
PHYSICAL REVIE%' 8 VOLUME 37, NUMBER 1 1 JANUARY 1988

Interaction of slow electrons with density fluctuations in condensed materials:
Calculation of stopping power

P. Knipp
Department of Physics and The James Franck Institute, The Uniuersity of Chicago, Chicago, Illinois 60637

(Received 12 August 1987)

The calculation of the energy-resolved scattering of sloe ( & 3 eV) electrons from density Auctua-

tions is extended from crystalline semiconductors to amorphous, condensed materials (so1id or
liquid). In the Born approximation, the scattering is proportional to S(q,m), the "dynamical
structure factor" of the material. This factor, which exhibits some basic similarities and
differences between solids and liquids„ is determined by hydrodynamical parameters in the low-q

range relevant to slow electrons. For solids, the scattering law remains unchanged when extended
from crystalline to amorphous states, so the stopping po~er remains unchanged also. The scatter-
ing law changes when extended to liquids, but the calculated stopping power remains e8'ectively

unchanged.

I. INTRODUCTION

After ionizing radiation impinges on a condensed ma-
terial, the absorbed energy is dissipated via many
diff'erent channels. A substantial fraction ( —10-20%}
of the total energy eventually ends up as kinetic energy
of quasifree, subexcitation electrons. ' Although fast
electrons interact with individual constituents of the ma-
terial, slower ( 5 3 eV) electrons are not localized enough
to do the same. They tend, instead, to interact with col-
lective modes of the material. In the calculation of the
energy degradation of slow electrons in crystalline semi-
conductors, interactions with phonons have traditionally
provided a major contribution. These interactions gen-
erate scattering events consisting of single-phonon pro-
cesses, whose probabilities may be evaluated in the first
Born approximation. In general, the calculation of the
transition amplitude would involve a detailed knowledge
of the lattice geometry, microscopic force constants of
the atomic oscillations, and electron-atom potential.

However, the calculation simplifies greatly for an elec-
tron whose wavelength encompasses many atoms of the
crystal (the condition E & 3 eV ensures that the electron
wavelength exceeds 7 A), using the method of "deforma-
tion potentials. " In this energy regime, the electron cou-
ples only with modes of the crystal that change its densi-
ty over distances comparable to the electron wave-
length. Hence, the electron couples only with
longitudinal-acoustic phonons. The resultant probability
of scattering, per unit volume in k space, can be ex-
pressed in terms of a few macroscopic parameters of the
electron-crystal system:

E)q
[(N +1)5(co cq)+N 5(co+cq)—j .

4mb pc

Here, E& ( —1 —20 eV) is the shift of conduction-band
edge per unit dilatation of the lattice, and provides the
coupling between the quasifree e1ectron and the pho-
nons. Also, fiq=fi(k; —kI) is the momentum transfer,

6 (r, t) = (5p(0, 0)5p(r, t) ) /p (2)

is nonzero and is called the density autocorrelation func-
tion. Due to the noncommutability of the operators
5p(r, t) for different values of i, the density autocorrela-
tion function is complex valued, with the symmetry

G( —r, —t)=[G(r, t)]' . (3)

The dynamical structure factor, characteristic of any
material (crystalline or amorphous) and independent of
the scattering particle, is related to G(r, t) by

S(q, co) = f dt f d r G (r, t)e'q'
2 7T —cc

(4)

where n is the equilibrium number density of atoms. As
a consequence of Eq. (3), the dynamical structure factor
is a real-valued function. The "static structure factor"
S(q), familiar in x-ray scattering experiments, is related
to S(q, co) by

fico=E, E& is t—he energy transfer, p is the mass density,
c is the spherically averaged longitudinal sound velocity,
N„= 1 /(e~ 1), and—P=(k~'r) '. In the energy-loss
calculation, phonon-creation and phonon-destruction
probabilities are comparable, but their nonunit ratio
[(N„+1)/N„=e~=—1+%Pea] yields the net result that
{E ) &0 for epithermal electrons, as would be expected.

Extending this theoretical treatment from crystals to
general amorphous materials (sohd or liquid) seems to
meet conceptual difficulties in the aforementioned re-
quirement for knowledge of lattice geometry, force con-
stants, and potentials, owing either to the ill definition of
these quantities or to their experimental inaccessibility.
However, these problems are subsumed in the "dynami-
cal structure factor, "S(q,co}, introduced by Van Hove
to interpret neutron scattering. This function depends
on density fluctuations in a material„ in the following
sense. If 5p(r, t) is the ffuctuation of density from equi-
librium, measured at the point r at time t, then
(5p(r, t) }=0. However, the dimensionless quantity
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S'(q)= f dpi)S(q, co)=n f d r G(r, t =0)e'q'.

