here r=uj and r'=uj'
are the electron and hole coordinates treated as continu-
ous variables. The optical transition is allowed only be-
tween the conduction and valence band states with the
same quantum numbers m=n. This excitation energy
for m=n, is given as

f2 2

2@I.2

tI}„(r)=
' tj2

—rlae
ma

(10)

where R=uj and r=u(j —j').
Second, for the case of the quantum sphere with an

infinite wall at 8 &Ra, the radius of the sphere, the en-
velope function of the center-of-mass motion, is given by

for the quantum box and

f2
En i=Ex+ ki'n

2p

for the quantum sphere.

C. A,E, p&V„,)gh,E„

(14)

~i+in(ki. R }
F„i(R, O, g&)= Yi (e,y)

R o R Jl+3t2 inR 0 }

and that of the electron-hole relative motion is the same
as Eq. (10). Here, Yi are the normalized spherical
functions, N is the momentum, Am is the projection of
the momentum along a certain direction, and J„is a
Bessel function. The quantities k&„aregiven as solutions
of the following equation:

Ji+,q2(k i„Ro )=0,
where n is the serial number of the root of the Bessel
function for a given value of I. In the case of I =0,

This condition is rewritten in terms of the effective
Bohr radii as follows:

a, » l. Ro»&ai, a &a

First, the most dominant kinetic energy of the electron is
quantized due to the con6nement effect. Then we have
the same expression for the electron states in the quan-
tum box and sphere, respectively, as Eqs. (1) and (11) in
the zeroth-order approximation. Here F„(j)and F„i(r)
denote the electron envelope functions, respectively, in
the quantum box and sphere. Second, when the
electron-hole Coulomb interaction is taken into account,
the hole is well localized in the central part of the micro-
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crystallite as shown for the quantum sphere in the fol-
lowing.

Taking into account the inequality (c), we may assume
the following wave function for the electron and hole in
the quantum sphere with the radius Ro =pN—:

'p".im (r. ra)=+.Im(r. )~ni''

When the electron is in the state (n, 1=0, m =0), the
hole experiences a spherical symmetric potential

e'
I P.oo(r')

I

'
V„oo———— —,r'

eo Ir —r'I

2e 2 2
~n + 2mh&nre o

where

P„=2f ~dy,
o y

2 %71 8
Q)

2

hR0 eoRo

The effective-mass equation for X"„oo is solved with the
potential (15) as

exciton in case (a) as follows:

(%„IPI q, ) = QF„(j)(~;(r,) Ip, I ~,"(r,))

2/3
2

=Pcv
fln Q

Snab

cot cot
S'llew

)& cot (18)

and ( Wj, ( r; )
I p„I W,

"(r; ) ) =p,„5;;. The transition di-
pole moment to the lowest excited state
(n„,n, n, ) =(1,1,1) is given in good approximation as fol-
lows:

&'pwi
I
p

I q'e &=

'3
2&2 g 3/2 (19)

where P is a component of the dipole-moment operator
P.

P=gp,

x"„jg(r)= 1
exp

i/2n'n i(

' 1/2

—78 I Ct)~

2A'

&q„IPIe, }=
'3

2&2 p„N3~/(n„n~n, ) . (20)

For the transition to such a low excited state (n„n~,n, )

as n„

2

E„"oo—Es — P„—+%co„(n'+ ,' ) (n, n —'& 1), (17)

where H„.is the n'th order Hermite polynomial.
Under case (a), L,Ro »a, +a„=a,the center-of-mass

motion of the exciton is quantized due to the quantum
confinement of the exciton while for case (b),
L,Ro &~a„az,both the electron and the hole motions
are quantized independently. Under case (c), a, »L,
Ro »a„,the electron motion is quantized and the hole
is trapped through the Coulomb potential of the electron
quantized inside the quantum dot.

III. OSCILLATOR STRENGTH IN QUANTUM DOT

The size-quantization efFect on the absorption spec-
trum was observed' and theoretically studied al-

ready ' . %e find that the efFect of very large oscillator
strength is brought about in case (a) but not in case (b).
Case (c) is marginal. Because of the sum rule, however,
the sum of the whole oscillator strength is constant in all
the cases as long as the concentration of the optical-
active medium is kept constant. Therefore the oscillator
strength is concentrated in the lower excitations in case
(a), as will be shown.

