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Nonlinear optics as a probe of chiral ordering in amorphous semiconductors
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Recent polytope models of amorphous semiconductors imply that the continuous random net-

work has a preferred local chirality, that is, a preferred sign of the dihedral angle, extending over
clusters of many atoms. The present work suggests an experimental test of this proposal. Symme-

try arguments lead to two possible types of experiments: one involving local optical activity, and
the other involving three-wave mixing. %'e present a detailed analysis of the latter: we show that
a sensible de6nition exists for a local three-wave-mixing response of a single bond, develop a for-
malism for computing this local response within a tight-binding model, and perform computations
that show that within a particular frequency regime {two high input frequencies above resonance
and an output difference frequency below resonance) an experimentally detectable signal due to lo-
cal chirality should be present.

I. INTRODUCTION

Some years ago a potentially powerful new concept
em.erged for the modeling of amorphous semiconductors.
It began with the study of polyropes, ' which are
defined as undefected lattice structures ("crystals" ) in
non-Euclidean space. Polytopes provide various motifs
for possible favorable local atomic arrangements, like the
icosahedral packing arrangement for close-packed sys-
tems and the "twisted-boat" packing for tetrahedrally
coordinated structures ' (to be described in considerable
detail later in this paper). However, the curvature of the
space which contains them gives these motifs the proper-
ty that they cannot be continued indefinitely; in a word,
the atomic packings implied by polytopes are frustrat
ed. ' It was reasoned that the frustration of these pack-
ings, that is, the incompatibility of preferred local atom-
ic arrangements with long-range order, could lead to dis-
order and provide a natural explanation for the oc-
currence of many types of disordered solids, as well as
ofFering predictions for the properties of these solids.

The study of polytopes is a well-developed subject in
mathematics. ' ' It is essentially the consideration of
Platonic solids and other regular figures in higher dimen-
sions. Much discussion of the application of these po-
lytopes to physics may be found in the literature, and I
will not attempt to provide a complete review of this
work here. Our work has its origins in the well-known
efForts to apply the polytope I3,3,5j to close-packed
solids. ' ' This polytope embodies the idea of perfect
icosahedral close packing repeated throughout space; it
can do this only by making space positively curved. So,
as is well known, icosahedral packing is frustrated in
real space. From this starting point, [3,3,5j has been
used to predict and explain the domain structure of
disordered solids, ' their structure factor, " the dynam-
ics of glass formation, ' and their relationship to com-
plex crystalline phases like the Frank-Kasper
phases "4-'

Modifications of polytope I3,3,5j have figured in re-
cent models of disordered semiconductors. The main

principle of this modification, decoration, ' is illustrated
by the relationship between the fcc crystal, which de-
scribes close-packed solids, and the diamond lattice,
which is a common structure for tetrahedrally coordi-
nated, covalently bonded solids. The fcc crystal consists
of a packing of octahedra and tetrahedra; if the tetrahe-
dra (actually half of them) are "decorated" by placing
one new atom at each of their centers, the diamond crys-
tal results. Likewise when polytope I3,3,5j, which is a
packing of all tetrahedra, is similarly decorated (in this
case one in every five tetrahedra is decorated), a new
structure' which has been termed "polytope 240"' '
results which has many promising features for describing
a tetrahedrally coordinated network.

Polytope 240 has perfect tetrahedral bond angles and
bond lengths. The rings of bonds in the structure are all
six membered, which is also true of the most common
crystalline modifications of the group-IV elements.
However, beyond this there are difFercnces between po-
lytope 240 and ordinary crystals. At the root of the
difFcrence lies the fact that the six-membered ring is
"nonrigid, " i.e., has an infinite number of configurations
which are consistent with the bond lengths and bond an-
gles of the tetrahedral structure. ' ' ' Two of these
configurations have been known for a long time and
occur commonly in tetrahedral crystals: the so-called
"boat" and "chair" rings (see Fig. 1). The remaining
infinite set of configurations can be obtained from the
"boat" geometry by continuous deformation, which we
have discussed before; this continuous deformation can
be parametrized by a number which we have termed the
"twist" (see Fig. 2). Polytope 240 is the realization of a
perfect packing of six-membered rings with a particular
value of this twist.

An equivalent description for this structural freedom
provided by this "ring nonrigidity" may be given in
terms of the "dihedral angles" of the network. The
dihedral angle P is defined in Fig. 3; while in crystals (b

is generally either staggered (/ =60') or eclipsed (/ =0'),
in the continuous random network P can assume any
value. The twisted six-membered rings sample the entire
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FIG. 2. The twist degree of freedom of the "boat" ring.
The atoms can slide around the figure-eights with no distortion
of the bond lengths or bond angles.

FIG. 1. Diferent conformations of six-membered rings,
shown in top, front, and side views: (a) "chair, " (b) "boat," (c)
"twisted boat. " The last can be obtained from the ordinary
boat by a continuous deformation involving no bond angle or
bond length changes.

An equivalent way of saying the same thing in terms of
the dihedral angle P is that each bond has a distinct
handedness which may be assigned according to whether

P is positive or negative.
This is what is meant by the "local chirality" of the

covalent network: the chirality of a bond is determined
by the dihedral angle P. When P= —60', 0', 60', etc. , the
local arrangement of atoms has a mirror symmetry, and
is not chiral. We can say that for —60'&/&0', the
bond is "left-hand chiral, " and for 0'gg~60' it is
"right-hand chiral. " In polytope I3,3,5J, all the dihedral
angles are the same, about +30' (because each six-
membered ring has the same value of the ring twist), so
the structure has a net chirality. As we will see below in
more detail, nonlinear light scattering will measure the
volume over which the bond chirality has the same sign.

Motivated by this intriguing property, Sachdev and
Nelson' examined the Connell- Temkin model' for
large-scale chirality. The Connell-Temkin model is a
hand-built structure which attempted to simulate the
continuous random network structure of amorphous
semiconductors. A priori it has a better chance than
many other similar models to share properties with po-
lytope 240, because it is constrained to contain only
even-membered rings. Sachdev and Nelson found that
this model does indeed contain a bias towards a single
chirality over a large fraction of the model. (The model
contains 243 sites. ) This observation (later confirmed
more quantitatively by analysis which we performed on
the Connell-Temkin and other models) stimulated a hy-
pothesis: that in real amorphous semiconductors the
structure may prefer having a local chirality, and that
the sign of the chirality will persist over clusters of
perhaps 100 atoms (i.e., some reasonable fraction of the
number of atoms in polytope 240).

This hypothesis, if true, would have significant impli-
cations for the presence of intermediate-range order in

range of dihedral angles.
Part l of the Appendix discusses the symmetry prop-

erties of these twisted rings. A "boat" ring with a non-
crystallographic value of twist (i.e., /&0', 60') has no
syfnmetries except for a twofold rotation axis. These
rings have no mirror symmetries, meaning that twisted
rings come in enantiomorphous pairs. There is a distin-
gmshable "left" and "right" handed version of each ring.