For an isotropic material, G(r, t)=G(r, t) and S(q, co)
=S(q, co).

Although S(q,co} is not easily calculable from first
principles, it is measured in several difFerent types of
scattering experiments: with photons, electrons, or neu-
trons. The general result is that the scattering of long-
wavelength radiation, per unit volume in k space, is
equal to

ct S(q co) p{8)
2

where P(8) is a polarization factor and a is a coupling
constant with the dimension of energy. Using this nota-
tion, the rate of radiation energy loss is given by an in-
tegral of the form

&E&~ f dq f ~d~s(~, ~) .

In this integral, S(q,co) pO, but co can be positive or neg-
ative, because the radiation can either gain or lose ener-

gy in a single-scattering process. A net energy loss is as-
sured, formally, by the fact that, for a material at
thermal equilibrium, S(q, ro) satisfies the "detailed bal-
ance" condition:

S(q, —a))=e ~S(q, co) .

The co-reflection asymmetry of S(q, co) is due to the
imaginary part of G(r, t).

The quantity a characterizes each type of scattering
process by quantifying the interaction which couples the
radiation to the density fluctuations of the material. For
visible light, a ~ Be/Bn, where e( n } is the density-
dependent dielectric constant, and P(8)=1+cos 8, for
unpolarized incident light. For slow electrons, P(8}=1,
if one ignores the spin dependence of low-energy elec-
tron interactions. For slow electrons in a semiconduc-
tor, a=Ei. Similarly, for slow electrons in an amor-
phous material, a=n [BVO(n}/Bn], where Vo(n) is the
density-dependent energy of a long-wavelength electron.
Since an amorphous material possesses no spatial period-
icity, its band structure is an ill-defined quantity. How-
ever, it still is sensible to talk about the energy of a
long-wavelength electron. Thus, n [BVO(n)/Bn] is essen-
tially the same quantity as E&, which was previously
dered to be the shift of the conduction-band edge per
unit dilatation.

The quantity a represents the elect of the average net
interaction between the quasifree electron and the atoms
of the material. One might divide the interaction into a
long-range part and a short-range part, using the elec-
tron wavelength to separate the two components. As
suggested in a recent note, these two components
should be treated difFerently. The long-range part
represents the polarization of the material by the charge
of the electron. The combination of the electron and the
material's dielectric response is referred to as a "pola-
ron, " and traverses the material, dissipating energy. In
this paper, however, I am not concerned with polarons,
so I require that Vo(n) and E, contain contributions

from only the short-range part of the electron-atom in-

teraction. For n 510i cm (i.e., in the gas phase),
E,(n)=VO(n)=2nanh /m, where a is the average
scattering length per atom due to the short-range part of
the electron-atom interaction. For n & 10 cm (i.e.,
in the condensed phase), however, this simple functional
form no longer holds. ' In fact, it is evident that there
are values of n where E,{n ) =0, in which case the
scattering given by Eq. (5} vanishes, so higher-order per-
turbation theory must be used. Much physics goes into
the calculation and/or measurement of Vo{n) and E, (n)
for condensed materials, but that is not the subject of
this paper, except for the purpose of a rough estimate.

II. DYNAMICAL STRUCTURE FACTOR

Shockley's calculation of electron scattering from pho-
nons was done mechanistically, not thermodynamicaiiy
[except for the appearance of P in the phonon distribu-
tion N„=1/(e~ —1)]. Essentially, it involved a calcu-
lation of S(q, c0) with the assumption that, in the ab-
sence of excess electrons, the phonons would have
infinite lifetimes. Due to the uncertainty principle, the
lifetime r is related to the width hr0 of the peaks in
S(q, co) by ikey-1. The result [Eq. (1)] displayed two
"phonon peaks" in the energy-resolved scattering calcu-
lation, at e=kcq. However, energy-resolved light-
scattering data from hquids exhibit a third peak, at
co=0, called a "heat peak, " not interpretable in terms of
phonon processes. " This peak represents the fact that,
if a localized density fluctuation exists in a fluid at t =0,
it can either propagate away (as phonons) or diffuse
away (by heat conduction) for t &0. The ratio of the in-
tensity of the heat peak to the summed intensities of the
phonon peaks is y —1, where y is the ratio of the
specific heats. The dimensionless quantity y —1 is called
the "Landau-Placzek ratio. " From thermodynamics,
y —1 =a T/ETCi, pO, where a is the thermal coeflicient
of expansion (not to be confused with the coupling con-
stant a defined in Sec. I), KT is the isothermal compres-
sibility, and Cv is the constant-volume heat capacity per
unit volume. For solids (crystalline and amorphous),
y —1~~1, but for most fluids, y —1 is on the order of
unity. Thus, Shockley's scattering result for low-energy
electrons in crystalline semiconductors can be extended
to amorphous solids [making the connection that
E, =n (BVO/Bn)] but is not valid for most fluids, due to
the presence of the peak at cu=O.

