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Quasiparticle and phonon damping rates due to the electron-phonon and Coulomb interactions
are obtained directly from the self-energy formalism of strong-coupling theory. This accounts for
all processes involving phonon or quasiparticle decay into a single particle-hole pair, or quasiparti-
cle decay by emission or absorption of a single real phonon. The two quasiparticle decay modes
are treated on a common footing, without ad hoc separation, by accounting fully for the dynamics
of the phonon propagator and the Coulomb vertex—the latter by expansion of the four-point
Coulomb vertex function. The results are shown to be expressible in terms of only the physical
(i.e., fully renormalized) energies and coupling constants, and are written in terms of spectral func-
tions such as a’F (w) and its generalizations. Expansion of these in powers of a phonon linewidth
parameter distinguishes (in lowest orders) between quasiparticle decay modes involving real and
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virtual phonons.

However, the simplest prescription for calculating decay rates involves an

effective scattering amplitude in which this distinction is not made.

I. INTRODUCTION

The coupled Dyson’s equations which are universally
applied to the electron-phonon system were established
by Migdal.! Migdal’s equations are defined by the elec-
tron and phonon self-energies of Figs. 1(b) and 1(d), re-
spectively, that are to be substituted into the general
form of Dyson’s equations

G=G%1+32G), (1a)
D=D%1+®D) . (1b)

Solid and wavy lines represent the full (i.e., self-
consistently determined) electron and phonon propaga-
tors G and D, respectively. The same formal structure
applies in the superconducting phase,’ leading to cou-
pled integral equations>* which form the basis for calcu-
lations of superconducting phenomena under quite gen-
eral circumstances including strong coupling, where the
quasiparticle spectral distributions are not narrow.
Coulomb interactions are included by Fig. 1(a) and by
the dressing of electron-phonon vertices as indicated in
Figs. 1(b)- 1(d),** as will be discussed shortly.

The energies of quasiparticles and phonons are always
of interest, and sometimes the decay rates are as well.

S LN - &% cp=O
d)

(a) Ze (b) E|¢ (c) 2295 (

FIG. 1. Electron and phonon self-energies = and ¢. The
electron self-energy is the sum of Coulomb, one-phonon, and
two-phonon contributions, (a)-(c), respectively.
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Some of the decay mechanisms stemming from the
electron-phonon interaction are treated more or less nat-
urally using the same self-energy-based formalism (e.g.,
the emission and absorption of real phonons by quasi-
particles, and the decay of phonons into quasiparticle-
hole pairs) as is discussed in Ref. 6. However, the decay
of quasiparticle states into particle-hole pairs, via the
Coulomb interaction or virtual-phonon mediation, have
most often been discussed by appealing to other formal-
isms.”® On the other hand, Migdal' showed that part of
the phonon-mediated electron-electron mechanism is ex-
pressed through the phonon linewidth in the electron
self-energy diagram, Fig. 1(b). This point was also men-
tioned by Holstein® and discussed in detail by Allen and
Silberglitt."> Lopes dos Santos and Sherrington'!
showed more recently that the exchange analog of this
contribution comes from an additional diagram, Fig.
1(c), previously excluded on the grounds of Migdal’s
theorem, which applies to ReZ, but which Ref. 11 gen-
eralizes for ImZ. The same authors later included the
Coulomb interaction,'? generalizing to finite tempera-
tures an argument of Langer!® in which ImZ contribu-
tions are usefully classified according to decay modes of
the initial state. Langer’s ideas form the basis of the
present derivations as well, although these differ from
those of Refs. 11 and 12 in that, at the expense of
elegance, each diagram of Fig. 1 is evaluated individual-
ly, maintaining the closest possible reference throughout
to the physical phonon propagators and Coulomb ver-
tices.

The primary purpose of this work is to show how all
contributions to the inelastic decay rate 7—! mentioned
above may be obtained directly from the electron and
phonon self-energies of conventional strong-coupling
theory, with the addition of the single diagram as dictat-
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ed by Ref. 11. This has the virtue of treating all impor-
tant contributions to 7! on equal footing with each oth-
er, as well as with the real parts of the self-energies in
terms of which renormalization and coupling parameters
are expressed. In particular, following Allen and Silber-
glitt,'® there is no a priori distinction between processes
involving real and virtual phonons; such a distinction
emerges naturally when linewidths are sufficiently nar-
row that distinct, approximately additive contributions
to 7~ ! may be identified. Furthermore, it is shown that
the imaginary parts of £ and &, unlike the real parts,
can be written in terms of only the physical three- and
four-point vertex functions; this, to our knowledge, has
not been demonstrated previously. All contributions are
expressed in terms of spectral functions associated with
the decay products. In the present work, for clarity, at-
tention is confined to the normal phase. The same ap-
proach is useful in studies of the superconducting
phase,'* which will be reported in detail in a future pub-
lication.