«» AA', ~„
The transition dipole moment to these excited states

0'„from the ground state 4'g is evaluated for the Frenkel

Then the oscillator strength f, per quantum box is given

by
6

(n„n n, )i
(21)

As a result, the oscillator strength for 8 o =—uX is
t/2 2

f.~=
q

~. Ip,.ki, (0)l'u' 2—
n

(23)

For the quantum sphere with the radius Ro:—uX, we
have the same N dependence of the oscillator strength as
for the quantum box with t. =uX. Only a numerical
factor is difFerent.

For the Wannier exciton in the quantum box, the en-
velop function is described by Eqs. (9) and (10), and the
oscillator strength is obtained by multiplying Eq. (21) by
u

I P„(0)
I

=u'/(na) for. the lowest exciton. Here
the excitation is a coherent state over the whole quan-
tum box in case (a). The factor N in Eq. (21) comes
from this coherency. It is noted from Eq. (21) that the
oscillator strengths are concentrated on the low excited
states. The concentration of the quantum boxes per unit
volume is made equal to 1/I. so that the oscillator
strength per unit volume is naturally independent of X .

The transition dipole moment to the excited state (n,
I =0, m =0) for the quantum sphere is given by

f d Rql„oo(R)P„(0)p„=p,„g„(0)2&2/n Ro~ . (22)—1
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8. A,E„B,E„~gV„,

X(~;(r;) ~p; ~ ~,"'(r;))

= g g F, (j )F„,(j')p,„&;,

=pCU mn. (24)

For the quantum sphere,

(+"„,™
~

P ~'p ) =p,
„ f F„()F„~ ( )d

The transition dipole moment for the quantum box
under condition (b) is in contrast to case (a) as follows:

(4 „~p ~

4 )= ggF, (j}F„„(j')

of the transition dipole moment is independent of the
quantum number n or (nlm) for all the allowed transi-
tions.

Therefore the sum of all the oscillator strengths per
unit volume becomes also naturally independent of the
size of the microcrystallite in both cases (a) and (b).
Contrary to these absorption spectra, we have the size
dependences of the radiative decay rate and the non-
linear optical response only for case (a).

The radiative decay rate is proportional to the oscilla-
tor strength. As a result, the exciton decay rate in case
(a) is proportional to the number of unit cells in the box
volume X while it is independent of X in case (b).
This originates from the same effect as the very large os-
cillator strength of the bound exciton. Nobody has ob-
served this effect yet. The conditions for observing this
effect will be discussed later.

=p„5„„5II5 (25)

These results mean that the interband optical transition
between the conduction- and valence-band states with
the same quantum numbers is allowed and that the value

I

C. B,E, && V,„,&yb,E„
Transition dipole moment of the quantum sphere is

evaluated in terms of Eqs. (11)and (16) as follows:

pcU
P7lI CO~

1 /2
~a~n' 1/2 Ro

nm
sin

Rp ply, N~

1/2

y exp( —,'y )H„(y)d—y

=PCU
mace„

' 1/2

1)m+~/2P2lll +lexp( 1P2) (26)

where p= (n m/Ro)(tri/m„co„) '~, n' =2m + 1 and

Ro 1/

mascot

/R was approximated as oo in the upper limit
of the integral. The oscillator strength of the lowest ex-
citation (n =l„n'=1)has a much weaker enhancement
of the oscillator strength [-N exp( —a/&X ) with
a =Q3n at, /8u ]—than in case (a).

IV. VERY LARGE OPTICAL NONLINEARITY

%'e will show very large nonlinear optical polarizabili-
ty which depends on the size of the microcrystallite.

