
PHYSICAL REVIE% 8 VOLUME 37, NUMBER 3 15 JANUARY 1988-II

Conductance Suctuations in one-dimensional quasicrystals
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%e calculate the electronic resistance of a finite one-dimensional Fibonacci-sequence quasicrys-
tal. %e find that as a function of the electron energy (or, equivalently, the applied voltage) the
electrical resistance of such quasicrystals sho~s strong fluctuations as resonant tunneling occurs
through allowed energy states of the system. Evidence for power-law localization and self-

similarity can be seen in the calculated transport properties and should be observable in artificially
structured Fibonacci-sequence semiconductor superlattices.

There has been a great deal of recent theoretical in-
terest' ' in the properties of one-dimensional (1D)
quasiperiodic systems. While part of this interest is
quite general, inspired originally by Aubry's work" on
localization transition in 10 quasiperiodic systems, part
of this work is certainly motivated by the recent
discovery' of quasicrystals. A more significant develop-
ment for 1D theories is the recent fabrication' by Mer-
lin et al. of an artificial 1D "quasicrystal" employing a
Fibonacci sequence of GaAs-Al„Ga& As multilayers.
While there is still controversy'" on whether the Al-Mn
alloys (and other related three-dimensional "quasicrystal-
line" materials) discovered' by Shechtman et al. are ac-
tual quasicrystals or icosahedral glasses; the artificial 1D
systems fabricated by Merlin et al. are„by construction,
almost ideal (even though finite in size) quasiperiodic
structures (albeit in 1D) on which one can test various
theoretical ideas. Thus vibrational (phonons' }, structur-
al (x-ray structure factor), electronic (band structures),
and collective properties (plasmons) of 1D quasicrystals
have been calculated in the recent theoretical litera-
ture '-"

Conspicuous in its absence, however, is a calculation
of transport properties of 1D quasicrystals. In this pa-
per we provide a direct q.umerical calculation, based on
the Landauer formula, ' of the conductance of finite 10
quasicrystals. Our numerical results will allow a direct
comparison with experimental results if and when they
are available.

Taking fr=2m =1, the Hamiltonian for an electron in
the 10 quasicrystal is written as

2 + V(x)g(x)=EQ(x),
Big(x)

(1)

where p(x) and E are the wave function and the energy
of the electron, and V(x} is the incommensurate poten-
tial due to the 1D quasicrystal. For V(x) we choose the
simplest Kromg-Penney-type model to write

N
V(x)= g q„5(x—x„), (2)

n=1

where q„is the strength of the scattering potential 1ocat-
ed at x =x„.The positions or sites x„ofthe scatterers

are distributed according to the Fibonacci sequence
used' by Merlin et al. %'e choose two fundamental
lengths a and b, and generate a Fibonacci sequence start-
ing with a, ab, and aab, aabab, etc. The lth generation of
the sequence is given simply by S, =ISi 2,Si, I, with

So=a and S& ——ab. The lengths a and b determine the
separations between the neighboring scatterers and the
whole sequence determines where the scatterers are.
Thus, the second generation (aab} has scatterers at
x„=a,2a, and 2a+b. %e should use at least two
diferent scattering potential strengths q„to accurately
model the system of Ref. 13, but, in the spirit of the
Kronig-Penney model (and also to keep the number of
parameters a minimum} we choose q„=q=0.5 for all

the scatterers. Thus Fibonacci-sequence quasiperiodicity
enters our theory only through the locations of the
scatterers, their strengths being uniform in our model.
We choose a lb =~ and —'„where ~=(i/5+1)/2 is the

golden mean —our results are qualitatively unchanged
with any other (rational or irrational} choice of a/b
since the basic quasiperiodicity of the model arises
through the Fibonacci sequence. %e want to emphasize
that our scattering model is equivalent to the tight-
binding model used by a number of authors to calculate
the electronic band structure of this system. The
scattering approach is, however, easier to implement in
the numerical calculation of the conductance where one
envisions electrons being injected into the system at the
left and removed at the right after they tunnel through
the potential barriers.

In calculating the transport coefficient we follow the
Landauer approach' which is well suited for our pur-
pose. For simplicity we use the single-channel Landauer
formula' assuming ideal lead electrodes connected to
the two ends of our superlattice. The system conduc-
tance is given by

2e
h

where T is the transmission coefficierit through the
whole quasicrysta1. The resistance of the structure is
given by
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R =1/G .