To be more specific about the relation between the
imaginary parts of the self-energies and “physical” pa-
rameters, assume that the real parts of the self-energies
(and particularly the quasiparticle and phonon energies)
are known; it does not matter whether this knowledge
comes from first-principles calculations, or by fits to ex-
perimental data. The decay rates are related to the
imaginary parts, as illustrated by the simple expressions
that apply to long-lived excitations: The quasiparticle
energy €, and damping rate I’y =1/27, are given by

[G%Kk,e,)] ' —ReZ(k,g, )=0, (2a)
[ =Z(k) 'ImZ(k,g) , (2b)
Z (k)=1-03[ReZ(k,)]/30 | 4—¢, » (2¢)
and the phonon quantities by
[D2(q,0,,)] ' —Red,(q,0,,)=0, (3a)
Y qo=1Im®P,(q,00,,) . (3b)

With regard to coupling constants, the organizing ele-
ment in this treatment is the Coulomb vertex (the solid
triangles in Fig. 1). This vertex A contains screening as
well as the proper Coulomb corrections, so that the
dashed line in Fig. 1(a) is a bare Coulomb interaction.
Aside from its role in Fig. 1(a), A serves in all the other
diagrams to define the physical electron-phonon vertex g
in terms of the bare vertex g° through

g, (K,Q)=A(K,Q)g%(K,Q)
=3 [8px —2kp TT(K,P,Q)G(P +1Q)
P

XG(P—-10)1g%(P,Q0). @4

The first equality states that g is both screened and
(properly) Coulomb corrected, and the second equality
expresses g (or A) in terms of the physical four-point
vertex function I'. It is implicit that T, like A, contains
no phonon lines. The relationship between g and I is il-
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FIG. 2. Graphical illustration of Eq. (4): The dot represents
the bare electron-phonon vertex g° The full electron-phonon
vertex g is represented by a solid triangle when this is attached
to a phonon line.

lustrated in Fig. 2. Upper-case arguments include for
conciseness both the three-momentum and Matsubara
frequency, i.e. K =(k,iw,), and such arguments are as-
signed as specified by Fig. 2. (The modest level of com-
plexity and the wish to exploit similarities to Lopes dos
Santos and Sherrington’s work!! favors the use of the
Matsubara formalism, although a direct real-time ap-
proach' is available.) With the help of Eq. (4), the
imaginary parts of the analytically continued self-
energies will eventually be written as Fermi-surface or
Brillouin-zone integrals involving only the physical ver-
tices g and ', with “unobservable” quantities such as g

and the bare Coulomb interaction eliminated. It should
be noted for practical purposes that g may be accurately
known in a particular case because it can be related to
empirically determined electron-ion interaction parame-
ters,'¢ whereas A and I' will not, in fact, be well known.
In metals that superconduct, the phonon contributions
may dominate the Coulomb ones (in some cases consid-
erably) so that ignorance of the Coulomb vertices them-
selves may not seriously compromise the accuracy of
computed decay rates.

II. IMAGINARY PARTS

In this section, the imaginary part of each diagram in
Fig. 1 is expressed in terms of spectral functions associ-
ated with the decay products. In the next section, de-
tailed interpretations are made with the help of asymp-
totic expressions and a simple model. General results
are reviewed in the final section, and a simple prescrip-
tion given for calculating spectral functions and decay
rates.

To begin with, it is important to note that the dynami-
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FIG. 3. (a) Expansion of the phonon self-energy using the
Bethe-Salpeter equation. (b) Imaginary part of the analytically

continued self-energy; dashed line indicates the contribution
from a single particle-hole pair.
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cal aspect of the Coulomb vertex is essential for all dia-
grams of Fig. 1 except for (c). Without it, there would
be no Coulomb contribution to ImZ (neither pure
Coulomb nor interference between Coulomb and
virtual-phonon mediation), and the phonon decay rate
expression would display an unphysical asymmetry be-
tween bare and renormalized coupling constants. This
vertex, therefore, will be the focus of early discussion.
Consider first the simplest case, namely the phonon
self-energy of Fig. 1(d). Using the general relation be-
tween the three-point and four-point vertices g and I" de-
picted in Fig. 2, and expanding T in irreducible elements
via the Bethe-Salpeter equation,!” @ may be expressed as
shown in Fig. 3(a). The expansion is made in the
particle-hole channel that (by definition) exposes all
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particle-hole pairs which, if cut, break the diagram into
two vertex parts. The summation of the results obtained
by cutting all of the explicit particle-hole pairs may be
represented by Fig. 3(b),'® where a full Coulomb vertex
is recovered on each side. The right-hand side is defined
as that contribution to the imaginary part arising from
the (explicit) particle-hole pair cut by the dashed line.
This and other diagrams with dashed lines have no phys-
ical significance except as imaginary parts of analytically
continued expressions. In this case the imaginary part
provides the rate of phonon decay [Eq. (3b)] into single
particle-hole pairs. In order to evaluate Fig. 3(b), con-
sider the contribution 8®(q,iw,,) of a single diagram in
Fig. 3(a) in which the frequency sum associated with the
chosen pair of lines to be cut is written explicitly,

d3D(Q)=—2kzT 3 8g(K,Q)G(K +1Q)G(K —3Q)8g'(K, —Q)
K

o

dede’