The importance of the hest peak depends on the quan-
tity being considered. In the calculation of stopping
power, ihe energy-transfer cross section is the important
quantity. In the "in6nite-lifetime approximation, " the
three scattering peaks have zero width, so the energy-
transfer cross section due to the heat peak vanishes iden-
tically. However, a more careful calculation of S(q, co)
gives a nonzero width to the heat peak (as well as to the
phonon peaks). For this reason, the peak centered at
~=0 might contribute to the energy transfer, thereby
making Shockley's energy-loss calculation {which is
strictly due to phonons) invalid for liquids. In Sec. ID,
it vrill be shown that the heat peak does not make a sub-
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stantial contribution to the stopping power, compared to
the phonon contribution. However, for treating physical
problems where the momentum transfer is important,
the heat peak is just as important as the phonon peaks.
This is the case, for instance, in the calculation of
electron-drift mobility, in which case the mobility p is
given by p 'o: J dcoS(q, co)=S(q)=S(0).

Much work has been done on the theoretical calcula-
tion of S(q, co), especially in the small (q, co) regime,
relevant for the scattering of light or of slow electrons.
In this regime, hydrodynamics is applicable. The
fluctuation-dissipation theorem relates S (q, co ) (the
"fluctuation" ) to the behavior of a many-particle system
after being disturbed from equilibrium (the "dissipa-
tion"). The "dissipation" term of the theorem can be
evaluated using the linearized Navier-Stokes equations,
since the fluctuations from equilibrium are quite small. '

(Note that this is not valid in the neighborhood of the
gas-liquid critical point, where the density Auctuations
are large. ) The evaluation involves setting initial condi-
tions for the hydrodynamic variables and using the fiuid
equations to propagate solutions from t =0 to t =00.
Three independent hydrodynamic quantities are needed
to describe a single-component Quid, with possible
choices: the mass-density fluctuation 5p(r, t), the
momentum density g(r, t), and the entropy-density fluc-
tuation 5s(r, t). The solutions can be obtained analyti-
cally, and the solution for 5p(r, t), along with its initial
condition, is inserted into Eqs. (2) and (3), the formulas
for G(r, t)

The resulting formula for S(q, m) depends on the ini-
tial conditions of the hydrodynamic variables, because
quantities of the form (

~
5p(q, t =0)

~
) or (5p'(q, &

=0)5s(q, t =0)) factor out of the Fourier integrals.
These factors are quadratic, and the fiuctuation Hamil-
tonian can also be shown to contain terms of this form,
so their values can be calculated using the etluipartition
theorem, in terms of thermodynamic coeScients. The
nontrivial result is

S (0) fiPco

4yn.

I, (co)q

2

this factor as necessary to satisfy the detailed-balance
condition [Eq. (6)]. This formula for S(q, co) exhibits the
three peaks (at co=0, +cq) predicted by Landau and
Plazcek. The total integrated intensity is

J dcoS(q, co)=—S(q)=const=-S(0) .

The quantity S (0) represents the "pair correlation
function" —G(r, t =0)=G (r)—integrated over all
space. For fluids, S(0)=nk&TKr, ' but for solids,

S(0)=ykii T/Mc =ke T/Mc

(Ref. 17), where M is the average atomic mass. These
two formulas di8'er slightly because, for a fiuid
pc =Ks ', but for a solid pc =(Ks '+ —', G), where G is

the shear modulus (which vanishes for a fiuid). The size
of S(0) is dictated by the degree of uncorrelation in a
material, which allows for density fluctuations. For
gases, S(0)=1.0; for liquid argon at 85 K, S(0)=0.05;
and for silica glass, S(0)=0.003.