FIG. 3. The dihedral angle $ for a bond in a tetrahedral
network. P is the angle between the second-neighbor bonds A

and 8 when viewed along the connecting bond C.
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amorphous scmIconductors. It 1mpllcs thc cxlstcncc of a
length scale which has not been previously considered,
the radius of curvature of the polytope, which would
extend over several interatomic spacings (four or five).
Unfortunately, the hypothesis rests on rather unfirm
ground. We know almost nothing about the actual mi-
croscopic processes which form the amorphous network
and whether they have any kinship to hand-built random
network models. The Connell-Tcmkin model possesses
significant polytope order, but it was built with the con-
straint that all of the rings of bonds be even membered.
Several other successful models due to Polk * ' and
Wooten et aI. , built without an even-ring constraint,
seem to show very little polytope order. %'e do not
know if even-membered rings are favored by the micro-
scopic growth mechanisms; we do not know if even-
membered rings are necessary for the appearance of po-
lytope order. Nevertheless, the possibility of local
chirality in amorphous networks is an intriguing sugges-
tion. It is one which deserves to be tested; the central
purpose of this paper is to suggest a method by which
this test may be made.

Higher-order structural correlations have not been an
easy property to probe in amorphous solids. X-ray
scattering gives just the atom-atom correlation functions;
these contain little or no information about ring twist or
dihedral angles. %'e have been motivated to search for a
method of extracting this information in the area of non-
linear optics by a consideration of some general features
of the optical response of solids. First, the method
chosen must be capable of extracting local properties of
the solid; light scattering, being sensitive to two-point
correlation functions, can fill this role. However,
in the present case, the local property is a peculiar one,
"chirality. " %'hat makes it peculiar is that, from the
point of view of symmetry, chirality is a psettdoscalar,
meaning that its value changes sign under mirror
re6ection. This is an unusual physical property, making
it distinct from, for example, the atom density, which is
a true scalar. In the linear regime the magnitude of
light scattering is controlled by a rank-two tensor, the
dielectric matrix. This matrix contains a true scalar
part (its trace), meaning that light scattering can probe
fluctuations in atom density, as indeed it does in Ray-
leigh scattering. The dielectric tensor does not contain
a pseudoscalar component, meaning that it is impossible
for linear light scattering to be sensitive to local chirali-
ty.

This requires that the search for an acceptable tech-
nique be extended to higher-order optical processes, ones
described by tensors with rank greater than two. On
general grounds wc know that only odd-rank tensors can
change sign under inversion, so wc search only among
this set. Naturally we wish to keep the rcsu1ting tech-
nique as simple as possible, and this finally confines us to
consider optical effects which are described by rank-
three tensor responses.

Two such phenomena will be considered in this paper.
Three-blaue mixing. Phenomcnologically, this is

described by the second term of the power-series expan-
sion of the induced polarization of the solid in terms of

the applied electric fields:

In various limits, it describes second-harmonic genera-
tion, in which radiation of frequency co impinging on a
solid causes the production of' radiation at frequency 2m,
as well as the electro opt-ic effect, in which an applied
static electric field induces a change in the dielectric
response (i.e., index of refraction) in a material. In the
general case, two different radiation fields at two
difFerent frequencies co& and cu2 will produce radiation at
the sum and difFerence frequencies because of the three-
wave mixing phenomenon. In this paper we analyze in
detail an experimental situation which corresponds ap-
proximately to the inverse of the electro-optic efFect.

2. Optical actiuity '. This phenomenon results from
spatial dispersion of the dielectric response:

~i +ij Ej +gij k 7j Ek +
In other words, optical activity follows from the depen-
dence of the dielectric polarizability on the wave vector
q of the incident radiation. Left-circular-polarized and
right-circular-polarized radiation are distinguishable
only with respect to the direction of the light's wave vec-
tor q, so any difference in the response of a solid to left-
and right-circular polarization must result from optical
activity.

In materials with a net left or right handedness, these
two phenomena can be used in a straightforward way to
detect the presence of chirality.

(1) Consider applying a circularly polarized electric
field in the x-y plane. Because of the three-wave mixing
response, the chiral medium will develop a net polariza-
tion along the z axis. Figure 4 shows this experiment
where the chiral medium" is a wire coil; the electrons
move along the coil, creating a polarization, in much the
same way that a Quid moves along an Archimedean
screw. The illustrated phenomenon is a degenerate
case of a three-wave mixing, because the two input
waves (the x and y components of the incident field) are
at the same frequency, while the output wave, the resul-
tant polarization vector, is at zero frequency. This may
be termed an inverse electro-optic effect, since the static

p

z
FIG. 4. Illustration of a classical nonlinear electrical

phenomenon which is sensitive to chirality. If a helical wire is
placed in a uniform time-dependent electric field with a circu-
lar polarization in the x-y plane as shown, the helix will devel-

op a frequency-independent polarization along its axis. The
sign of the polarization depends on the chirality of the coil,
that is, whether it is left or right handed. %e expect this
phenomenon to be too weak to be measured in a benchtop ex-
periment, but it can be important on a microscopic scale.
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field, rather than infIuencing the finite-frequency excita-
tion, is produced by it.

(2) The method used to detect optical activity is prob-
ably more familiar to the reader. If a beam of linearly
polarized light is passed through the chiral medium, the
polarization of the emergent beam, while still linear, is
rotated with respect to the incident polarization. This is
a consequence of the distinction between left and right
circularly polarized radiation; in particular, of their hav-
ing difFerent group velocities. The incident linearly po-
larized beam may be viewed as an equal linear combina-
tion of left and right circular polarization; when these
two components pass through the solid, the phase of one
lags relative to the other, so that upon recombining after
emerging from the solid, the orientation of the linear po-
larization is rotated.

Neither of the two techniques just described is useful
for probing a medium which contains many domains
with random left- and nght-hand chirality. In the first
example the local induced polarization will have random
sign, so that the net po1arization is zero, and in the
second case, each region wi11 rotate the passing
radiation's polarization but with a random sense, so the
net rotation is zero. However, modifications of these ex-
periments can be devised which will detect the presence
of chirality even in the random-domain case.

(1) Here is an appropriate modification of the inverse
electro-optic experiment described above. Suppose that
the two incident beams in the x- and y-polarization
channels, rather than being at the same frequency, are at
slightly displaced frequencies co and re+ h~. The x wave
will be continuously phase shifted with respect to the y
wave, so that the polarization state will vary continuous-
ly from right circular to right elliptic to linear to left el-
liptic to left circular and back again with a frequency
hen. As the polarization varies from right to left circu-
lar, the sign of the induced polarization will reverse, also
at frequency Ace. So, we have managed to create inside
the medium a time varying, spatially fluctuating polar-
ization distribution. This is precisely the situation in

Rayleigh scattering; the difference is that in Rayleigh
scattering the spatially varying polarization is produced
by the linear interaction of the incident radiation with
density fluctuations in the medium. In the Rayleigh-
scattering case, of course, the frequency is the same as
that of the incident light.

The Anal product of this experiment is the incoherent
radiation which is produced from this ensemble of ran-
domly oriented dipoles; this is completely analogous to
the blue sky produced by Rayleigh scattering. As with
Rayleigh scattering, the magnitude of the radiation pro-
duced is in direct proportion to the coherence length,
that is, to the size of the coherently radiating regions.
In the three-wave mixing case this length is precisely the
chirality persistence length, which is the primary quanti-
ty of interest. Of course, the size of the efFect must also
depend on some microscopic coupling constant, which
we will estimate later in this paper. We find that a1-
though the predicted magnitude of the three-wave mix-
ing e8'ect is small, it should be observable using state-of-
the-art laser techniques and should consequently be ab1e

to provide a direct rneasurernent of the chirality per-
sistence length.