=2k, TS 3 8g(K,088"(K,—Q) [ [
k n

where spectral representations of the electron Green’s
functions have been introduced, and K =(k,iw,). The
vertex parts 8¢ and 8g’ pertain to the diagram and the
cut chosen. The frequency sum is done by contour in-
tegration, and contributions arise not only from the two
explicit poles, but also from poles occurring in the spec-
tral representations of the adjoining irreducible four-
point functions (which depend on w,). However, the
latter poles correspond to final states involving more
than a single particle-hole pair (by definition of the irre-
ducible four-point function), and by Langer’s argument
generalized to finite temperatures'? they contribute negli-
gibly to the imaginary part of the analytically continued
®. Therefore, keeping only those residues corresponding
to the two explicit poles, one finds

Im®,,(qo—in =2 g,(k,QP(k,q0),(k,q), (6
k

where all contributions of the type written in Eq. (5)
have been summed, and full vertices are collected on
both sides of the cut, as shown in Fig. 3(b).!® Since
imaginary part contributions have been isolated in the
factor P, the vertex functions are understood to be real.
As a result, they are also essentially frequency indepen-
dent,'? as implied by dropping the frequency arguments.
The other step leading from Eq. (5) to Eq. (6) (i.e., tak-
ing the imaginary part of the analytically continued
iw,, —Q—in frequency sum) defines the spectral density
of a particle-hole pair with constituent momenta k+q/2;

—w (2m)?

plk+q/2,e)plk—q/2,€")

. i
lw,+-w, —¢€

2 2

I
. i ,
iw, —~0, —¢t

P(kqo)= [~ %[ﬂe)—ﬂwwﬂp(k—%q,e)
xXplk+1q,e+) (7a)

z‘n'a)ﬁ(ek_(]/z)q )8(gy +(1/2)q)

X[Z(k—1q)Z(k+1q)]7". (7b)

The second equality expresses the fact that the product
pp serves only to restrict the k integral to the region
where both k+q/2 are near the Fermi surface;?° it does
not introduce a dependence on quasiparticle width,!! or
otherwise alter the linear w dependence of P,2° which
arises from the difference of Fermi functions. Hence
these functions may be evaluated at zero width,
p(k,e)—27Z ~!(k)8(e; ) =2m8(Z¢e,), where Z (k) is the
quasiparticle renormalization factor in Eq. (2c).

It is useful to consider in a similar manner the vertex
itself. The analogous procedure is to cut all particle-hole
pairs that separate the phonon point from the particle
and hole points. An expansion in irreducible four-point
vertices similar to that of Fig. 3(a), followed by a sum-
mation over all ways of cutting single explicit particle-
hole pairs, gives rise to Fig. 4, in which the full three-
and four-point vertices appear. The algebraic expression
is easily derived by comparison with the previous case,
and the analog of Eq. (6) is
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Im A = - —

FIG. 4. Graphical representation of Eq. (8) for the imagi-
nary part of the analytically continued electron-phonon vertex.

Img,(k,q0—in)= 3 I'(k,p,q)P(p,q,0)g,(p,q) , (8)
P

where the product I'P implies spin summation (since I'
is spin dependent), unlike Eq. (6) where the spin sum
trivially produces the factor 2. The imaginary part of
the vertex does not by itself represent a physical quanti-
ty. However, the foregoing arguments suggest a means
of treating the vertex when it appears as part of a larger
diagram whose imaginary part is interesting.

In the single-phonon graph [Fig. 1(b)], the imaginary
part is dominated by final states that differ from the ini-
tial quasiparticle state by a single phonon or a single
particle-hole pair. Accordingly, consider cuts which in-
volve the explicit particle line, together with either the
phonon propagator or one of the vertices. It suffices to
cut the vertices in the manner leading to Eq. (8), so that
the nature of the result may be anticipated by Fig. 5, as
will be confirmed in the following analysis.

To find the algebraic expression for the contributions
ImZ,, [(i) and (iii) in Fig. 5(a)] in which a vertex is cut,
one may sum the independent internal frequency vari-
able of the particle-hole pair as in deriving Eq. (8), but
one cannot analytically continue the vertex by itself. In-
stead, the vertex frequency variable w,, must be summed
in the expression

Q

XD,,(Q)g,(K—-10Q,-Q), 9)

J
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FIG. 5. (a) Imaginary part of the analytically continued
electron self-energy term 2,4, showing contributions (i) and (iii)
from the vertices, and (ii) from the phonon propagator. (b)
Imaginary part of the analytically continued phonon propaga-
tor.

where Q =(q,iw,,), and the important dependence on
®,, occurs in the propagators G and electron-phonon
vertices g, to be cut. To make this dependence explicit,
G is written in spectral representation (introducing the
frequency denominator iw,—iw,, —€), and Eq. (8) is
written as it would appear prior to analytic continuation,

Mk—q/2,q,iw,,)
=¥ I'(k—1q,p,q)
P

X fw —-—P (p,q,0 i, w)“g(,(p,q).

