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Two-level approach to saturation properties in semiconductor materials
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Saturation properties of absorption, dispersion, and mixing susceptibilities in semiconductors
have been described using the density matrix approach. This model, which takes into account
both intraband thermalization and interband relaxation including Auger recombination, allows for
numerical computation of the susceptibilities whatever the temperature and laser intensity are. As
a simpli6cation, an equivalent two-level system is derived which represents very well absorption
and mixing susceptibilities for any laser wavelength, dispersion being correctly described by this
model only when the pump frequency is close to or smaller than the band-gap energy. Such an

equivalence is very easy to handle and allows for great simplification when the susceptibilities are
introduced into the propagation equations.

I. INTRODUCTION

Due to their large nonlinearities semiconductor ma-
terials are very attractive for applications such as bista-
bility or phase conjugation. As a consequence, nonlinear
processes due to interband absorption in semiconductors
have received great attention, since lasers can be used to
saturate the electron-hole pair creation. Absorption was
first phenomenologically modeled by using a two-level
system. ' More recently, the band structure was intro-
duced by Wherret and Higgins in the "direct satura-
tion" model in which the semiconductor is described by
a superposition of independent two-level systems of
difFerent resonance frequencies. However, this descrip-
tion, which does not take intraband relaxation into ac-
count, could not reproduce the intensity dependence of
the third-order susceptibility of a semiconductor-doped
glass. Another scheme, named the "Burnstein-Moss"
model, also used by Wherret and Higgins takes intra-
band relaxation into account. Using this theory very
simple expressions can be obtained for the semiconduc-
tor susceptibilities, but only in the limit of very small
temperatures. Another model was used by Miller et aI.
which describes the nonlinear refractive index of semi-
conductors at room temperature. Nevertheless, as it in-
volves Boltzmann statistics in order to describe the free-
carrier quasiequilibrium, the simple expressions derived
from this model cannot be used at high medium satura-
tion. In the case of semiconductor lasers a scheme has
been developed which correctly models matter-radiation
interaction in the semiconductor whatever the tempera-
ture is. Unfortunately, this method, which needs some
numerical integrations, uses a series development for the
induced polarization. This approximation, which is per-
fectly correct in the case of semiconductor lasers, cannot
be used for strong saturation of absorption in a pure
semiconductor.

In this paper, we use a density matrix approach de-
rived from Ref. 5 in order to model strong light-matter

II. SEMICONDUCTOR MODEL

A. General formalism

The semiconductor is described in reciprocal space by
two parabolic valence and conduction bands. For the
wave vector k in the first Brillouin zone, the energies in
the conduction and valence bands are

fi kE,(k)= +E
2t?l.

(la)

interaction in semiconductors. As the susceptibilities de-
rived from this theory depend implicitly on the pump in-
tensity, the paper presents a model using an equivalent
two-level system for the description of the intensity satu-
ration of the interband absorption. Indeed, the quantita-
tive description of absorptive, dispersive, and mixing
properties is much easier to obtain when using this
equivalence. Section II describes the general formalism
of our model, which takes intraband thermalization and
interband relaxation, including Auger recombination,
into account. This section also details the case of the
saturation of absorption and dispersion by a mono-
chromatic wave and that of degenerate or nearly degen-
erate four-wave mixing processes. Section III extends
results for the two-level susceptibilities in the case in
which Auger recombination is taken into account. In
Sec. IV the equivalence between the semiconductor and
the two-level system is defined and a comparison is made
between susceptibilities calculated by the "exact" and
"two-level" models. This section also includes a discus-
sion which demonstrates that absorption and mixing sus-
ceptibilities are always well described by using the two-
level approach, whereas the equivalence is valid for
dispersion only when the pump frequency is near or
below that of the semiconductor band gap. An instruc-
tion guide to the equivalence is also presented which
shows that this technique is very simple to handle. Fi-
nally, the conclusion summarizes the paper and discusses
possible applications of the model.
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where m, and m„are the eA'ective masses and Eg the

gap energy.
Matter-radiation interaction inside the semiconductor

is described by using the density matrix formalism for
electrons

Bp Bp
Bt Bt

+e
Bt

spon

Bp
Bt

,
'

Auger

14 iR i'=(Bo—di', p) — [(p —p)l" +I (p —p)] — [(p pQ)y—+y(p —p )]— (pA+Ap) .
2 2 0