(2) Optical activity can also be used indirectly to probe
the chirality persistence length. As mentioned above,
optical activity results from the difference. in group ve-
locities of left- and right-circular polarized light. Com-
plementary to this phenomenon (related to it through
the Kramers-Kronig formula, in fact) is the difFerence in
absorption coeScients for the two circular polarizations.
In principle one could imagine a spectral regime in
which the absorption coeScient for left circularly polar-
ized light of the left chiral regions is very high, while
that of the right chira1 region is very low. A very in-
tense pulse may then result in a very highly excited car-
rier distribution in the left chiral regions, leaving a
lower-energy carrier distribution in the right chiral re-
gions. This could, for a short time, leave the left chiral
regions saturated, so that another linearly polarized
pulse might respond only to the right-hand regions and
so be rotated. The time scale for the decay of this efFect
is hard to predict, but it should be related to the time re-
quired for highly excited carriers to diffuse from left-
chiral domains to right-chiral domains. Thus it should
be a monotonic function of the size of these domains.
Related polarization-memory measurements have been
performed for linear polarization in crystalline materi-
als. In this case the decay times are observed to be on
the order of hundreds of femtoseconds; however, the de-
cay mode is quite diFerent, being related to momentum-
space relaxation of high-energy carriers rather than
real-space relaxation. An interesting future calculation
would involve setting up a high-energy carrier
Boltzmann equation to attempt to estimate this decay
time theoretically.

Random spatial variations in optical activity cause the
material to produce diffusely scattered light; thus, one
might think that method (l) above could be used to
detect local chirality via optical activity. However, we
advise against this for the following reason. Optical ac-
tivity is linear with regard to field strengths; frequencies
are left unchanged. Thus although optical activity does
produce difFuse scattered light, it is at the same frequen-
cy and thus very diflicult to distinguish from ordinary
Rayleigh-scattered light. Conversely, there is a good
reason that we do not propose a selective-saturated
scheme in conjunction with the three-% ave mixing
phenomenon. Since three-wave mixing is nonlinear, the
polarization vector P and the electric fields E are at
difFerent frequencies, so that the time-averaged power
produced by P(t).E(t) is zero. Therefore, three-wave
mixing cannot contribute to energy absorption in the
solid.

II. MICROSCOPIC CALCULATION

As mentioned above, some estimate is needed for the
microscopic three-wave mixing response. To the
greatest extent possible we wish this calculation to
characterize the 1oea/ response of the material, since we
are interested in seeing how well this local response cor-
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responds with the local chirality, i.e., the local dihedral
angle.

In covalent materials it is natural to break up the
physical response into local contributions from individu-
al bonds. The general idea, which has actually been ap-
plied by Harrison and others to compute similar
optical coe%cients, is to assume that the charge in the
bond will be polarized by an external field, producing a
dipole moment which may depend nonlincarly on the in-
cident 6eld strength. To estimate this dipole, Harrison
constructs the simplest possible quantum-mechanical
model for the bond: a two-level-system description, the
two levels being the bonding and antibonding levels.
Harrison finds that the volume density of nonlinear po-
larizability P is roughly given by

Here e is the electron charge and E,p is some average
energy band gap. %'e will show in more detail below
how an expression of this sort is derived. This equation
predicts an approximate magnitude for the nonlinear
response of about P/e -0. 1 (eV) ~. This will turn out
to be about right. However, the simple Harrison ap-
proach to this calculation is inadequate in the following
several respects.

and up to eight-membered rings.
The full frequency-dependent expression for the

three-wave mixing polarizability P,zk is most convenient-
ly derived by perturbation theory applied to the density
matrix of the system starting with the Heisenberg equa-
tion of motion. Shen has presented a correct derivation
of this sort. The perturbation to the system may be
represented by a scalar electric potential:

P(r, t)=er E,e '+er Eie (4)

Note that we can work in a gauge in which the vector
potential is zero, so that the whole perturbation is in the
scalar potential P. It is possible to use this gauge be-
cause we make the long-wavelength approximation (set-
ting the wave vector to zero), in which the magnetic field
vanishes. It is the most convenient gauge for construct-
ing a consistent theory for clusters within a tight-binding
approximation; for crystalline solids another gauge is ap-
propriate (see the Appendix, part 3). The efFect of this
perturbation is evaluated to second order, and we deter-
mine how it changes the expectation value of the dipole
moment of the bond; we denote the quantum operator
measuring this quantity 9b " . %e will describe the ex-
act meaning of this operator a little later.

The expression so obtained by Shen ' goes like

(1) An honest evaluation of the polarizability P,j„ in
Harrison's approximation gives zero for a homopolar
semiconductor like Si or Ge. This is so because in the
approximation in which the homopolar bond is an isolat-
ed two-level system, it has an inversion symmetry, so
that every odd-rank tensor property must vanish.

(2) Harrison's method of estimating P is only ap-
propriate in the ~~0 limit; the inverse electro-optic
phenomenon of interest will vanish in this limit, even if
the inversion-symmetry approximation is not made.

A more extended theory than Harrison's is required to
provide a real estimate of P. We have devised a model
which remedies both these de6ciencies, the 6rst by in-
cluding the inhuence of a bond's environment on its po-
larizability (necessary so that the bond's response can be
sensitive to the local network's chirality), and the second
by evaluating the full frequency-dependent expression
for P,~„rather than just its static limit.

%e have taken into account the environment of each
bond by embedding each bond in an extended cluster,
numbering typically 20—30 Si atoms with H termina-
tions on the outer bonds. %e make these clusters by ex-
tracting subclusters of various regions of two hand-built
models of the continuous random network mentioned
above, the Connell-Temkin model' and the Polk mod-
el. We have studied the entire ensemble of clusters so
generated, which permits us below to get valuable infor-
mation on the spatial distribution of three-wave mixing
response in these networks, which we discuss later. The
cluster sizes were chosen so that all rings up to a certain
size which included the bond of interest were kept; we
experimented with keeping up to six-membered rings

Vb'"di)ii (co co„s+i—I „s )(co& co„+—iI'„. )

+(7 more terms) .

V " is the volume per bond in the solid; note that as
expected this expression has the units e /eV . Matrix
elements are between the many-electron states of the sys-
tem; g denotes the ground state, n and n

' denote excited
states. The other seven terms of this expression are
given on p. 17 of Shen; to convert these to our notation,
replace Shen's r; with my r,.'" and Shen's N with my
1/ V '"". (We are computing the response per unit
volume rather than the total response. ) Using the fre-
quency convention of Eq. (5), the difference frequency-
response is represented by ~, or mz ~0.

The dipole-moment operators r; and r; '" require
some discussion. The many-electron matrix elements re-
quired in Eq. (5) are evaluated in the usual way:

(&, ).,= f f f g «.~:(tr.))r, ((r.))~,(tr. )) .