(10

The notation g% means that Eq. (10) is valid only if the
vertex is going to be cut; otherwise, the internal frequen-
cy variable of the particle-hole pair cannot be decoupled
from the adjoining vertex functions. The resulting fre-
quency sum 3, (i, —io, —&) io, —o)~' may be
done, and this result analytically continued to give

Im=i)k,e—in)=3 3 f°° -——p(k 9,e—w)(k—1q,p,qQ)P(p,q,0)[n (0)+1—fle—w)]
q P

Xg,(p,q)ReD  (q, @

[where the designation (i) refers to Fig. 5(a)]. The real
part of D (q,w) is taken for the same reason that the
real parts of g and I are taken in Egs. (6) and (8), for ex-
ample, as well as in Eq. (11); these represent elements in
which no lines are cut. In the expressions referred to, it
is the spectral density P that arises from the cut G lines.
Of course the frequency dependence of ReD, cannot be
ignored (unlike that of the real parts of the vertices); a
simplification that does occur is that ReD is diagonal in
polarization o, as is implicit in Eq. (3a).

The contribution from cutting the phonon line,
ImZ{), is seen from the spectral representation
o dw

- B, (qolio, —o)"! (12)

D,y (q,iw,)=

»(k—1q,q) (11)

r

to involve exactly the same occupation factors as Eq.
(11), and this suggests that the common factor (contain-
ing all the T and € dependence) be separated from the
different spectral (i.e., o-dependent) functions. As usual,
the positive and negative @ domains may be combined
using the oddness of P(w) and B(w), and the properties
of Bose and Fermi functions n and f, so that

ImX,,(k,e—in)= fo‘” do[2n(0)+ flo—¢)
+fl+e)]S4k0) . (13)

As earlier, one may put p(k —g,e—w)—>278(Z¢g, _,),
since this factor serves only to restrict the q integration
so that k—q is near the Fermi surface; it contributes



1140

essentially no € or  dependence. Thus
Sik,e0)=S{ (k,0)
=3 >8Z¢g _,)I(k—3q,p,q)
9 p
XP(p,q,0)g,(p,q)ReD . (q,0)
X8, (k—1q,q) (14)

and

S (k)= 8(Ze, _,)g,(k—1q,q)
q
X1B,,(q,0)g, (k—1q,q) . (15)

The » dependences of the spectral functions S4 [(i) and
(ii)] come mainly from P(w) and B(w). These differ
near o ~w,, where B represents real phonons, but at
much lower frequencies, B shares the linear dependence
of P on w, reflecting the particle-hole decay mode.!® To
see this explicitly it is useful to express B, in terms of
Im®, ., and hence P.
First, it follows from Eq. (12) that

B,,(q0)=2ImD,_ . (q0—in) . (16)

Now the inverse of the D matrix can be written concisely
[Eq. (1b)] as

D) (q0)=8,,(0*—0},)/20,, —i Im®,,(q,0), (17)

where Re®,,. has been diagonalized and absorbed into
the physical frequencies w,,. However, the exact D ma-
trix itself is unwieldy because Im®, . has off-diagonal
elements that are of the same order of magnitude [Eq.
(6)] as the diagonal ones. Fortunately, only the leading
terms of an expansion in powers of Im® contribute
significantly to S;(w). Thus, to a good approximation,
the B matrix is given by the following: Its diagonal ele-
ments are

B, (qw)=2|D,(q0)| Im®,,(qe), (18a)

while for o'#0,
B, (q,w)=2ReD (q,w)ReD, (q,0)Im®,, (q,0) .
(18b)

The first expression is no different from the usual form
used (for example, by Allen and Silberglitt'®) when off-
diagonal elements are of no concern. In both expres-
sions, a single subscript (D,) refers to the usual
definition of the phonon propagator as the inverse of
a diagonal element of Eq. (17). The asymmetry be-
tween Eqgs. (18a) and (18b) deserves brief comment here:
The exact expression for o'#o contains
—2ImD, ImD _Im® and several other terms of the
same order, namely (Im®)3. These are dropped because
they do not contribute significantly to S4(w). The cor-
responding term in Eq. (18a), namely 2(ImDo)2Im<I>m,,
is retained because although formally of order (Im®)?,
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there is a contribution to S, arising from the pole of
D, (representing real-phonon processes) to which this
term contributes equally with the (ReD,)’Im®,, term
(ReD, has a zero near the pole of D). All other terms
in the expansion of B, contribute less than these two
terms by at least two powers of Im®. The 0’540 terms
[Eq. (18b)] do not contribute significantly to the real-
phonon component of S, because the poles of D, and
D, are separated by an amount large compared with
Im®. Hence only the term which is formally first order
in Im® in fact contributes appreciably. The
identification of electron-phonon versus electron-electron
components of §4(w) is based on asymptotic expansions
in the phonon linewidth parameter (essentially Im®)
carried out in the next section. The validity of the
present arguments is most easily checked using those
methods. If phonon linewidths are not much smaller
than phonon frequency differences, then D, should be
computed exactly for use in Egs. (14)-(16). To conclude
the present discussion, however, the contribution from
o'#0 elements to S} is written by substituting Eq.
(18b) into Eq. (15), with Im® as given by Eq. (6):

S0 | o= 3 3 8(Ze,_, )8, (K—1,q)
9 q
XReD,(q,0)g,(q’,q)
X2P(q',q,0)8,(q’,q)
X ReD,.(q,0)g,(k—1q,q) .