In this expression H0 is the unperturbed Hamiltonian of
the semiconductor, the corresponding energies being
given by Eqs. (1), d is the dipole moment of an electron-
hole pair, and 6 is the electromagnetic field. p is the
quasiequilibrium distribution function reached through
the intraband relaxation when the electromagnetic field
is present. As the intraband relaxation is much faster
than any other relaxation process, the quasiequilibrium
is described by Fermi-Dirac statistics:

1

1+exp{[E,(k) P, ]/kti T—
I

p, (k, , )=—

p„(k,P„)= 1

1+exp I [E„(k)—(t, ]/kz T I

(3a)

(3b)

I k dkp, (k, $, )

k dk[1 —p, (k, P„)]

is the free-carrier density. The transverse relaxation
time of the electron-hole dipole is

gpf 2

T]

where k& is the Boltzmann constant, T the temperature,
and P, and P„ the quasi-Fermi-levels in the conduction
and valence bands, respectively. As the Fermi-Dirac
statistics are used rather than the Maxwell-Boltzmann
statistics used in Ref. 4, the present calculations are val-
id whatever the field intensity is. p0 is the distribution
function at thermal equilibrium without any perturbing
electromagnetic field. For the large-gap semiconductors
considered in this paper all the electrons are supposed to
be in the valence band and, therefore, po, (k)=0 and

po, (k) =1. I, y, and A are the operators describing the
intraband relaxation, the spontaneous emission, and the
Auger recombination, respectively. Under the adiabatic
approximation the operators I, y, and A have only di-
agonal elements. Assuming that the relaxation processes
are k independent allows us to define the intraband re-
laxation time v. =I &&, the spontaneous emission lifetime

Ti =yki, and the Auger relaxation time A 'N (Ref.
9) where A is the Auger constant and

Using such a formalism the polarization is

P(t)=Tr(pd) .

If the electromagnetic field can be written

C(t) =E (t)exp( i cot )+c—.c. ,

p( )
elf c7 2m

8'fT' CO

3/2

x(bo —6)' db E(t)exp( idiot)+c —c.
In this expression m =(m, '+m„') ' is the reduced

mass, 0' =4%6)dz~ T2/16cn is the absorption cross section
of the electron-hole pair, n is the refractive index, d„, is
the electron-hole pair dipole moment which is assumed
to be k independent, and ho=(co E /iii)T2 is t—he nor-0 g 2

2malized laser-band-gap detuning. g(h)=1/(1+6 ) is
the Lorentzian absorption profile of the electron-hole
pair of wave vector k.

The quasi-Fermi-levels P, (t) and P„(t) fixing the value
of the polarization are determined through the popula-
tion density matrix equation

where E(t) is slowly varying in time, it is possible to use
the rotating-wave approximation' in the resolution of
Eqs. (2). Moreover, as the thermalization to quasiequili-
brium induced by intraband relaxation is reached at a
time which is much faster than any other time constant
involved in this problem, the intraband relaxation terms
are elj.minated by replacing p by its quasiequilibrium
value p in Eqs. (2). For the same reason the coherence
follows the slowly varying field envelope E(t) and the
adiabatic approximation can be used. "

As a consequence, integration of Eq. (2) and the use of
the normalized variable 5= Ice —[E,(k) —E„(k)]/fiI T 2

then gives, for the polarization,
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dX 1 2m
' dt 4~' A' T,

E(r)

X f [p„(b,P„) p,—(b„b, )]g(b. )

B. Absorption and dispersion saturation
of a monochromatic wave

Under continuous or long pulse duration illumination
of the semiconductor by a monochromatic wave
E(t)=E(e), Eq. (7) is integrated in the steady-state ap-
proximation. The free-carrier density is, therefore,
defined by

No(1+AT, N )=
3/2 2

1 2m E(co)
tT2 E,

Pod, „—P, 5,

The quasiequilibrium Fermi levels P, (
~
E/E,

~
) and

P, (
~
E/E,

~

2) can, then, easily be determined by numer-
ically solving Eqs. (8) and (9). Figure 1 shows the inten-
sity dependence of the normalized quasi-Fermi-level
positions b,„=T2$,(

~
E/E,

~

}/A' and b, =[co
—P, (

~
E/E,

~

)/A']T2 for ho=1. The solid and dashed
curves correspond to no Auger recombination and rela-
tively strong Auger recombination (A T, = l. 5 X 10
cm ), respectively. Both curves have the same limits 6„"
and 6, when the laser intensity is increased towards
infinity. As expected, the saturation of the semiconduc-
tor absorption is reached at higher intensities when
Auger recombinatiop is taken into account. Let us un-
derline that this u frequency saturation of the semicon-
ductor absorption corresponds, in fact, to a band-filling-
induced equilibrium between gain for frequencies lower
than co and losses for frequencies higher than n.