4' is the fermion wave function. The operator r;, the di-
pole operator in the ith Cartesian direction, is a simple
one-particle operator ' which can be written as fol-
lows:

"i = f au spaceni rp~r)dr .
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The a sum runs over the electrons in the system. Note
that the matrix elements of the operator 9, are to be

evaluated over the whole cluster; in this way Eq. (5),
which gives the response of a single bond, is influenced

nonlocally by the entire neighborhood of that bond.
One might expect the "bond dipole-moment operator"

to be given by an expression similar to Eq. (7) with

the integral over all space replaced by an integral just
over the volume of the bond:

n'rp(r)dr .
jr—roj & j Rj

(8)

We imagine that the "bond" region is de6ned by a
sphere of radius

I
R

I
centered on the middle of the

bond ro. Equation (8) is almost correct, but it is unsatis-

factory because it depends on the position of the bond
ro. The problem is that the perturbation to the bond
will in general acquire a monopole moment because of
charges fiowing in and out from neighboring bonds. As
in classical electricity, the dipole moment is well

de6ned only in the absence of a monopole. We can cure
this problem by subtracting away the monopole moment
of the bond:

1
n rdr p(r)—

j r —roj &R @sphere

Here V'&b'"=~4nR3. While Eq. (9) may appear some-

what ad hoc, it is no more so than Harrison's approach

(Here n; is the unit vector in the ith Cartesian direction. )

Here p is the one-particle density operator

p(r)= +5(r—r ) .

which eliminates the monopole by completely decou-
pling one bond from another, removing the possibility of
intrabond charge Sow. Equation (9) may be rewritten in
a convenient equivalent form:

p bond y n (r r }ebond(r

Ir —rol & IRI
0, otherwise .

There is another possible approach to this calculation
in which, instead of computing the induced dipole mo-
ment at the bond, we can compute the current density
integrated over the bond region. Then, at 6nite frequen-

cy the current is related to the induced polarization by"'

(12)

We have not performed any computations using this ap-
proach; we expect that it would have given qualitatively
very similar results. Part 3 of the Appendix mentions
some details of how this scheme might be implemented,
and some complications of using the current formalism
within the tight-binding approximation which ultimately
discouraged us from using it; it would be necessary to
use this alternative formalism in infinite crystals, howev-
er.

Now we review how the above calculations are done
in the tight-binding limit. First, tight-binding im-

plies that we work in the approximation of noninteract-
ing electrons, In this case, the ground state g is a single
Slater determinant; since the dipole operators in Eq. (5)
are all single-particle operators, the states labeled n and
n' must both be one particle-one hole states. There are
two distinct possibilities: either n and n' involve the
same particle states and (in general) different hole states,
or vice versa. Evaluating Eq. (5} in terms of single-
particle eigenstates, we obtain

+(15 more terms) . (13)

a, P, and y denote the one-particle eigenstates, and f is

the Fermi function. Part 2 of the Appendix contains
more details about this expression, which, so far as we
can tell, has not been correctly obtained previously in
the literature. (For example, Shen's expression [his
Eq. (2.18)] is wrong. ) 9, and r,

'" now denote the single-

particle versions of the dipole operator, which by using
Eqs. (7)—(11) and using the usual rules are given by

The eigenstates
I
a & are obtained as eigenvectors of a

standard tight-binding model Hamiltonian for Si, which
has been discussed by many other authors. The
particular form of the Hamiltonian we use has been tak-
en from the work of Alerhand, Mele, and Allan.
9y diagonalizing this Hamiltonian we obtain the eigen-
states as linear combinations of tight-binding basis func-
tions:

8;=n. r,
r band n (r r )gband(r)

(14)

(15}
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~
&l),„& are the basis functions, orbitals centered on atom

i with angular momentum quantum number labeled by p
(S&px &Jiy &Jib }.

Substituting Eq. (16) into Eq. (13), we find that the
only additional piece of information which is required to
complete the calculation is the value of the orbital ma-
trix eleme~~s &yk„~-., ~y,„&»d &yk„~~,

""d
~y,.&. F«

we use the usual approximation of tight-binding
theory:"

~ijk(l & i2 &~) Pikj (i i&2 ~&1 ~&) i

~ijk(~l&~2&~} P&'jk( i&ii& ~2& ~)
(22}

%hen contracted with e, -k, this gives the following rela-
tions for the fully antisymmetric response:

These symmetries are obtained from the following two
relations which are true for the full three-wave mixing
tensor:

&ski, l~ Ill. &=&kl&i.(~ }k . (17)

r;
~
Pi„&=(&;)k (Qi, & .

Here (R; )k is the ith Cartesian component of the posi-
tion vector of atom k. Equation (17) imphes that the
basis functions are eigenfunctions of the dipole operator:

ReP, (coi, co&, i&j) = —ReP, (co&,coi,'co),

ImP, (co),coi, i&i ) = ImP, (coi, i&ii, ii) ),
RePg ( co i &

coi, ci) ) =RePg ( —co i &
—

cop&
—i&i ),

ImP, (i&ji&coi&co) = —ImP, ( co)&——coi&' co)—.

(23}

Finally, we need to evaluate

&4k„ I

&' "'
I 4i.& =n'«k ro)&4'r i

—
I

~""'
l 0'i. &

where

& y„~ eb "'
~ y,„&= J Pk„(R)P,„(R)dR . (20)

%e make the following approximation to the 8 " ma-
trix element:

0, otherwise .

%e take the matrix element to be one-quarter of the nor-
malization integral since each atom is shared among four
bonds. This choice satisfies the constraint that the 8 ma-

trix element, summed over all bonds, gives the identity
operator. (This is implied by the relation

gb, „gb'"d=t, .} Many other choices are of course possi-

ble, but we do not expect the physics to be qualitatively
altered by this choice.

III. RESULTS

Using Eq. (13), we have evaluated the three-wave mix-

ing polarizability p,"k for Si—Si bonds in a random net-
work environment. Before plunging into the full com-
plexity of the realistic system, we show in Fig. 5 a con-
tour plot of P for a simple two-level system. We have
shown one particular component of the p; k tensor,
namely the piece which is fully antisymmetric with
respect to interchange of tensor indices. This can be ex-
tracted from the full tensor by contracting it with the
fully antisymmetric (Levi-Civiti) third-rank tensor:

P, —:e,jkP;jk. Since e;jk is a Pseudoscalar, this oPeration
projects out the pseudoscalar component of p;.k. As dis-
cussed in the Introduction, this is the part of the three-
wave mixing response which we expect to be sensitive to
network chirality. The symmetry properties of
P, (io„i&iz,'co=c&i, +coi) are illustrated by Fig. 5, which
shows the calculation of P, for a two-level system.

As the

figure

illustrates, these relations imply
ReP, (co, ,co, ;2~, )=0—there is no antisymmetric com-
ponent to the second-harmonic response. On the other
hand, the response P, is nonzero when co, = —coi, and in
fact this is the response which we described in the Intro-
duction and which we study in detail below. Its phase is
6xed, since its real part is zero.

The overall frequency dependence of the antisym-
metric response is determined by symmetry properties
and by the resonant structure of the energy denomina-
tors, which cause the response to have structure along
the lines c&ji ——+cos,p& iiji ki&js,p——, and co( —roi ——+a)s,p (see
Fig. 5}.

The antisymmetric response of an actual Si—Si bond
randomly chosen from inside the Connell-Temkin model
is shown in Fig. 6. In its overall spectral distribution, it
resembles the two-level case, except that the resonant
structure is spread over a somewhat larger band. The
average resonant frequency is about 6 eV as for the
linear dielectric function. %e expect our tight-binding
model to give a fairly reliable picture of the general reso-
nant structure of the polarizability, but not faithfully to
represent the real frequency scales in the actual solid,
nor faithfully to apportion oscillator strengths among
various parts of the optical band. This will be satisfacto-
ry, since we mill only demand qualitative information
from these calculations. Note that the maximum size of
the three-wave mixing is about 0.01 (eV); this is typi-
cal of all the bonds from the Connell-Temkin or Polk
models, with a wide variation of about an order of mag-
nitude. Thus, the crude estimate of 0.1 (eV) given in
the Introduction, while perhaps a bit optimistic, is not
unrealistic.