(19)

The analogy with Eq. (14) is now clearer. In particu-
lar, it is apparent from the foregoing discussion that the
electron-electron contributions all arise from integrals
involving only ReD apart from a single power of Im®
or P that determines the low-o behavior S (w)~w. This
is a reflection of the fact that leading electron-electron
behavior is obtained by cutting three G lines [two of
which are always implicit in Figs. 1(a) and 1(b)]. Note in
particular that Eq. (19) could be derived by an expansion
of the phonon propagator, followed by a summation
over all cuts which break a bubble so generated.

The purely Coulomb contribution ImZ, [Fig. 1(a)]
may be computed as indicated by Fig. 6. The cut lines
indicate two frequency sums which are identical to those
done above, so that the temperature and energy depen-
dences of ImZ_(k,e—i7) are again described by Eq. (13),
with a spectral function of the form of Eq. (14). In this

\ P+3%Q
S —P-$Q
— |
e
K-Q

FIG. 6. Imaginary part of the analytically continued elec-
tron self-energy term X_.
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case the spin sum involves all three intermediate G lines
rather than just two. Thus, if the external spin is up,
there is one intermediate state in which all spins are up,
but now two intermediate states in which a pair of spins
is reversed. In the latter cases, the reversed spins may
be identified with the particle-hole pair. Writing the
spin sum explicitly, the spectral function corresponding
to 2, is

S (k,w)=33 3 8(Zg, _,)P(q,q,0)
q9 g
x[T}1(k—1q,q',q)

+2r%,(k—1q,9’,q)] . (20)

The spin subscripts refer to the incoming spin states, i.e.,
to the spins of the external electron and the hole. This
result is equivalent to Eq. (24) of Ref. 12. In a previous
case, Eq. (14), in which one intermediate spin is con-
strained, the spin sum produces the factor I'y; + .

In the two-phonon graph [Fig. 1(c)], the only
significant contributions to ImX,, arise from cutting the
three explicit particle lines.!! One may examine other
contributions arising when a phonon line is cut, as in
Ref. 11, or when a vertex (i.e., an implicit particle-hole

J
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pair) is cut. In either case, one of the two pieces into
which the diagram is broken contains a phonon correc-
tion to an electron-phonon vertex. Since the real part of
this vertex appears in the final expression, its contribu-
tion to ImZ,, is negligible compared with ImZ,, and
may be ignored. Proceeding to cut the three explicit
particle lines, one can identify an effective particle-hole
pair (in either of two ways) and express the two frequen-
cy sums in the same manner as before. Upon analytic
continuation, one is again left with real parts of vertices
and phonon propagators. This renders the vertices static
and ReD , diagonal, but the two ReD factors remain fre-
quency dependent. Because these depend upon the two
independent internal frequencies, the result cannot in
general be put in the form of Eq. (13), and so it is in-
stead written

Im2,,(k,e—in)
= [ do[n(e)+flo—e)]
X [ do'lf(e—0' —0)—fle—a")]

X 824K, 0,0") (21a)

with

Sw(k,a),w'): —sz 2 8(28k —q )S(Zﬂk _ql)S(ZEk -q_q')gg(k——%q,q)ReDa(q,w)ga(k—%q—'q',(”

9 q

X8, (k—3q'—q,q")ReD.(q",0')8,(k—3q',q") .

Note that all contributions to ImZ may be put in the
form of Eq. (21a), as is easily verified by inspection of
Egs. (11) and (7a) (in previous cases there was no need
to, since the o' integrals could be done immediately). In
the present case the ' integral may be done for € and
T <<wp, with the result that Eq. (21a) reduces to the
form of Eq. (13) with an effective spectral function linear
in o for ® <<wp. This is indicative of electron-electron
scattering, and a comparison of Eq. (21b) with Eq. (19)
identifies ImZ2,, as the exchange counterpart of (the
electron-electron part of) Im={}. The same comparison
suggests (correctly) that Eq. (21b) does not contribute
substantially to real-phonon processes; contributions
from the poles of D, are of the same order as those
found in S{} for o'~0.

In summary, Figs. 1(a)-1(c) all contribute .to the
particle-hole pair production rate due to the Coulomb
interaction and/or virtual-phonon mediation. Only the
graph in Fig. 1(b), and only that contribution shown in
Fig. 5(ii) with 0'=0 contributes appreciably to the real-
phonon emission or absorption rate by quasiparticles.
The various contributions to S (w) and ImZ(g, T') will be
discussed more quantitatively in the next section.

III. INTERPRETATION

There is an intuitively appealing, if only heuristic way
to organize the various contributions to ImX studied in

(21b)

r

the last section, and that is to consider the “effective” di-
agrams shown in Fig. 7. The electron and phonon prop-
agators and the vertices are all physical ones. Figure
7(c) represents an exact parametrization of the static
four-point vertex in the manifestly antisymmetric form?