The knowledge of i)), , (
~

E/E,
~

) allows us to calcu-
late the susceptibility at frequency ~;

x(60—6)' dA —(1+AT, X )N

and the charge conservation condition

f [p, (b, P, )+p„(b,P„)—1](60—b, )' db, =0 . (8)

In Eq. (7) E,
~

=A' /(4d„, T, T2) is the saturation inten-
sity of the electron-hole pair.

The exponential decay of the population relaxation as-
sumed in our model gives a Lorentzian spectral weight
function. Using such a spectral profile leads to an un-
bounded phase for the polarization. This drawback can
be circumvented if we take the Gaussian decay in the
wings of the line into account. Indeed, the use of the
screened potential in the statistical theory of line
broadening by electron-electron scattering results in a
Gaussian decay having a linewidth 10-40 times larger
than the Lorentzian profile. ' * ' Therefore, the line
profile used is g(h) = [exp( —b, /b, , )]/(1+6, ) rather
than I/(1+6, ).

4
V

0-

0.01 ~ Iau/a, l'

FIG. 1. Intensity dependence of the normalized quasi-
Fermi-level position (50——1): solid lines, without Auger recom-
bination; dashed lines, with Auger recombination
(aT =1 5X10 35 cm6)

X(~)=
877 co

3/2

x f ( —& +)i[p, (&,p„) p, (~,p, —)]

xg(&}(&o &)'~'d~ . — (10)

In this expression the intensity is a hidden parameter
which enters through P, and P, .

X, =Xo+ bg, exp(i5cot )+c.c. ,

ax,
X„=Xo+ AP„exp(i 5cot }+c.c. ,

BP,

where No is the carrier density induced by E(~) alone

C. Degenerate or nearly degenerate four-wave mixing

In this case the complex field amplitude is E ( t )

=E(co)+E (co —5')exp(i5a)t)+E+(co+5co)exp( i5rot), —
where the pump-probe detuning 5' equals zero in the
case of degenerate four-wave mixing. In the case of
nearly degenerate four-wave mixing the field modulation
period 2ir/5m is assumed to be much larger than the in-
traband relaxation time ~ (5cor &&1). In the parametric
approximation, the probe and conjugate amplitudes
E (co —5') and E (+co +c5o) are much smaller than the
pump field E(co) so that one can consider that the free-
carrier density at quasiequilibrium is slightly modulated
at the low frequency 5'. The carrier densities in the
conduction and valence bands N, and X„which are
governed by the energy of the corresponding quasi-
Fermi-levels, are given by the following relations:
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TABLE I. Expressions of the f~(b, }functions.

ft(6)= fp„(4,P, ) p, (—b, P, )]g(&)
fz(~)=P. (~ 4. )[&—P.(~ 0~)]
f3(&)=p, (&,b, )[& —p, (&,P, )]
f~(&)=( &—+i)g (&)f~(&)

fg(&) =( &+—Og(4)f3(b )

f,(b, ) =fp(4)g(is. )

fp(b )=f3(&)g(h)

BN,
b,P, .

iv„=No

Solving Eqs. (7) to first order in E (ca+5co) and using

the neutrality condition' allow us to calculate the polar-
ization induced at the frequencies co+5m by using rela-

tion (6), also written to first order in E*(co+5co}:

(12)

P (ca+5ca) = [X(ca)+X']E+(co+5co)+X"E '(co —5co),

(13a)

P(c0 5c0)=—[X(co)+X']E (ca —5')+X"E+'(co+5ca}

(13b)

The nonlinear susceptibilities g' and g" entering Eqs.
(13) are

) C7g g 2'
8'ir co RT2

r

IiI4
+

2a I2 I3

and b,P, and b,P„are the change in Fermi-level positions
induced by the field modulation. In order to ensure the
electric neutrality in the semiconductor, the carrier den-

sity variations must be the same in both bands:
r

12&
„'F72

FIG. 2. Energy diagram of the two-leve1 system.