%e focus on the inverse electro-optic limit of the
response, that is, near the line co, = —~2 in Fig. 6. The
key question is, does the sign of the inverse electro-optic
response of a bond faithfully reflect the local chirality
(i.e., the sign of the dihedral angle) at that bond'? As dis-
cussed earlier, only features of the bond's environment
which break inversion symmetry can result in a nonzero
response; therefore, the dihedral angle at that bond is
certainly one of the possible structural parameters which
can contribute. However, there are others. For exam-
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pie, fluctuations in bond angle can also contribute to the
local breaking of inversion symmetry. Probably a more
important complicating factor is that the bond polariza-
bility is not very local, and can depend on the geometry
of the network farther from the bond —on topological
disorder related to the ring statistics, for example. %e
shall see that there is a frequency-dependent answer to
the question of how important these complicating fac-
tors are. Fortunately, we hand that there exists a fre-
quency regime in which the three-wave mixing polariza-
bility does indeed refiect the local network chirality.

This is illustrated by the results of Figs. 7(a) and 7(b).
Here we have computed P, for a set of bonds in the
Connell-Temkin model which have the most clearly
defined chirality. These are easy to identify because in
addition to having positive dihedral angles, they have a
topological environment which is identical to that of a

bond in polytope 240, that is, the six-membered rings
passing through these bonds are arranged in the same
way as they are in polytope 240. As Fig. 7(a) shows, the
correlation between chirality and the sign of ImP, is

good in the high-frequency regime, that is, for frequen-
cies beyond the peak in the oscillator strength in Fig. 6.
(The frequencies used here are co, = 11.055 eV and

coz
———11.0 eV.) On the other hand, the sign of P,

correlates poorly with chirality in the low-frequency re-
gime, as Fig. 7(b) shows. (In this calculation we use
ro, =0.50 eV and o32

——0.49 eV.) This poor correlation
generally extends through the intermediate-frequency re-
gime, that is, through the resonant part of the response
of Fig. 6.

%'e have not been able to identify a simple reason for
this behavior. It is tempting to speculate that the
higher-energy response is more local, so that it is sensi-

(b)

I
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FIG. 5. The three-wave-mixing polarizability P,$3 of a two level system. (a} The real part of the symmetric response, that is, the
part of 13 which is symmetric upon interchange of Cartesian indices. (b) The imaginary part of the symmetric response. (c} The
real part of the antisymmetric response, that is, that part of P which changes sign upon interchange of Cartesian indices. As noted
in the text, the antisymmetric response is relevant to probing the chirality of the network. {d}The imaginary party of the antisym-
metric response. The dashed contours are positive, the dotted contours negative. The two-level system has a resonant frequency of
1 eV; this characteristic shows itself in the resonant structure of the polarizability. This and the symmetries of the diferent parts
of the response are discussed further in the text.
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tive only to the dihedral angle at that bond and not to
more distant geometric or topological parameters. How-
ever, we could extract no solid evidence for this idea
from our calculations. Still, taking the sensitivity of the
high-frequency response to chirality as an empirical fact,
we can explore its implications for three-wave-mixing ex-
periments.

We have shown that at high frequency ImP, is sensi-
tive to chirality for special bonds in the network. As we
now demonstrate, this property also holds for the whole
random network in the Connell-Temkin model. To do
this we have computed (p, (r)p, (r —r')), the correla-
tion function of the bond polarizability, averaged over r,
that is, averaged over the whole random network. This

correlation function weights the contributions of all the
bonds of the network equally; it is also important be-
cause, as we discuss below, it is this correlation function
which directly determines the strength of the measured
signal in a three-wave mixing experiment. "

Figure 8(a) shows the correlation function for high fre-
quency for the two networks which we have discussed
earlier: the Connell-Temkin, which we have shown to
have signi6cant chirality, and the Polk model, which has
less chirality. This difference is clearly reflected in the
high-frequency correlation function, which is larger and
extends out to somewhat greater distance for the
Connell-Temkin model than for the Polk model,
rejecting both the larger average chirality and its

(b)
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FlG. 6. The three-wave-mixing polarizability p&2, of a typical Si—Si bond in the random network. (a) The real part of the sym-
metric response. (b) The imaginary part of the symmetnc response. (c) The real part of the ant&symmetric response. (d) The imag-
inary part of the antisymmetric response. The dashed contours are positive, the dotted contours negative. The maximum contour
level is O.ole /eV . Note the marked overall similarity to the response of the two-level system in Fig. 4, with the main resonance
around 5 eV corresponding to the optical gap of Si.



greater spatial correlations in the Connell-Temkin mod-
el. In fact, these curves mimic closely a suitable correla-
tion function of the ring twist discussed in the Introduc-
tion which we have pubhshed previously (Fig. 9). The
curves in Fig. 9 are a direct geometrical measure of the
chirality in these various networks; however, the ring-
twist correlation is not an experimentally measurable
quantity. It is gratifying that this correlation function is
closely rgimicked by the polarizability correlation func-
tion, which is an indirect measure of chirality but is an
experimental observable. On the other hand, the P,

correlation functions at low frequency, shown in Fig.
8(b), do not distinguish in any significant way between
the Connell-Temkin and the Polk models, and thus pro-
vide a poor probe of the degree of chirality of these ran-
dom networks.

%e now review briefly the analysis of incoherent
three-wave mixing to show how the P, correlation func-
tion enters. The essence of the analysis is laid out care-
fully in a paper by Maker, which considers the case of
harmonic generation (i.e., ai, =c02) from a disordered ma-

terial; this analysis requires only the most trivial general-
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FIG. 7. The antisymmetric part of the three-wave-mixing
response p, for a set of bonds in the Connell-Temkin model,
for two di8'erent choices of frequency near the inverse electro-
optic limit (i.e., output frequency much less than the input fre-
quencies). {a) co& ——11.055 eV, ~2 ———11.0 eV. In this high in-

cident frequency regime, there is an excellent correlation be-
tween the sign of Imp, and the chirality at the bond. (b)

~& ——0.50 eV, ~&———0.49 eV. In the low-frequency regime, the
correlation between p, and the chirality is very poor.

FIG. 8. The correlation function of the imaginary part
of the antisymmetric three-wave-mixing polarizability,
(p, (0)p, (r)) vs

I
r

I
for two different random network mod-

els, the Connell-Ternkin (solid line} and the Polk (dot-dashed
line). (a) High-frequency regime of Fig. 6(a). (b) Low-
frequency regime of Fig. 6(b). In the first case where P, corre-
lates well with local chirality, the correlation function for the
Connell-Temkin model is markedly larger. Recall that the
Connell-Temkin model is observed to have substantial chirali-

ty, and the Polk model not. In the low-frequency regime we
find the correlation function incapable of distinguishing the
chiral from the nonchiral network.
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ization in the present case.
We imagine the following idealized experiment: a

small (say spherical, so that we can ignore Fresnel fac-
tors) piece of material is illuminated with two polarized
light beams, one at frequency m, and the other at fre-

quency co2. The material emits incoherent radiation uni-
formly in all directions with frequency ~=~, +cu2. The
intensity of this outgoing radiation with polarization q at
distance R from the sample is given by

I,(R,67}= ", "+,to'V«. E.(~, )Ep(co, )Ey(~, )E$(~, ) f dr&Pq. p(0)Pqys(r)) .
~a@,' 3 4m' ' (24)

This formula is very much akin to that for Rayleigh
scattering, and most of its factors can be identi6ed
from ordinary linear light scattering theory. The 6rst
factor contains dimensional constants (rationalized MKS
units are used) and the index of refraction n co is. the
vacuum speed of light. The second factor is a local field
enhancement. The third factor simply represents the
drop-off of intensity of an outgoing spherical wave. The
fourth factor, the dipole radiation efficiency, is the usual
Rayleigh fourth-pow'er law. The 6fth factor is the total
scattering volume. The sixth factor contains the electric
field strengths of the radiation at co, and c02; u, P, y, and
5 are polarization directions.