(22a)
(22b)

T11(k,p,q)=V11(q)—V;1(k—p),
I (k,p,q)=Vy(q),

so that a dotted line represents ¥y or V4, according to
the particle lines it connects. The term ‘‘effective”
means that these diagrams are not part of a rigorous
perturbation expansion; in particular, the first diagram
in Fig. 7(a) (polarization) is not a skeleton diagram, and
would lead to redundancy with first-order diagrams
[Figs. 1(a) and 1(b)] in a calculation of, say, ReX. The
point is that the diagrams of Fig. 7(a) may be used in
place of those of Figs. 1(a)-1(c) in calculating ImZ, with
the understanding that now only explicit G lines are to
be cut. This implies that a factor of ReD, is to be asso-
ciated with a phonon line upon analytic continuation.
The prescription so far accounts for the full electron-
electron contribution, but only half the electron-phonon
one. To account completely for the latter, it is necessary
to replace (ReD,)* by |D,|? whenever two phonon
lines with o’=0 appear in the polarization diagram. A
simpler approximate prescription will be given in the



1142 K. SCHWARTZMAN AND W. E. LAWRENCE 37

@0 e e (b)§=%*

FIG. 7. Effective diagrams useful for interpreting the results
of the last section; diagrams (a) provide contributions to ImZ,
(b) define the effective interaction potential, and (c) parametrize
the static four-point Coulomb vertex.

final section, where a discussion of errors can be made
using the results of this section.

A detailed correspondence between diagrams in Fig. 7
and Figs. 1(a)-1(c) may now be drawn by expanding Fig.
7(a) into eight separate diagrams. The two purely
Coulomb ones correspond to Fig. 1(a), another corre-
sponds to Fig. 1(c), and the remaining five to Fig. 1(b).
Four of these five contain both a phonon line and a
Coulomb line, and thus represent S,4 [(i) and (iii)]. The
remaining diagram represents S}, and this is the only
one which contributes non-negligibly to real-phonon
processes, as discussed qualitatively in Sec. II.

The various contributions may be compared quantita-
tively by considering the asymptotic energy and temper-
ature dependences of ImX, or better yet, the frequency
dependences of the spectral functions S (w). The asymp-
totic forms depend on the fact that the phonon self-

energy, according to Egs. (6) and (7), satisfies
Im®;,(q,0)=a,,(qo, (23)

where the coefficient «,,.(q) is a Fermi-surface integral
of a product of vertex functions. For small q, g, ~Vyg

|

m
2

1
T

> 25(Zek_q W(Zey _)8(Zegy _4_o)=
7 9

and hence a,,(q) approaches a constant. The discus-
sion is simplified by the use of the Debye model (but al-
lowing for different phonon polarizations), and the as-
sumption of a spherical Fermi surface with electron
effective mass m. The usual expressions are

wqa:caq > (24a)
8,(q)=b,Vq . (24b)
Using Eq. (24b) in Egs. (6) and (7) then leads to
2
m
= b,b, . (25)
Gaa 20t °

The effect of the model is simply to extend the small-q
dependences to all q, and to make these dependences iso-
tropic. This allows the momentum integrations to be
done analytically, resulting in simple expressions. More
general (and cumbersome) results can be obtained
without difficulty.

To begin with, note that Eq. (21b) expresses S,4 as a
double three-momentum integral subject to the con-
straint that the three variable quasiparticle momenta lie
on the Fermi surface. All the other spectral functions
are similarly expressed by Egs. (14), (19), and (20), in
which the factor P contains two of the three constrain-
ing 8§ functions [Eq. (7b)]. These three & functions
reduce the six independent momentum variables to
three—the number required to specify the positions (on
the Fermi surface) of three quasiparticles that can en-
gage in momentum-conserving scattering events with the
fixed state k (Fig. 8). Azimuthal symmetry of the in-
tegrand with respect to k allows reduction of this num-
ber to two—the magnitudes of momenta transferred in
the direct and exchange terms. In the case of Eq. (21b),
these are the two phonon wave-vector magnitudes ¢ and

’

q:

O((2kp)*—q*—(g")?)

[ [ dqdg’ : (26)

mkp[(2kp) —q*—(q')]'?

Using Egs. (24b) and (25) for the vertex functions, Eq. (21b) reduces to

2
Asg

2mm

Sz¢(w,wl): 2

o,0'

Making the same substitutions in Eq. (19), for example,
with P expressed in terms of 8 functions through Eq.
(7b), and noting that the ¢’ integral reduces to
[8dq'(Q*—q"*)~'2=m/2, Eq. (19) reduces to

2%y

2
(i) () @Agq g’dq
Sie 0= 3 p— f 2%, [ReD,(q,w)ReD ,.(q,0)

o0 0

+8,,(ImD (gq,0))*] .
(28)

O((2kp)?—q*—(g")?)

[ [ adqq'dg'ReD,(g,0)ReD, (¢",0") . 27)

mkp[(2kp ) —q*—(q')*]'?

[

The diagonal terms [obeying Eq. (18a)] have been added
to give the full S{j’. Comparing Egs. (27) and (28), only
the former (expressing exchange) has nontrivial depen-
dence on ¢’ and o'; the o' integral appears in Eq. (21a)
relating Sy4(w,0') to ImZ,,(¢,T). The analogous in-
tegral has already been incorporated in the definition of
S4 [see Eq. (13)]. This difference in definition accounts
for the explicit factor of w in Eq. (28).

It is useful to proceed with the asymptotic forms of
these two functions now, and return to those containing
Coulomb interactions later. It is of interest to consider
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FIG. 8.
pating in a momentum-conserving scattering event, and (b) mo-
menta transferred in the direct and exchange contributions
[Fig. 7(c)].