I

This enhancement originates from two convicting con-
cepts. One is due to the size quantization of excitons.
The oscillator strength concentrates on the lowest
coherent excited state in case (a). This results in an
enhancement factor of I. for the third-order nonlinear
optical polarizability X' '(to; —to, cu, —to) per microcrys-
tallite, i.e., the enhancement factor I. for g' ' per unit
volume. The other enhancement comes from deviation
of the electronic excitation from an ideal harmonic oscil-
lator. %hen the size of the microcrystallite is reduced,
the latter effect increases while the former decreases.
The third-order optical polarization is evaluated as

3
tlf' dt, f dt2 f dt, ( P(r, t)[ H(t, ), [ H(t~), [ H(t 3), p]o]] .

—(H'(t, )H'(t, )poH'(t, )P (t) ),
+ (P(t)H'(t, )p~'(t, )H'(t, ) ),
+ (P(t)H'(t, )p~'(t, )H'(t, }),
—(poH'(t, )H'(t, )H'(t, )P(t)) .

The integrand is composed of the following eight terms: (28e)

(P (t)H'(t, )H'(t, )H'(t, )p, ),
—(H'(t, )H'(t, )p~'(t, }P(t)),
—(H'(t, )H'(t3 )poH'(t~ )P (t) ),
+ (P (t)H'(t3)poH'(t, )H'(t, ) ),

(28f)

(28b) (28g)

(28c) (28h)

(28d) Here we consider only the resonant case in which the en-
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ergy of the incident photon %co is nearly equal to the first
excitation energy %coo, and neglect contribution to the
nonlinear polarization from the other levels and the an-
tiresonant components. The contribution of each term
in Eqs. (16) to the degenerate four-wave mixing through
P'3' is presented' by the Feynman diagrams in Fig. 1.
Then, e.g., the first term of Eq. (28a) has two contribu-
tions:

x (1
I
I'(/, )

I
0&,

(0IP(/)
I
1)(1IH'(/, ) I2)(2IH'(/, } I 1)

x(1IH'(/i) I0& .

These correspond, respectively, to diagram (1)
I
0)(0

I

and (1)
I
2)(2

I
in Fig. 1. We denote the ground state,

the excited states with an excitation and with two excita-
tions, respectively, by I 0), I

1 ), and
I

2 ) . Here we as-
sume the amplitude of the excited state to decay with a
decay constant y.

Note that both the left- and right-hand side propaga-
ting states in the density operator are in the ground
states for the time interval between t, and /2 in the dia-

grams of (1)
I
0) (0 I, (2), (7), and (8)

I
0) (0

I
in Fig. 1.

Therefore these contributions to P' ' are canceled out by
those coming from the renormalization of the ground
state. As a result, we must pick up the connected dia-
grams (1) 2)(2 I, (4), and (6) in Fig. 1 for the emission
process g' '(co; —co, co, —co). Diagrams (3), (5), and (8)
I2)(2I contribute to the third-order process of the

photon absorption g' '( —co;c0, —ct/, co). Here the electric
Geld E was assumed to be almost constant inside the

& t/
1

(1)IO&&01 (1)I2)&21 (2)

quantum microcrystallite. Then we have the following
expression for X' '(co; —co, co, —co) per a single microcrys-
tallite:

(29)

Here I =y+ y' is the transverse relaxation rate, y', the
phase relaxation rate, and 2y the decay rate of the exci-
ton. fico;„,= V;„,d—enotes the interaction energy of two
excitons in the microcrystallite. When the exciton in-
teraction i)iso;„,and all the relaxation rates are negligible
in comparison with the off-resonance energy

I
co —coo I,

X' '(c0; —u, co, —c//) vanishes. Under such a condition,
excitons behave as harmonic oscillators, which do not
show any nonlinear response. Under such an opposite
condition as coi„,) I

co —coo I, we have the enhanced opti-
cal nonlinearity shown in the following, which comes
from the second term of Eq. (29). As to the first term,
the enhancement of

I
P

I
is partially compensated by

the radiative decay rate 2y in the denominator as will be
discussed in Sec. V. The third-order optical polarizabili-
ty X~'„for such a microcrystallite as the interaction en-

ergy between two excitations becomes larger than the
off-resonance energy is given by

' 12
2&2

(30a)+box
/)/ (co —a)0)

where we used the transition dipole moment for case (a)
given by Eq. (9). X' ' per unit volume is