(5)

Propagation of the elect
site isis given by the matrix X

ron from the 'thj site to the next

jp

40—
(a)

30

The transm
'

is eas

(4)

smission coeScient T is eassm
'

is easy to obtain for a 10

of th

'on scatterers b a ry repeated application
rix; which relates thee wave func-

t e wave function i)'j' o th
o ential site,

y(!) M y(3)

—lkx .
J

J

where E =k '
his the ener ofgy

ix or the system is given by
e total

M =(X,M, )(X,M, )(X,M )2 3 3 (XtltMtlt ) '

Note that quasiperiodic
' ', nn random systems

g
quasi penodicall y, periodically, and ran-

t can be shown' that the transfer m
by Eq. (7) is related to the t
relation

o e transmission co fFie cient by the

I0

1+2
I

&
I
'/I t

I

'

2r'/t '
2r/t

2Ir I2

0 i i I

4

I ) I I I

0.638 0,640 0.642
K

l50-
- (b)

l 1 1

0632 0634 0636 0.63!! Qf!40 0642

QP
OJx 40—

20—

0
0.6326

FIG. 1. Calculacu ated resistance (Rcu a ( ) as a function of k =&F.
for and (c)] 16th-generation F'bo ' er-

i a =1.0 and
1 naccl su er-

s. e self-similar structure c een y c

where
I

t =T is the transmissio

m 1 okoi hdi
or the resistance of th e system cf.

ance
or

d
cf. Eqs. (3) and (4)].

ing Eqs. (1)—(8). A
e e system resistantan y y us-

'
tance numericall b

measured in units of 2e
uctance (resistance) is

t -generation Fibonacci

o t e

ues. n Fig. 2 we show our con

16h Fbd - n 1 onaccis sty ems. Results
i e similar, indicatin

1gS.'gta t bio /b

In Fig. 3 we s
'

etai
t e transport pro teries ofa 16 - '

i
etai t e self-sirnilarit

superlattice with
6 - '

i onacci6th-generation Fib
how our calcul t

e c a unction of the electronectron momentum
e with progressivel hy ig er

k values ar=0, , 0005, and 0.0002 h
e, respectivel . T

s own 1n

self sirnilanty h
s s ow

t up to a factor-of-100
a

' . an i eal in6nite Fi
t states is a Can

cl ys-
antor set and the self-

sim o in nite resolution. In

finite
0 1s self-silTlilari

fr

rity are set by th
ent broadening elf'an y inheren

'
een e ects

1 f k
nacc1 quasiperiodicit

y g p
, as s own in Figs. 3(a)—3(e), indicates



S I~ ONE DIMENSIONINDUCTAN UCTUATIONS IN

that this part1cula r feature o t ef h Cantor-set spectrum
ll measured trans-show up in the experimenta yshould show up 1n

I the resistance) fiuc-
of a 1 onacc'

The conductance ~, q&or, e uivalent y, e
Fi s. 1-3 can be untua 1ons see g .

ite Fibonacci super aphysics of a 6ni e
the eigenenerg1es oglvcn systcID slzc,

c in a Cantor-set siruc uture as the system
A h I o Islzc apppproaches infinity). As t e e ec

levels, there 1s enh»
tunnehng lead»g to g .

I (; e I'or higher gen-of the quasicrysiacreasing length o q
) he sp«trutn becomes1 su erlattices t e

j'J
erat, on Fihonacc p

hi her-flequency ) con-denser, leading to
of electron energy

denser (i e
'

ns as a funct1On Oductance fluctuations
de endcnce of thsystemat1c PIn F1g- 4 we ' " "—

F 1 superlattice o»Fi onacclaverage rcs1stan
b done by calculat1ngtotal lcngt . Thc avcrag»g h

2.5 '—
— (a)

I f I I I
I

I I I I

I
I I I I I f

II
I I II I I I I

I
I I I I I I I I I I IIII

I
I I I II I I I II I I I II I I I

I
I I I I

Il2.5—
—(b)

Io.o,—

7.5—
QP

CU

5.0—
Ct

00
0.630 0.660

Pp siss
0,630 0 640

20—
(c)