P (ca) =X,NE(ca), (17a)

P(co+5co)=(XiN+X2~ )E (N+5co)+XiivE (co —5'),

the large bandwidth of the bath its lifetime is very short,
so that total population can be repartitioned only be-
tween levels

I
1 ) and

I
2 ). Using the density matrix

formalism, the Fourier components of the polarization
can be easily calculated as

C7j 0' 2P72

8K CO

' 3/2
l

Za

I,I4 I,I,
(14a)

P(c0 —5') =(X2iv+X'p~)E (co+5ca)+X,"~E+'(co+5co) .

(17c}

The susceptibilities used in Eqs. (17) are

l 2
E. E I6 I7

g —5, —— + — i(1 +32—T, N)o.
2 E, I I (15)

cn &2iv 5+ i
X2iv = -- Niiv(1 —2p2»

4m'co

«~i~ —5+i »~(1 2p2) IE(~)
I

41rca 1+5 D IEsiN I (1+5 )

(18a}

In these expressions 5i 5coT( and 1~ (J——=1—7} are in-

tegrals de6ned by the following relation:

1/2d g (16)

the functions f (b, ) being given in Table I.

III. T%'Q-I.KVKI. SYSTEM with

(18b)

c"o'~iv 5+i N2N(1 ——2P, } E2(ca)

1+5 IEs, 2iv I
(1+5 }

(18c)

The two-level system including Auger recombination
is schematized in Fig. 2. The pump frequency m is de-
tuned by 5/T22& from the two-level resonance ~&2,

T22~ being the transverse relaxation time of ihe two-
level system and 5=(ca —co,~}Ti@~ the normahzed de-
tuning parameter. Auger recombination is taken into
account by adding a bath of mean energy 2%co)2. Due to

D =& 2~+1 1+3AOP2+
IEs.~x I (1+5 }

In these expressions in which 5, 2N 5'T, 2N and-
~0= ~zxN2ivT&, zx cr2iv»d I Es, ziv I

are the abs«p-2
'

2

tion cross section and saturation intensity of each two-
level system; for the X2z two-level systems the popula-
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tion relaxation properties are described by the longitudi-
nal relaxation time T& 2& and the Auger constant A2&.
Finally, the occupation probability p2 in level

~

2) is

given by

and

1 2m
0

IEs, 2+ I
(1+5 )

~OP2+

=0 . (20)
I Es, 2w I

(1+5 )

Equation (20) always has only one real solution so that
the susceptibilities are entirely determined when this
equation is solved. Let us underline that when Auger
recombination is negligible (Ho=0) the susceptibilities
given by Eqs. (18) reduce to the expressions given in Ref.
6.

IV. SEMICONDUCTOR TAO-LEVEL
SYSTEM EQUIVALENCE

A. Princiyle of equivalence

(21)

1 282
0

' 3/2

f g(b, )(b —b, )'~ db,

In order to set up an equivalence for the description of
the saturation properties of light-semiconductor interac-
tion, it is necessary to relate the two-level parameters to
that of the semiconductor itself. This equivalence is
summarized in Table II. First of all, the relaxation
properties which do not involve any interaction with the
electromagnetic field must be the same for the equivalent
two-level system and the real semiconductor (T, 2~ ——T,
and A zz ——A). Then, at complete saturation

[ ~

E(ru)
~

~ oo] the number of excited states is the same
for the two descriptions, so that N2& ——2X„, where
N„=(1/m ) f k dkP, (k, (t,") is the free-carrier densi-

ty for a complete saturation of the absorption at frequen-
cy ro. Finally, at low intensity [ ~

E(ro)
~

~D] the sus-
ceptibility at frequency co can be written

represent the density of states inside the absorptive and
dispersive profiles, respectively. The normalized detun-
ing giving the same low-intensity susceptibility for the
equivalent two-level system is therefore 5=No/Xo.
From these three relations one can easily derive the
equivalent two-level absorption cross section
trz~ ——(1+5

)ohio/(2N„)

and saturation intensity

Is,zv =21s& /Ão(1+5')].

8. Comyarison of "exact"
and "t~o-level" susceytibilities

The semiconductor parameters used in these calcula-
tions are summarized in Table III. The "exact" suscep-
tibilities X, 7', and I" were numerically calculated
through Eqs. (10) and (14) by using the values of the
quasi-Fermi-levels first determined by numerically solv-
ing the integral Eqs. (8) and (9) with respect to the nor-
malized pump intensity

~

E(co)/E,
~

ranging from 0.01
to 1000. The "two-level" susceptibilities were simply
evaluated through Eqs. (18)-(20) and use of Table II.
The calculations were made for four di6'erent laser-
band-gap normalized detunings (ho ———1, 0, 1, and 10)
and without (Ho=0) or with (Ho=200) Auger recom-
bination. In all the subsequent figures the exact and
two-level susceptibilities normalized to the imaginary
part of the low-intensity susceptibility are drawn in dot-
ted and solid lines, respectively.