' 12
2v'2 Is,. I'

/}/'(co —coo) u 'y(3) (30b)

Here we assumed close-packed quantum boxes, the con-
centration of which is N, =I. = (uX) . For the Wan-
nier exciton in the box, p,„should be replaced by
S/„/t)(0)u in Eqs. (30a) and (30b), where (()(0) is the
amplitude at the origin of the electron-hole relative
motion. For the %annier exciton in the quantum
sphere, we have the nonlinear optical polarizability 7' '

similar to Eqs. (30a) and (30b) with diiferent numerical
factors:

y(3)
A (co —coo+/1 ) (ct/ —ado —/ I }

I
P

I (co;„,—ZiI )
+ 3 ~ 2

4

i// (co coo—+i I ) (co —Qlp —/ I )(coo—co+coi„t—/ I )

(31a)

(7) (8) l0)&OI (8)i2)&21

FIG. 1. The Feynman diagrams of third-order optical polar-
ization under near resonant condition of exciton. Single and
double solid lines describe the propagation, respectively, of a
single exciton and of two excitons in a microcrystallite, and
thin lines that of the electronic ground state.

and g' ' per unit volume is

2 IP

R (co —c00)
pf 3

For case (b}, the transition dipole moment is indepen-
dent of the quantum number n so that gb, '„per a quan-
tum box is
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I peu I

))i (co —co„)
(32)

V. OBSERVATION OF ENHANCED
OPTICAI. NONI. INKARITY

Let us discuss the limitations for realizing very large
optical nonlinearity. First, the conditions for case (a)
must be satisfied so that

2

&)5E„5E„.
6'OQ

Here the energy separations of the conduction and
valence bands in the quantum box are given by Eqs. (4)
and (S), and for the quantum sphere,

3m A'

bE, —=E,(200)—E,(100)=
2m, R o

3m AbE, —=E„(200)—E„(100)=
Zm~R o

where the arguments represent (n, l, m). Second, the sin-
gle lowest excited state is required to be dominant in X' '

so that

3mB 1 1
fi

I
co —co() I

(( or
2(m, +m), )

where the right-hand side denotes a quantization energy
of the center-of-mass motion of the exeiton in the quan-
tum box or sphere. Third, in order to get enough devia-

Here we have the same expression for g,' „'„,per a quan-
tum sphere. For such an off-resonant case as

co») I
»

I coNNN co)» I
the denominator of Eq.

(32) is replaced by an average value (co —co) and X( ' per
unit volume becomes independent of N as

4
( ) Is I, r

i)l (co—co) N u

R'(co —co )'u '

where r is a volume fraction of the optically active ma-
terial. As a result, we have the very large enhancement
X of X( ' only for case (a). When the excited state is ex-
pressed by Eq. (8), the squared transition dipole moment

I
P

I
is reduced by the factor u /(rra ). This comes

from the fact that the Wannier exciton is formed by a
superposition of the Bloch states inside the sphere with a
radius (1/a) in the Brillouin zone. This is in contrast
with the case of a Frenkel exciton which has no such
reduction factor.

tion of excitation from an ideal harmonic oscillator, the
interaction energy between two excitons'

memh a fo2

V;„,= 8n.E,"„,
(m, +m), ) L

for the quantum box and

m, m„af()2

1At Cxc 2 3(m, +m„) Zo

for the quantum sphere should be larger than the off-
resonant energy, where E,„,is the exciton binding ener-

gy and fo is the scattering amplitude. fo is equal to
3.3a for excitons in CuC1. ' The phase relaxation in the
electronic excitation y' also has an effect which makes
the excitonic excitations deviate from ideal harmonic os-
cillators. The third-order optical polarizability was de-
rived, ' taking into account the phase relaxation y' in
the single excited state and the interaction between two
excitons in the double excited state, as shown by Eq.
(29).