The 6nal factor, of course, contains all the important
physics we have discussed above. Note that only the in-
tegrated strength of the polarizability correlation func-
tion a8'ects the intensity of scattered light; higher mo-
ments of the correlation function become important only
if the wavelength of the radiation becomes comparable
to the correlation length, a condition which is unlikely
to be achieved.

Using the numerical results obtained above we can

Temkin
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FIG. 9. A correlation function for ring twist computed nu-
merically for four diferent random network models for amor-
phous semiconductors. Details of this calculation are given
elsewhere (Ref. 8). This calculation provides a direct measure
of the geometric chirality in the network; the Connell-Temkin
model is the most chiral among the ones studied. The "%'incr
models" (Ref. 22) are the least chiral.

make a rough estimate of the difhculty of the experiment
being proposed. Using currently available laser technol-
ogy, very large incident 6eld strengths are achievable
[E (co, 2)-10' Vlm) in very short pulses
(-10 ' sec). This field strength can only be achieved
for a highly focussed beam, so the scattering volume
would be rather small (V«, —10 ' m ). Also, we will
assume n-2, and fur 0 l-eV. . From Fig. 8(a), the in-
tegrand polarizability is about 10 e A /eV for the
Connell-Temkin model, and perhaps a factor of 2 small-
er for the Polk model. With these numbers, the instan-
taneous power, integrated over all 4m of solid angle, is
about 10 W, which is about 10 infrared photons per
100 fs pulse. For a pulse repetition rate of 10 Hz, this
translates into an average power of about 100 pW.
While this is not an overwhelmingly large signal, it is in
a detectable range. To distinguish "Connell-Temkin-
like" from "Polk-like" networks, one would need to
measure the absolute intensity [Eq. (24)] to an accuracy
of about a factor of 2 [i.e., the difFerence in the integrat-
ed correlation functions of Fig. 8(a)].

Unfortunately, this treatment glosses over a signi6cant
background signal which comes from the uninteresting
"symmetric" part of the three-wave mixing response.
Contributions to Eq. (24) come from the total polariza-
bility tensor P; i„not just from those parts with a partic-
ular symmetry with respect to interchange of tensor in-
dices. ' This problem can be largely solved by com-
bining the results of the experiment done under di8'erent
polarization conditions. We shall not delve into this
analysis in detail, since the actual experimental polariza-
tions will certainly depend on various considerations of
practical convenience. We find, however, that one pro-
cedure which will work in principle is to combine the re-
sults of the following two experiments. (1) Send in light
at frequency co& with linear polarization in the x direc-
tion, and light at frequency co2 with linear polarization in
the y direction; detect the scattered light polarized in the
z direction; eall the resulting intensity I'. (2) Send in left
circularly polarized light at co, , and right circularly po-
larized light at to& (both in the x-y plane); again detect
the emitted light with z polarization, calling the result
I . The quantity 2I' —I has no contributions from the
symmetric part of the polarizability, containing only an-
tisymmetry contributions; that is, the ones which are
chirality sensitive. (Actually, this quantity is still not
perfect, because it contains some partly antisymmetric
parts along with the fully antisymmetric part. We can
show that this is not a serious problem, because these
additional unwanted contributions are fairly small. )
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The reader may worry that 2I', I &&2I' —I, that is,
the symmetric response will overwhelm the antisym-
metric response which is of interest to us. Our calcula-
tions of the symmetric response, which we have not re-
ported, show that these concerns are not serious, because
we 6nd that the symmetric and antisyrnmetric responses
are comparable in magnitude in the high-frequency re-
gime of interest. This is by contrast to the low-
frequency regime, where most practical experience has
been gained and on which most intuition is founded,
in which the symmetric response is dominant.

IV. CONCLUSIONS

network, the Connell-Temkin model; yet, no previous
direct experimental test has been proposed. On the basis
of symmetry arguments, we show that the local three-
wave mixing response is a good candidate for probing
this chirality, at least in the "inverse electro-optic" limit
where two of the waves have nearly equal frequency and
the di8'erence frequency response at low frequency is
measured. %e work out the formalism for properly
computing this local response in the tight-binding ap-
proximation. %e And that in the high-incident-
frequency regime, the local polarizability does indeed
follow the local chirality. The e8'ects of this local chiral-
ity should be detectable in a real scattering experiment.

Our hope is that the study of incoherent three-wave
mixing in disordered materials goes beyond the specific
proposals of the present paper. Already, other workers
have used four-wave mixing (i.e., third-harmonic genera-
tion) to gain information about the amorphization tran-
sition in ion-bombarded Si. ' However, there seems to
have been a disinclination to try three-wave mixing in
the past, possibly because disordered materials are ma-
croscopically isotropic, which might be expected to
make the three-wave mixing response vanish. What has
perhaps not been previously appreciated is that while
disordered solids are isotropic on a macroscopic scale,
they are not on a microscopic scale, so that while
coherent three-wave mixing is forbidden, incoherent
three-wave mixing is not, and should in fact be quite in-
formative about the microscopic structure of the solid.

Other materials besides amorphous Si and Ge should
certainly be amenable to the kind of study proposed
here. For example, in the common network glasses
(e.g., Si02) similar questions can be asked about the
intermediate-range chirality of the network structure.
Such chirality would actually be less surprising in SiO&
than in Si, since chiral crystalline forms of silica are well
known (e.g., quartz). A theoretical study of the three-
wave mixing response in this system would focus on the
polarizability of the Si—0—Si unit and how it is
influenced by the dihedral angles of the neighboring oxy-
gens.

A very different example is provided by the amor-
phous III-V materials. Here the physics of the three-
wave mixing is diferent, because even crystalline, non-
chiral III-V solids have a large three-wave mixing
response because of the asymmetry of the bonds in the
material. Thus we would expect the antisymmetric (i.e.,
chiral) part of the response in the amorphous material to
be swamped by the strong nonchiral bond response.
Still, this response can be put to good use; measurement
of the three-wave mixing in these materials should give a
measure of the bond-orientation correlation function, a
quantity not easily accessible to other experiments.