Thus, a more accurate way of stating the Landau-
Placzek result is that S(q, co) consists of three sharply
peaked Lorentzians, with widths Dr(coo)q or r, (coo)q,
where coo is the location of the peak. r, (co) and Dr(co),
frequency-dependent transport coeScients which are
even functions of ~, may be viewed as the temporal
Fourier transforms of "memory functions. "' For
co~g~,„=~, ', where ~, ( —10 '"—10 " s) (Ref. 19)
ls a mtcl'oscopic relaxa'tloli timey D 7'( co ) =K /Cp q tile
heat diffusion coefficient; and I, (co ) =(4g/3+ g ) /p
+(y —1)D&, the sound attenuation coefficient, where ~
is the heat conductivity, i) is the shear viscosity, and g is
the bulk viscosity. The quantities D& and 1", summarize
the effects of the coupling of the hydrodynamic modes to
the microscopic modes, in the form of dissipation. The
functions Dz (co) and r, (ro) are constant for small co, but
are understood to drop o6' suSciently fast in the neigh-
borhood of

~

co
~

=co,„, to ensure a rapid decrease of
S(q, co) as

~

co
~

~oo. It is this fact which allows the
three peaks to be equivalent to properly normalized 5
functions, dropping oft' to zero well before the factor
APE/( I —e ") begins to depart substantially from uni-
ty. Hence, the areas under the peaks are obtained
analytically, and the ratio of the heat-peak intensity to
the summed phonon-peak intensities is y —1, the
Landau-Placzek ratio, as predicted.

III. ENERGY I.QSS

4(y —1)Dr(co)q
+ 2~'+ [Dr(~)q']'

The calculation of the energy loss of a slow electron
with kinetic energy E =A' k /2m' (where m' is the
efFective electron mass) through scattering by a con-
densed material involves an integral over all electron
final states k&, of the scattering probability [given by Eq.
(5)]. The integrand is weighted by the energy transfer
F0, yielding

The origin of the factor %Pcs/(1 —e ) [= 1 for
ra~~(RP) ] is intimately related to the ffuctuation-
dissipation theorem, ' but it will suSce here to regard

To evaluate the integral in Eq. (8), I change coordi-
nates from k& to (q, 8), where 8 is the angle between k/
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and q. Next, I change coordinates from 8 to ~, to ob-
tain

,
' I"qdq

2mnfi k

Akq/rn —fiq /2m
X cd d67S q, co—fikq /m

*—Aq /2m *

—2v 2E', m ""
E(E

qrpl4

—E,m 'k 2k' T
1—

mpA E

which is equivalent to

(10)

A few physical aspects of this integral deserve point-
ing out. First, the endpoints of the co integral, the k
prefactor, and the q (as opposed to q ) integrand are all
due to the change of' variables from 8 to m. Second,
since the fractional energy transfers are small
( —10 —10 '), the co integral can be assumed to vanish
when q becomes so large ( «2k) that the range of the co

integration does not enclose the origin. This condition
lowers the upper limit of the q integration from in6nity
to 2k. Third, for small q ( «2k), the limits of the co in-
tegration are roughly equal and opposite. Thus, the
presence of the linear factor of ~ in the integrand essen-
tially "measures" the co-reflection asymmetry of S(q, co),
which is quanti6ed by the detailed-balance condition„ in
Eq. (6). This ultimately yields the result that (E) &0,
when E is suiciently larger than k&T. Fourth and last,
the fact that the lower limit of the ~ integration is
slightly larger (in absolute value) than the upper one be-
comes important when E is near, at, or below k&T. The
result is that (E ) approaches zero and becomes positive
as E decreases. This is related to the fact that subsonic
electrons can absorb phonons but cannot emit them
("acoustic Cherenkov efFect").

The next step involves inserting Eq. (7), the dynamic
structure factor, into Eq. (9), the energy-loss equation.
Since S(q, co) separates logically into two difFerent parts,
the phonon peaks and the heat peak, I separate the ener-

gy loss into two parts: &E ) = (,E & „,„,„+(,E &„„,.
First, (E)~„,„,„ is obtained. The first two Lorentzians
in Eq. (7) are quite narrow. Typically, the ratio of their
width to their displacement from the origin is

1 sq (10 cm /s)(0. 1 A ') 0. 1 GHz =0.1 .
(10 cm/s)(0. 1 A ')

0
Momentum transfers larger than 0.1 A ' are certainly
possible, but the function 1,(co), evaluated at co=cq, will
decrease for q ~0. 1 A ', thereby keeping the phonon
peaks suSciently narrow. Thus, the Lorentzian form of
the phonon peaks can be replaced by delta functions, in
which case their contribution to (E ) is