I I I I I I I I
I

I I I II I II I
I

I I I I
$

f I I I
I I

'
I

'
I

'
I

'
I

(d)

OI

OJ
)0

2—
QP
M

Q

0.650
„ iI)I ArJA&i, Ii/AJhl'„~ (,~

0,640 0.650 0.660
Q

0.646 0,650 0 654
K

0.658 0.662

I I 1 I
I

I I

- (e)

I I I I I I I I 1 I I I f I
I

I I
I

I I I I
I

I

QP
OJ

2

CC

0, I I I I I

0.646
I I I

0.652

K

e) 16th-generation Fibonacci se-nd (d) 14th, and [(c) and (e)
*

n of k for {a) 12th, {b) andFIG. 2. Calculated resis tance as a function o
t shows up in {a),{d),aand {e).qu

' = b =1.0. The self-similanty squences with a =~, b = .



S. DAS SARMA AND X. C. XIE

8 (k) for each length between k =0.9 and 1.0, and then
defining the average resistance on a k mesh with
hk =0.005. Thus, R = —,', +~0 OR;(k;) with k; =0.90
+ i ( b,k }. VA'th other possible definitions of average
resistance the result shown in Fig. 4 does not change
qualitatively. The systematic increase of R with the
length of the superlattice in a power-law fashion is con-
sistent with our understanding of the power-law "locali-
zation of the Fibonacci spectrum. Thus the finite con-

ductance of a 10 Fibonacci quasicrystal is entirely due
to its finite size. However, the increase in the resistance
with the increase in the system length is rather weak (not
exponential). This should be contrasted with the behav-
ior of the resistance in the energy-gap regions of the
spectrum where no resonant tunneling can take place
and the resistance is exponentially large. It should be
remarked that the Cantor-set spectrum of an ideal
infinite Fibonacci quasicrystal has gaps everywhere.
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lengths substantially larger than the system size, thus
not afkcting the quasicrystalline physics being studied
here. In fact, arti5cially structured 10 quasicrystals
based on semiconductor superlattices allo~ one to study
the interplay of quasiperiodicity and disorder in a con-
trolled fashi. on.

In Figs. 5(a) —5(d) we show the effect of disorder on
the transport properties of a 12th-generation Fibonacci
superlattice. %e introduce disorder by making the
widths a and b vary randomly from layer to layer in the
Fibonacci structure. Thus we take a =co+ ha and
b =bo+hb, with ao ——1.0, b =1.5, as in Figs. 1 and 4
(where ha =Iamb =0). The width Iluctuations ha and IJb
are taken to be 1%, 5%, and 10%, as shown in Figs.
5(b) —5(d), respectively, whereas in Fig. 5(a) we show the
results [same as Fig. 1(a)j for the ideal system
(b,a =b,b =0). It is obvious from these figures that even
for width fluctuations as large as 10%, the transport
properties of the Fibonacci superlattice remain qualita-
tively unchanged. There is only a small overall shift in
the curves for various disorder compared with the ideal
situation shown in Fig. 5(a). This shows that if vertical
tunneling transport experiments' can be carried out in
10 quasicrystals, ' the conductance fluctuations dis-
cussed in this paper should be experimentally observable
in real structures in spite of the existence of a small
amount of disorder. If we keep the respective number of
fundamental lengths a and ls the same as in Fig. 5(a), but

put them in a random order, we And resistance 8 -e
as expected. In Fig. 5(e) we plot localization length ( as
a function of k.

In conclusion, we have calculated numerically the
transport properties of a 10 Fibonacci superlattice using
the Landauer approach. We find considerable conduc-
tance fluctuations as a function of the energy of the tun-
neling electron. These fluctuations reAect the Cantor-set
spectrum of the system and are self-similar in nature.
We study the length dependence of the system resistance
and find a behavior consistent with a power-law localiza-
tion. Our calculated conductance fluctuations are fairly
insensitive to the existence of a small ( 5 10%) amount of
disorder in the system. A fairly large number of experi-
mental papers' have appeared in the recent literature
reporting the observation of Bloch transport in a period-
ic superlattice (along the superlattice direction) using a
variety of tunneling techniques. %e strongly urge that
such experiments be performed on a 10 Fibonacci super-
lattice' to directly study the conductance Auctuations
predicted in this paper.
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