Figure 3 shows the relative variation b,a/a of the
imaginary part of X versus

~
E(ro)/E,

~

for ho= —1, 0,
1, and 10. This figure demonstrates that the saturation
of absorption is well represented by the equivalent two-
level system. The agreement between the two models is
good again in the case of the imaginary part of X' (or
X"), as demonstrated by the plot in logarithm scale of
Im(X") versus

~
E(co)/E,

~

in the case of degenerate
four-wave mixing (5~ ——0) without taking Auger recom-
bination into account (see Fig. 4). On the other hand, as
shown in Fig. 5, the exact dispersive susceptibilities
Re(X) and Re(X") are not very well fitted by the two-

TABLE II. Equivalent two-level parameters as a function of semiconductor characteristics.

Population relaxation time

Auger constant

Density

Normalized laser frequency detuning

Absorption cross section
Xoo.q~ ——o(1+5 ) 2X„

Saturation intensity
Ig 2%„

Xo



TABLE III. Semiconductor parameters used for the calcula-

tion of the "exact" susceptibilities (mo, free-electron mass; m„
conduction-electron mass; m„hole mass; Eg, band-gap energy;
and T, temperature).

1000 0.1

mc
T2 (s)

10-" 20 lm(x")
103

level system. The discrepancy which will be explained in
Sec. IVC is much more pronounced when 4o ——10 than
for Ao= —1, where the equivalence is almost correct for
the description of dispersion up to

~
E(co)/E,

~

=100.
Nevertheless, this misfit between the two descriptions of
the dispersive properties of the semiconductor is not im-
portant for the four-wave mixing process. Indeed, as
demonstrated by Fig. 6, the modulus of X' (or g") which
is of interest in four-wave mixing is well fitted by the
two-level model whatever the laser-band-gap normalized
detuning is. As is demonstrated in Sec. IV C, this is due
to the fact that the dispersive contribution is of impor-
tance only for b,o smaller than one when two-level model
properly accounts for the saturation of the real part of
X' (or X").

The same conclusions can be made concerning the
equivalence in the case of nearly degenerate four-wave
mixing taking Auger recombination into account, As
shown in Fig. 7, the equivalence is good in any case for
the absorption coefficient o, and the modulus of the mix-
ing susceptibility. On the other hand, this ffgure demon-
strates that, as expected, Auger recombination shortens
the lifetime of free carriers; indeed, the saturation of ab-
sorption occurs for larger intensities and the nearly de-
generate mixing susceptibility is higher when Ao ——200,
since in this case the medium can relax faster than the
field modulation moves. '"

103

100 0.1

lE{~)/ Esl

10-2

FIG. 4. Intensity dependence of Imp") (dashed lines) and
ImP"'») (solid lines) for 8 0 ——0. 1, 0, 1, and 10 (6) =0, ~o =0).

C Discussion of the equivalence

The misfit between the exact and the two-level
description of the saturation of the dispersive susceptibil-
ities can easily be qualitatively understood. The exact
dispersion is calculated through integration over the
wave number k of the function F(k)=k bg(b, ). This
function is represented in Fig. 8 together with the re-
duced bands both for 50=0 [Fig. 8(a)] and 50=10 [Fig.
8(b)]. For b,0=0, the laser is exactly resonant with the
band-gap energy; F(k) is always positive and saturation
occurs together with band 611ing when the pump intensi-
ty is increased. On the other hand, in the case in which
the laser-band-gap normalized detuning is large, F(k) is
nearly antisymmetric with respect to ko. As a conse-

0.1 1000 0.1

0.6- -0.6
Re (x),

0.2- -Q. 2

0.25-
-02-

0.1

-0.6 Re(x") ss -0 5

0.2- -0.2

0.01 100 0.1

I E(au)/Es l

10

lE(~)/Fsl

FIG. 3. Intensity dependence of ho.'la for 60———1, 0, 1,

and 10) (5, =0, Ho=0). The dashed and solid lines represent

the "exact" and "takeo-level" calculations, respectively.