Here we have considered that the second excitation in
the microcrystallite has the energy fuuo+ V;„,. First we
see from Eq. (29) that X' ' becomes finite when V;„,is of
the same order as or larger than the off-resonance energy
fi

I
coo —co

I
. Second, as far as phase relaxation occurs

X' ' is enhanced by the factor (y'/y) in addition to the
enhanced-oscillator-strength effect through the factor

I
P

I

. However, the radiative decay rate 2y is also
enhanced by the effect of the enhanced oscillator
strength in case (a):

2y =2yoAN

where 2yo is the radiative decay rate of the bulk exciton,
3 =(2&2/m. )' for the quantum box, and 3 =(2&2/m)
for the quantum sphere. On the other hand, the concen-
tration N, of the boxes and the spheres are, respectively,
N, =1/L for the full-packed quantum boxes with the
side length L =uE, and N, =3r/4mRO for the quantum
spheres with the molecular concentration r, e.g. , semi-
conductor spheres in glass or colloidal particles of the
semiconductor with the radius R o =u¹ As a result, the
first term of Eq. (29) becomes independent of X and loses
the enhancement due to the very large oscillator
strength.

%e conclude that only when V;„, becomes nearly
equal to or larger than the off-resonance energy
fi

I
coo —co I, does enhancement of X' ' due to very large

oscillator strength occur effectively through the second
term of Eq. (29). Summarizing the conditions for
enhanced 7' ', N should satisfy the following inequali-
ties:

1/2 ', 1/2
eoaE,

' e~E,'
28

(min
E P

))i
I

co —coo
I

SmE,„,a fom, m),
.

fi
I

co —co() I
u '(m, +mh )

1/3

(33)
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where E,'„,=3m A' /2(m, +m„)u, E,'—=3n. fi /2m, u,
and E„'=—3~'ri'/2m„u '.

When we use the numerical values for the CuCI crys-
tal so=5. 1, u =3.2 A, a =6.6 A„E,„,=0.2 eV,
m, =0.5m, and mI, ——2.0m, and choose the ofF-resonance

energy fi
~

co —coo i
=5 meV, the condition (33) is

2~~%@20. When we choose N =20, i.e., I. =64 A, we
can expect enhancement of an order of 10" for 7' '. lf
we choose the situation of CdS and CdSe eo ——8.5,
u =3.5 A, a =30 A, E,„„=30meV, m, =0.25m,
mi, ——1.6m (m„i=07m, .mi,

((
5m——), and %~co coo—

~

=10
meV, we cannot find any N which satisfy Eq. (33).
(eouE,'/e2)'~t is 31 while (E,'„,/fi

~
co coo—

~

)'~ is 27 and
[(SnE,„,o fop, )/(A

~

oi —a)o (
u M)]'~ is 26. However,

the enhancedwscillator-strength effect works partially
even for N-30 corresponding to Ro-100 A. Third-
order optical processes were observed in semiconductor-
doped glasses. ' ' Jain and Lind observed'
X(3'-1.3)&10 s esu for the color filter of CdSo 9Seo, in

glass and X(3'-3.4&(10 esu for bulk CdS using light
with wavelength 0.53 pm. The mole concentration of
CdSo Peo &

in glass is estimated to be 1% so that we
have have an enhancement of 400 of X( ' for the close-
packed quantum spheres. We need a more elaborate cal-
culation to evaluate the enhancement quantitatively for
the region in which the inequalities (33) are not satisfied.
The size of the semiconductor spheres doped in glass has

dispersion. This also makes the theoretical comparison
diScult.

The very large optical nonlinearity presented in this
paper cannot be expected for microcrystallites of GaAs
and other III-V semiconductors. These have rather
lighter efFective masses of electron and hole and larger
dielectric constant than in I-VII and II-VI semiconduc-
tors. As a result, the quantization energies of electron
and hole become easily larger than the exciton binding
energy so that the conditions of Eq. (33) are not satisfied.
In these materials, the band-filling efFect and the screen-
ing efFects due to the free carriers appear dominant un-
der strong pumping as discussed in Refs. 8 and 11. The
present enhancement of X' ' due to the exciton quantiza-
tion is expected only for microcrystallites made of ma-
terials with the larger binding energy and the smaller
efFective Bohr radius of excitons such as I-VII and II-VI
semiconductors, and only for such a low temperature as
k8 T &&Eexc'
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