In summary, we have considered the question of how
local network chirality (defined, for example, by the sign
of the dihedral angle) can be experimentally probed in
amorphous semiconductors. A definite local chirality is
an important feature of recent polytope models of amor-
phous semiconductors, and local chirality can be
identified in at least one hand-built continuous random
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APPENDIX

1. Ring twist and symmetry

The symmetry properties of the various configurations
of six-membered rings determine how much structural
freedom they have, i.e., they determine whether or not
the six-membered rings are "nonrigid. " An isolated
"chair" ring has threefold rotation symmetry as well as
mirror re6ection symmetries; its point group is 3m
(Di~ ). A boat ring has twofold symmetry and two mir-
ror symmetries, with a point-group symmetry of mm2
(C2, ). The "twisted boat" loses the mirror reflections,
retaining only the twofold rotational symmetry (point
group 2, or Cz). We now show that a six-membered
ring with a twofold symmetry has a continuous one-
parameter family of twists. The essence of this is a
constraint-counting argument, which goes as follows.
The six vertices of the ring in three dimensions initially
have 6& 3=18 degrees of freedom. This is immediately
reduced by half by the twofold symmetry, leaving nine.
Among these, one is a trivial translational degree of free-
dom along the twofold axis, and one a trivial rotation
about it; removing these leaves seven degrees of freedom.
Then there are six bond angle and six bond length con-
straints, only half of which are distinct because of the
symmetry. Subtracting these away leaves one degree of
freedom, which corresponds to the nontrivial twist vari-
able mentioned above. %hen a similar counting argu-
ment is constructed for a subgroup of the "chair" sym-
metry (e.g., just threefold symmetry), no degrees of free-
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dom are left; and indeed, the "chair" ring is rigid against
in6nitesimal distortions.

2. Single-particle expression
for three-wave mixing susceptibility

Here we discuss the complete transcription of the
many-body formula for the polarizability [Eq. (5)] for the
case of a noninteracting Fermi sea. We present this
here because, so far as we can tell, a correct formula of
this sort has not previously been presented in the litera-
ture. In the interests of economy we will invent a di-
agrammatic notation from which the complete 16-term
expression may be reconstructed. These diagrams
should not be confused with the diagrams used in
Green's-function theories of polarizabilities; while they
represent the same calculation, they orgamze the algebra
in different ways.

The diagrams are shown in Fig. 10. Their form may
be interpreted in a suggestive way: The first photon in-
teracts with the solid, creating an electron-hole pair.
Then the second photon scatters one of these two lines.
Finally, the two lines annihilate, emitting a photon at
the sum frequency. %'hile this picture is useful, the dia-
grams should really only be used as rules for generating
the correct algebraic expression for the three-wave-
mixing tensor. These rules are as follows.

(1) Associate single-particle state labels with each of
the fermion lines (a, p, and y in Fig. 11).

(2) Incident photons are denoted by wavy lines. Asso-
ciate one of the two incident frequencies with the 6rst
photon line (co2 in Fig. 11), and the other with the
second photon line (ai, in Fig. 11). co =ad, +cot is always
the frequency of the outgoing line. Each diagram gen-
erates two terms corresponding to the two dift'erent as-
signments of the incident frequencies.

(3) Each vertex has a dipole matrix element associated
with it. In particular, the co vertex is associated with the
dipole operator 9,- ", the co& vertex with PJ, and the co2

vertex with Pk. Thus the diagram in Fig. 11 generates
the factois (y

~
yk

~

tt), (y ~&,. [ p), and (p~&, "
[ a).

(Since we take the system to be finite, the states are real
and we do not distinguish the matrix element from its
adjoint. )

(4) Solid lines denote holes; thus, they are associated
with a fermi factor. (f, in Fig. 11.) Dashed lines denote
electrons (1 f&—and 1 fr —in Fig. 11).

(5) The double Fermion lines which go from one ver-
tex to the next are associated with the propagator factor

1

~i (~upper lower ) + t + upper, lower
i(left)

(A 1)

3. Current form of three-wave mixing polarizability

It is possible to derive an alternative form for the
three-wave mixing polarizability in which current opera-
tors rather than dipole operators appear in expressions
like Eqs. (5) and (13). This will be desirable when the
system of interest is a crystal rather than a cluster. Here
we will discuss the construction of this expression within
the one-particle approximation only. We will see that
this expression is a great deal more complicated, particu-
larly in the tight-binding approximation. This, as well as
the delicacy of the zero-frequency limit in this represen-
tation, discouraged us from actually using this form. In
this appendix we consider only the A,~ oo limit, where A,

Here the sum runs over the frequencies associated with
the vertices to the left, co„„is the eigenenergy of the
state associated with the upper fermiog line, co~,„„is the
corresponding energy for the lower fermion line, and

lapp ]0 is the damping constant for transitions be-
tween these states. The two denominator factors so gen-
erated are shown in Fig. 11.

(6) There is a nontrivial overall signal which is associ-
ated with the antisymmetry of the total wave function.
The rule for the sign is, if an electron line enters the
second vertex from the left, the sign is positive; if it is a
hole line, the overall sign is negative.

(7) Finally, there is an overall factor e /V " fi .
The eight diagrams in Fig. 10 generate 16 distinct

terms, since there are two ways that the two incident
frequencies can be assigned to the 6rst pair of vertices.

Iy)
(dp

~aaaaaaaa

I ~p)

I

v v v v v v v v w v 'e v v v v v 'e v

FIG. 10. The eight distinct diagrams which can be used to
generate the one-particle expression for the three-wave-mixing
polarizability. Solid lines denote holes, dashed lines electrons,
and wavy lines photons coming in or out. Detailed rules are
given in the Appendix.

p ~pa+~ ~pa
I

QJ
i + QJ z —cUpe + i I pa

FIG. 11. Detailed labeling of a diagram. Each line is associ-
ated with a single-particle state label a, P, and y, each photon
line is associated with a frequency label, and each pair of fer-
mion lines is associated with the denominator factor indicated.
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It is easy to verify that the required unitary transforma-
tion is

—i (e/Ac)R A(t)
Utt ——5 pe (A4)

with A(t) given in Eq. (A2). Here R is the position
vector of orbital a [see Eqs. (17) and (18) in the text].
The new Schrodinger equation is

(A5)~ tt4tt= —.
~, 4i BtI

Abler . EQ)2l

icE,e icE2e
A(R, t)= + (A2)

~here the modi6ed Hamiltonian is

is the light wavelength.
Using the current form rather than the dipole form of

the text means two things: (1) changing the gauge so
that the electric field enters the Hamiltonian through the
vector potential rather than the scalar potential, and (2)
considering as the ineasurable quantity the local current
density J(r} rather than the polarization density P(r).
The two are related as in Eq. (12).

The vector potential which is equivalent to the scalar
potential in Eq. (4) is

[h tt+5(,p(R~, t)]gtt
ca

(A3)

Specializing to the tight-binding problem, we ask the
question, how do we perform the gauge transformation
which makes the scalar potential zero, putting all the
field into the vector potentials In tight-binding
language, this is the same as finding the (time-dependent)
unitary transformation which will remove the scalar
potential from the time-dependent tight-binding
Schrodinger equation:

—&(e/A'c)(R —R&) A
h tt

——h, tie (A6)

It is widely ' but not universally known in the tight-
binding literature that Eq. (A6) is the uniquely correct
way to introduce the vector potential in a gauge-
invariant fashion.

4'e need to compute the response of the system to
second order in the applied electric 6elds; expanding Eq.
(A6) in powers of A and substituting in Eq. (A2) gives

2

h~tiR~tt Eie '. + h~ttR~tt Eie ' + z
h ttR~ EiR tt Eie ' ' + . +0(E )+

5p tl/+5p (2) +5p (3) + (A7)

Here R~p= R~—Rp.
Note that this expression contains not only pieces

which are of 6rst and second order in the applied 6elds,
but all higher orders as well. This is peculiar to tight
binding (i.e., finite Hilbert space) calculations; it should
be contrasted with the case of ordinary quantum
mechanics, where the perturbation Hamiltonian in this
gauge is

the expectation value of the bond current
J " /i(co;+coz) rather than the bond dipole eR
[remember Eq. (12)]. The one-particle matrix elements
of the current density operator are given by

J tt(R)= —g [v ~fr'(R)hatt(R)+g(R)P (R)v p] .