FIG. 5. Intensity dependence of Re+') and Re+' ) (dashed
lines) and ReO.'2z) and ReQ "») (solid lines) for 50———1 and
10 (51——0, Ao ——0).
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FIG. 6. Intensity dependence of
~

I"
~

(dashed lines) and

~Xq~ ~

(solid lines) for 60= —1, 0, 1, and 10 (5,=0, 30=0).

quence, the band filling generated through the intensity

I" k
increase decreases the magnitude of the negative p t far o

( ), thus providing an increase in the dispersive sus-

ceptibility Re(X) (see Fig. 5 for b,o=10). The two-level

model cannot be applied in this case, but, as E(k) is an-
tisymmetric with respect to ko, negative and positive
contributions to the integral compensate each other and
the equivalent two-level system is resonant in this case.
This fact actually explains why the modulus of the mix-

ing susceptibility shown in Fig. 6 is always well

{a}

FIG. 8. Dispersion function E{k) for the semiconductor in

the reduced band scheme. (a) and (b) correspond to the laser

frequency in or above band-gap resonance, respectively.

represented by the equivalent two-level system. Indeed,
the absorptive susceptibilities which involve the sym-
metric function G(k)=k g(b, ) do not suffer from the
same problem and are, therefore, always well represented
by the equivalent two-level system.

hC
a

ix"i

0.8

0.4

10

0.1
D. Use of the equivalence

For each value of 50 the calculated value of the two-
level normalized detuning 5=NO/No is found to be
quite nearly equal to 6,"+b,,". This equality means that
the energy levels

~

1) and
~

2) of the equivalent two-
level system lie at the quasi-Fermi-levels, as shown in

ig. 9. Knowing the band-gap energy and the effective
masses of the semiconductor, the two-level parameters
can easily be related to the absorption cross section and
saturation intensity of the electron-hole pair in the serni-
conductor.

The two-level normalized detuning 5 is calculated by
performing two integrations in order to determine Xo
and No, nevertheless, in the case in which 50 is much
larger than one, No ——(1/2m )(2m/fiT ) (b, )' and as

0

demonstrated in See. IVC the pump frequency is reso-

I

IE(~)/ Ks I

l2&

FIG. in«»ity «pen«n«of ««»& ~X"
~

6 =10 in th
5 =50 w'

e case of nearly degenerate four-wave m' '
ve mixing

( &

——0) with and without Auger recombination. The dashed
and solid lines represent the exact and two-level calculations,
respectively. FIIG. 9. Two-level picture of the semiconductor.
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nant with the equivalent two-level system (5=0).
The number of equivalent two-level systems

X2z ——2%„can be obtained through the solution of the
coupled equations

5
(t,"—P,"=Pi

2

(22a)

(22b}

The first equation is related to the position of the energy
levels of the equivalent two-level system, and the second
one is used to ensure the neutrality of the medium. As
integrals giving N, and X, are tabulated, an iterative
technique allows us to rapidly determine X„without
any numerical integration.

The absorption cross section and saturation intensity
of the equivalent two-level system are then easily calcu-
lated by using the expression used in Table II.

V. CONCLUSION

This paper has developed a quantitative description of
the saturation characteristics of absorption and degen-
erate or nearly degenerate four-wave mixing processes in
semiconductors. The calculation which takes intraband
relaxation into account is valid when all characteristic
times are much larger than the intraband relaxation time
(10 ' s}, this condition being very easily fulfilled in
most experiments. As the results given by this theory

are not very easy to handle when incorporated into the
propagation equations, an equivalence with a two-level
system has also been developed. This equivalence is al-
ways valid for absorptive properties of the semiconduc-
tor whatever the pump wavelength is. Concerning
dispersion, the equivalence is nearly appropriate for
pump wavelengths near or below the band gap. Never-
theless, as the dispersive contribution is much smaller
than the absorptive one when the pump wavelength is
much larger than that of the band gap, the equivalence
is also valid for degenerate or nearly degenerate four-
wave mixing whatever the pump wavelength is. A very
simple instruction guide has also been given which
makes the equivalence very straightforward to use.

As a demonstration, this equivalence has already been
successfully used in a theoretical interpretation of the
influence of Auger recombination in the relaxation pro-
cess of semiconductor-doped glasses. ' Let us emphasize
in a final statement that this equivalence can also be
used in the case of semiconductor lasers, provided some
changes are made in order to take the electrical pumping
into account.
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