(
d (lnE )

—2E )m

phonon WP~

2k~ T1—

This equation is interpreted most easily by multiplying
it by I, the phonon scattering mean free path. The cal-
culation of the mean free path involves an integral of the
form 1 ' ~ f d kf S(q, co ). This is evaluated ' much

more easily than (E )&ho„,„, to yield

(12)

MS (0)

2k' T
1— (13)

where ur is the electron thermal velocity. At room tem-
perature, uT ——(kaT/m')' =6.6X10 m/s, using the
free-electron mass. This velocity is 1 or 2 orders of mag-
nitude higher than sound velocities in condensed materi-
als, so Eq. (13), which represents the average fractional
energy loss per collision, is a very small number. Since
S(q)=S(0) and E, are independent of q, and since the
fractional energy transfers are small, the scattering is
roughly isotropic. Thus, the energy-loss process is
diffusive, in that the electron changes directions many
times before losing a substantial portion of its energy.

The calculation of the heat-peak mean free path is a
trivial reproduction of the calculation of l~h,„,„, yielding
the simple result l~„,„,„/l„„,=y —1. However, the cal-
culation of the heat peak's contribution to the energy
loss is tricky, because it depends on the (effective) size of
~,„, not a very accessible quantity. The analog of Eq.
(10) is

For liquid argon at 85 K, using Eq. (12) and setting m '
equal to the free-electron mass yields l h,„,„-10-50A,
depending on the value of E, that is used. ' Multiplying
Eqs. (11)and (12) together yields

2k~ T
2ym* 1—

T—E1m *
1 Skq/m Sq /2m fgP~ — DT(~)q'S(0)(1—y ') q dq . . .co der

2mnfi k 0 —Akq/m —fiq /2, m e fiPru 2+ )D (
—
)q 2)2

(14)

Since the Lorentzian peak located at the origin is
weighted by m in the energy-loss integral, it cannot be
simply replaced by a 5 function, which would yield ex-
actly zero energy loss. The m, „cuto8; as mentioned in

Sec. II, is essential to the evaluation of the co integral. If
Dr(co) were independent of co, the integrand AS(q, co)
would approach a constant in the range
Drq, () '«m« fiko/2m*, making the integral in
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Eq. (14) considerably larger than for phonons. Instead,
DT(ro) is expected to vanish ln thc neighborhood of

i
to

i
=co,„«hk /2m".

In my calculation, I assume that Dr(ro) cuts off sharp-
ly at co,„«(fig) '. This leads to

—m*Ef(1 —y ')KT

8 AkD

QJ (4DTk )
X f Q7 drain 1+

0

which is valid for E &~k& T. The q integration was eval-
uated from 0 to 2k by conservation of momentum and
quasiconservation of energy. In estimating the integral
in Eq. (15), it is important to know the relative size of
~,„and Drk . For Dr=10 cm /s and E ranging
from. thermal energy to 3 eV, the quantity DTk ranges
from O. l to 10 THz. Thus, ~,„might be significantly
larger or smaller than DTk . Evaluation of the integral
in Eq. (15) yields, in both of these limits,

QJ (4Drk )
6) dN ln 1+

0 N

—,'ro3,„[»(4Drk'/to, „)+—,'] if to,„«D k2,

(4Drk ) to,„ if to,„))Drk2 .
(16)

Hence thc ratio of Eq. (14) to Eq. (9) is, for electron energies much larger than k

(y 1)[—in(4DTk'/~, „)+—,']~',„/2[12m(ck) D k'] if cu,„«D k~,
heat

(E ) 2(y —1)Drromnx/'trc &f to &&Drk

(E),.„
~ ~ ~ pennon

2(y —1)DTro,„ =0.09 .
VT'C

(18)

As an example, I will consider liquid argon at 85 K, at
its saturation vapor pressure, using the data

DT ——8.5X10 cm /s=8. 5 A THz,

c = 8. 5 X 10 cm/s =8.5 A THz,

y=2. 14 .

In order to get an upper bound on the ratio in Eq. (17), I
assume that E =0.05 eV, that m* is the free-electron
mass, and that m, „=1 THz. This yields

DTk =0.11 THz

«ro, „«(RP) =11 THz« =76 THz,-1= haik

2m'

which leads to

Thus, the heat-peak contribution seems rather unimpor-
tant. For E g0.05 eV or co,„g 1 THz, this ratio will be
lower still. Thus, Shockley's energy-loss calculation, as
given in Eq. (10), is valid for liquids, in addition to
solids.
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