(a) Four wave vectors on the Fermi surface partici-

the limits of small @ and small or large . These are ob-
tained in a straightforward manner; recall that phonon
propagators with single subscripts denote inverses of di-
agonal elements of D ;! [Eq. (17)], so that with Eq. (25)

D,(q,0)=2w, o w? ——cu o —2i00,,a,)” b, (29)

where a, denotes henceforth a diagonal element of a,,,.
First, for o <<wp, one finds power series in both a and
w, of which the leading terms are

i 4o a,, w* a5
S(u) ~ — g9 —_— (30a)
16 (@) mm . c,c + 2kpm 2 c? a
2 a,Ay
Syplw,0")=— (30b)
m 7y

To illustrate the significance of these, the contribution of
each to ImZ is written using Egs. (13) and (21a); for
e=0and T <<wp, for example,

(i) _126)T? a0y 7;(3 )T} %o
Im3, 3(0,T)= ™m UEU C,Cy 2ka § ed’
(31a)
2 a,a,
Im3,,(0,T)= — ST 5 %% (31b)
mTm ST CaCy

The @ terms correspond in all cases to the leading T (or
) dependences, and may be obtained by evaluating the
D(q,0) factors at w=0. These are clearly identified
with electron-electron scattering, with S,; the exchange
counterpart of the a? terms in S“” The factor of 2
arises because only parallel spins contribute to S,,; the
factor is precisely 2 only because the Debye-like model
leads to purely s-wave electron-electron scattering.
Electron-real-phonon processes are represented by the
term linear in a, which appears only in S} ) and arises
from the poles of | D, |2 (the terms where a '=0), with
equal contributions from (ReD,)* and (ImD,)?. There
are also pole contributions to S,, and the nondlagonal
S(“’ terms, but these contribute only O(c?. Further-
more, there are a® terms which have been ignored in the

approximations (such as dropping ImD_ ImD_ from
S14) of the last section. Such contributions are difficult
or impossible to interpret in terms of simple processes.
Corrections to the frequency depcndence are more in-
teresting. At low frequencies, the a® terms in S("’ and
S,, may be expressed as power series in ® contaming
odd and even powers, respectively. The term linear in a
has purely quadratic w dependence for w <wp. In the
opposite limit ® >>wp,, only the @’ terms are present:

42kp)*
S (w)= S a,a,c,c, (32a)
STtmo’ 0.0
Sypl0,0") M2k (32b)
y ') = Ay, €y Cyr -
2600 15mrm o’ /5

Equations (30a) and (32a) show the same asymptotic be-
havior as Allen and Silberglitt’s generalized electron-
phonon spectral function a’F(®).!° The differences are
only in detail, primarily in the explicit polarization sums
of the present expressions. The double sums, reflecting
the nondiagonal character of ImD, are necessary for an
accurate treatment of the electron-electron contribution.
The exchange contribution [Eq. (32b)] differs from the
direct one by more than a factor of 2. This is because
the frequency dependence of the effective interaction
g8,D,8, is important at all but the lowest frequencies.

The precise nature of the high-frequency tails in Egs.
(32a) and (32b) is unimportant for Im3. What matters is
that these phonon-mediated contributions cut off for
®>wp, if less abruptly than the real-phonon contribu-
tion. Because of this, the decay rate contributions from
real- and virtual-phonon processes are all linear in T for
T >>wp, so that here real phonons dominate with
ImZ,4(0,T)~aT, while Im2,,(0,T) ~ —a’T.

The remarks above do not apply to the Coulomb in-
teraction, which produces a (sometimes observable?')
quadratic temperature dependence at high as well as low
temperatures. To illustrate these effects, consider the
remaining spectral functions assuming, for simplicity, a
momentum- and spin-independent scattering amplitude
V.. The momentum sums in Egs. (14) and (20) are again
done with the help of Eq. (26). The resulting expressions
are simplified by collecting some factors in Eq. (26) to-
gether with V. as follows:

V,=—V,=—, (33)
F
where p, is the usual Coulomb pseudopotential, N, the

density of states per spin, and vy the Fermi velocity.
The resulting spectral functions are

S =— 5 2 (4 cwy) (34a)
16 =va ~ c, <@’
2
Top?
Sel@) =~ (all o) . (34b)
2mvg

Regarding p. /vy and a,/c, as the same order, it is
clear that these expressions are comparable with the a?
terms found earlier. Expression (34b) is valid for the
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whole frequency range of interest here, while (34a) is just
the leading term in a series of odd powers of w. The ad-
ditional contribution to (34a) from the pole of D is of or-
der (u, /vp )@, /c, ) w?, which is negligible. For o >>wp
the asymptotic form is
21, (2kp)?

S =" Sac, (@>>wp).

35
3mvpo 33

o

This and Eq. (34b) show that the only significant
electron-electron contribution to ImZ at high tempera-
tures comes from S.(w). Combining this S, contribution
with the electron-phonon contribution contained in S,
one finds

3mE(2)ul

mo}

Im=(0, T) = T24+7AT (T>>wp), (36)

where A is the usual electron-phonon interaction param-

eter, related linearly to the phonon linewidths.?? In the

present model the precise relation is
2UF a,

r=Z-1=""3 .