2

5h = — (p A)+
mc 2p7lc

Here there are rigorously no contributions to the Hamil-
tonian beyond second order in the applied field. More-
over, the A term is an identity operator in the electron
space (because our vector potential has no spatial depen-
dence), which means that this term cannot cause transi-
tions, therefore contributing nothing to the polarizabili-
ty. In a tight-binding theory the second-order term (as
well as all higher-order terms) can cause transitions, con-
tributes to the susceptibility, and complicates the calcu-
lation considerably.

Additional major complications arise from computing

(A9)

1
v ti

——R tt
——. [R,h ] tt . (A10)

h is the jul/ Hamiltonian including the radiation field
[Eq. (A6}]. Using the diagonal form given in Eq. (17) for
the operator R, we can evaluate the commutator:

Here p (R) is the basis function introduced in Eq. (16),
using a slightly difFerent notation. v is the electron ve-
locity operator R, which is conveniently evaluated using
the Heisenberg equation of motion:
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vp ——. Rt)h t).
I,

(Al 1)
J~"d= ' ~(e '"' '"""R h 8""'

Now we actually want the bond current,

J"""=I J(R)dR.
bond

Putting this together, we get

(A12)
8 '" is defined in Eq. (20). Now, like the Hamiltonian,
the current operator can be expanded in a power series
in the vector potential:

'n

'~

Pl

(R t) A)"

ybondf n}~~ aP (A14)

Coinparing Eq. (A7) and Eq. (A14), we find a relation-
ship between the terms in the expansion of the current
operator and those of the perturbation Hamiltonian:

It is interesting to note that for the case of the total
current operator rather than the bond current operator,
this relation simplifies to

J(n) A.5f (n+1)
(n +1)c (A16)

Jbond(n). ~
(n +1)c

1= ——~ (5h'"+ "8""'+8 "'5h'"+") . (A.15)yP ay yI3

(t, s
~
r„~ i,p„&~0 . (A18)

Introducing this kind of matrix element invalidates Eq.
(18), and more importantly, violates another important
rigorous equation of quantum mechanics [r„,r ]=0.
Thus the introduction of these additional terms in the
dipole matrix, while apparently well-motivated physical-
ly, is not advisable on forrnal grounds.

%'ith all this background, we return to the issue of the
construction of the three-wave mixing polarizability
within the current (as opposed to dipole) formulation. It
is an exercise in perturbation theory; in outline, one
proceeds as follows.

The response of the system, the expectation value of
the bond polarization, is computed using the density ma-
trix [see also Eq. (12)]:

This relation, while derived within tight binding, is
rigorously true in quantum mechanics, in which the
various terms are

(p bond }{2) (J bond }(2)
i (to)+CO2+i I )

[Tr( ~(2)J bond (0)
)

t(to)+t02+i I )

+Tr( ~{1)gbond (1)
)

(A17) +Tr( (0)J bond (2))] (A19)

1 is the identity operator in the electron space. The
main difference and complication of tight binding is that
these terms do not vanish for any n ~ 1.

It should be noted that the above derivation relied on
the assumption that the matrix elements of the position
operator are diagonal in the tight-binding orbital repre-
sentation [i.e., Eq. (17)]. In previous work it has been
considered physically sensible to add on-site off-diagonal
"atomiclike" matrix elements, corresponding, for ex-
ample, to s to p transitions:

%'e have inserted the damping factor I following Mer-
min. The superscripts in this equation denote the or-
der to which the electric field appears. Recall that the
third term is special to tight binding. Each of these
three terms will lead to distinct sets of contributions to
the three-wave mixing susceptibility. %'e consider each
of these in turn.

u. rr(p'"9~"' {o)) term

To evaluate the density matrix, we use the Heisenberg
equation of motion:
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~(2)

Bf
=t(co(+coq+iI')p' '= [h,p]' '

iA
have the same structure as the linear susceptibility:

1
([h (0) ~(2)]+[)) (l) ~(1)]+[pi (2) ~(o)])

iA

Taking matrix elements between eigenstates ct and P
gives

e
gvbOIld ~ p ~+~ +jI

+ (1—f.)f

(-"2) p(=i)p
&—Q)~p+/ 1 ~p

The matrix elements of the operators =, and =2 are

(A23)

l(co) +co2 —coop+ t I )p op

([gh(1)p(1)] +[gh(z)p(0)]) (A21)

(RJ) phop(r ), fi(co)+il )

(Rk )ophnp(r„).—
A(co2+i I )

(A22)

(2) The second commutator generates two terms which

The two terms on the right-hand side of Eq. (A21) in
turn generate distinct sets of contributions to the polari-
zability.

(1) The first commutator generates 16 terms which are
exactly parallel to the 16 terms of the polarizability in
the dipole form. One set can be obtained from the other
by the following replacement:

g [(R ) ) 8bond+8bond(R ) p ]
(p bond)

2A'(co)+coi+i I )

g[(R') yh r8rp +8 r (R )rp'hrp]

(=,).p— y

2trt(co)+co2+l I )

)t p(RJ ) p(Rk), p
( )

fi (coi+iI )(co2+i I )

(A24)

Equation (A23) does not appear in a rigorous treatment
of the three-wave mixing, because in exact quantum
mechanics =2 has only diagonal matrix elements; this is
not true in the tight-binding approximation, however.

b Tr(p ."'J "' '") term

The equation analogous to Eq. (A21) for this term is

t(co„co.p —ir)p—()p)= . [Sh(",p"'].p. (A25)

Here ~„ is either co, or ~z. J '" "' also contains either
the frequency factor co& or ~z, which we will denote co ',

it is required that )(t&v. From this we again generate
two terms which are identical in form to Eq. (A23) with
the identifications

[(R') r(R() rh r8rp +8 h p(R )p(Rr) p]'
(=()op

2tri (coi+co2+i I )(co„+iI")

(R~)op)t p
(=q) p r(~„+ir)

(A26)

The Cartesian indices g and g are determined by the fre-
quency labels )(c and v. If @=1 and v=2, then (=k and
(=j, and vice versa. Because of these two possibilities,
four distinct terms are generated. These terms also
occur in rigorous quantum mechanics; they are the

higher-order analogue of the "diagmagnetic" contribu-
tions to the polarizability in the linear case.

c. Tr(p( J '" ( ) term

This may be simply evaluated, giving a single term:

e gf [(R') (R') r(Rk) rh r8r +8'r hr (R ) (R') (Rt, ) ]

2))1 V '" (co(+co2+i I )(co(+i I )(co2+i I )
(A27)

This term does not occur in exact quantum mechanics,
where J b """'=0.

This completes our derivation of the current form of
the three-wave mixing susceptibility —23 terms in all, a

very cumbersome tool indeed. Of course, it is possible
to construct a mixed formalism in which both current
and dipole operators appear; we shall not discuss this
here.
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One might think that it would be sensible to ap'proxi-

rnate the polarizability by throwing away some of the 23
terms, at least the ones which are zero in rigorous quan-
tum mechanics, in order to make the calculation some-
what more manageable. This would be very unwise, for
the following reason. All of the individual terms in the

polarizability diverge at zero frequency; however, the to-
tal polarizability must in fact be finite at zero frequency.
This means that there is a delicate cancellation among
all of these 23 terms; leaving a few of them out leads to
nonsensical answers at low frequency.
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