GCU

(37)

This relation is useful in the limit T <<wp. Here, there
are electron-electron contributions (terms of order a? or
the equivalent) from each of Sy [(), (i), and ()], S5,
and S.. Their leading o (»') dependences are found in
Egs. (30) and (34), and the resulting leading temperature
dependences [all ~T? as in Eqgs. (31)] form a perfect
square. Adding to this the electron-phonon contribution
in Eq. (31a), the result is

aa
Im3(0,T) = T2 3y, yop2 4 TE3) s %o
2mug 2k el

(T <«<wp) . (38)

An electron-electron contribution of this simplicity
occurs only if the scattering amplitude is isotropic, and
only in the leading (quadratic) temperature or energy
dependences, which do not reflect the energy dependence
of the phonon-mediated interaction. The electron-
phonon contribution to Eq. (38) can be written in terms
of A if polarization differences are ignored, in which case
itis ~AT3/w},.

As Allen and Silberglitt have pointed out,’® the
electron-electron contribution dominates at very low
temperatures, T <awp, and they have estimated a in
the range 1073-1072 for typical elementary metals. At
high temperatures T ~w, the electron-electron contribu-
tion is a small fraction p.c,/vp~a of the electron-
phonon one, but may sometimes be observable in the T
dependence of the Lorenz ratio.?!

IV. CONCLUSIONS

The simplifying model used in the last section illus-
trates the most important qualitative features of the
spectral functions and the decay rate through simple,
transparent, and probably not very accurate expressions.
Perhaps it is worthwhile to briefly reconsider these
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features in more general terms. First, the particle-hole
decay mode (due to the Coulomb and virtual-phonon-
mediated interactions) is represented by all three self-
energy diagrams, Figs. 1(a)-1(c), and depends quadrati-
cally on the phonon linewidth parameter a [Eq. (23)]
and the effective Coulomb interaction potential ¥V, [Egs.
(22)]. The emission and absorption of real phonons are
accounted for by just that part of Fig. 1(b) [shown in
Fig. 5(ii)] in which the phonon line is cut into the two
similar polarization components o=o0'. Real- and
virtual-phonon processes contributed by this piece are
distinguished by linear and quadratic dependences on «,
respectively. According to Fig. 7 the particle-hole decay
mode may be represented alternatively by an effective
electron-electron interaction potential

u= Y g,ReD, g, +V, .

It is understood in this context that D is a function of a
real frequency variable. The corresponding scattering
amplitude [as in Egs. (22)] depends upon wave vector,
spin, and (because of exchange) two frequency variables.
This amplitude leads to a decay rate either through a
spectral function of the form S(w,w’) and Eq. (21a), or
directly from the Fermi golden rule as applied to
electron-electron scattering. As noted in Sec. III, this
decay rate includes not only the full electron-electron
contribution, but also half the electron-phonon contribu-
tion; the remaining half is provided by the appropriately
averaged scattering probability 3, | g, | (ImD )*.

At a small cost, a more concise prescription can be
given: The full electron-phonon and electron-electron
contributions are produced together by using the com-
plex electron-electron interaction potential

u= zgaD0g0+Vc ’
o

which must be paired with its complex conjugate when
used in Fig. 7. Clearly this prescription adds the desired
term, but it also adds errors to ImZ,; and to the off-
diagonal components of ImZ,,. These errors include the
familiar type O (a’) that are inherent in the formalism,
plus new errors O (a’w? for @ <wp. These may be ig-
nored because the combined a and w dependences make
them negligible compared with the electron-phonon con-
tribution over the entire frequency range.

Incidentally, the parameters a and V,_ are related to
the vertex functions g, and I', by Egs. (24b) and (25)
and Eqgs. (22a) and (22b), respectively. That only the
physical vertex functions appear in the quasiparticle and
phonon decay rates was established in Sec. II.

The general frequency dependence can be discussed by
formally decomposing the spectral function according to
real-phonon and particle-hole pair contributions, say
S4(w) and S, ,(w,0"), as distinguished above. Sy(w) is
to be used in Eq. (13) and S, ,(,0") in Eq. (21a). S,(w)
is equivalent to the usual a’F (w), whose qualitative be-
havior is well known: It is initially quadratic in o, has
sharp structure at higher frequencies reflecting structure
in the phonon density of states, the Fermi surface, and
the matrix elements g, and then vanishes for o >wp.
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The particle-hole pair function S, , (w,®’) is initially con-
stant, exhibits relatively weak structure at intermediate
frequencies, and finally approaches algebraically a
different constant (characteristic of purely Coulomb
scattering) for @ >wp. If a single-variable particle-hole
spectral function were defined by performing the o’ in-
tegral, then this function would be linear in o for
o <<wp and @ >wp, but the crossover at intermediate
frequencies would be temperature dependent. Relatively
little structure is expected in S, , because contributions

in the momentum integrals are distributed throughout
the Brillouin zone, rather than being concentrated near
the poles of D as they are in the case of S;(w).

In the superconducting phase, while S;(w) [the usual
a*F(w)] is not changed from the normal phase,
S,.»(w,’) exhibits structure associated with the gap in
the quasiparticle spectrum, which carries through to the
decay rate. This will be the subject of a future publica-
tion.
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