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Conductance fluctuations in one-dimensional quasicrystals
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We calculate the electronic resistance of a finite one-dimensional Fibonacci-sequence quasicrys-
tal. We find that as a function of the electron energy (or, equivalently, the applied voltage) the
electrical resistance of such quasicrystals shows strong fluctuations as resonant tunneling occurs
through allowed energy states of the system. Evidence for power-law localization and self-
similarity can be seen in the calculated transport properties and should be observable in artificially
structured Fibonacci-sequence semiconductor superlattices.

There has been a great deal of recent theoretical in-
terest! =1 in the properties of one-dimensional (1D)
quasiperiodic systems. While part of this interest is
quite general, inspired originally by Aubry’s work!! on
localization transition in 1D quasiperiodic systems, part
of this work is certainly motivated by the recent
discovery!? of quasicrystals. A more significant develop-
ment for 1D theories is the recent fabrication'® by Mer-
lin er al. of an artificial 1D “quasicrystal” employing a
Fibonacci sequence of GaAs-Al Ga,_,As multilayers.
While there is still controversy!* on whether the Al-Mn
alloys (and other related three-dimensional “quasicrystal-
line” materials) discovered!? by Shechtman et al. are ac-
tual quasicrystals or icosahedral glasses; the artificial 1D
systems fabricated by Merlin et al. are, by construction,
almost ideal (even though finite in size) quasiperiodic
structures (albeit in 1D) on which one can test various
theoretical ideas. Thus vibrational (phonons”), structur-
al (x-ray structure factor), electronic (band structures),
and collective properties (plasmons) of 1D quasicrystals
have been calculated in the recent theoretical litera-
ture.! 10

Conspicuous in its absence, however, is a calculation
of transport properties of 1D quasicrystals. In this pa-
per we provide a direct numerical calculation, based on
the Landauer formula,'® of the conductance of finite 1D
quasicrystals. Our numerical results will allow a direct
comparison with experimental results if and when they
are available.

Taking #i=2m =1, the Hamiltonian for an electron in
the 1D quasicrystal is written as

62
——;@+V(x)¢(x)=E¢(x) , (1)
x
where ¥(x) and E are the wave function and the energy
of the electron, and V(x) is the incommensurate poten-
tial due to the 1D quasicrystal. For ¥ (x) we choose the
simplest Kronig-Penney-type model to write

N
Vix)=3 ¢,8(x —x,), ()
n=1

where g, is the strength of the scattering potential locat-
ed at x =x,. The positions or sites x, of the scatterers
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are distributed according to the Fibonacci sequence
used'® by Merlin et al. We choose two fundamental
lengths a and b, and generate a Fibonacci sequence start-
ing with a,ab, and aab,aabab, etc. The Ith generation of
the sequence is given simply by S;={S,_,,S;_,}, with
So=a and S;=ab. The lengths a and b determine the
separations between the neighboring scatterers and the
whole sequence determines where the scatterers are.
Thus, the second generation (aab) has scatterers at
x,=a, 2a, and 2a +b. We should use at least two
different scattering potential strengths g, to accurately
model the system of Ref. 13, but, in the spirit of the
Kronig-Penney model (and also to keep the number of
parameters a minimum) we choose g,=¢ =0.5 for all
the scatterers. Thus Fibonacci-sequence quasiperiodicity
enters our theory only through the locations of the
scatterers, their strengths being uniform in our model.
We choose a/b =7 and 2, where 7=(V'54+1)/2 is the
golden mean—our results are qualitatively unchanged
with any other (rational or irrational) choice of a/b
since the basic quasiperiodicity of the model arises
through the Fibonacci sequence. We want to emphasize
that our scattering model is equivalent to the tight-
binding model used by a number of authors to calculate
the electronic band structure of this system. The
scattering approach is, however, easier to implement in
the numerical calculation of the conductance where one
envisions electrons being injected into the system at the
left and removed at the right after they tunnel through
the potential barriers.

In calculating the transport coefficient we follow the
Landauer approach'® which is well suited for our pur-
pose. For simplicity we use the single-channel Landauer
formula!” assuming ideal lead electrodes connected to
the two ends of our superlattice. The system conduc-
tance is given by

T

2e || _T_
-7

G = h

b (3)

where 7 is the transmission coefficient through the
whole quasicrystal. The resistance of the structure is
given by
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R=1/G . (4)

The transmission coefficient T is easy to obtain for a 1D
system of 8-function scatterers by a repeated application
of the transfer matrix M; which relates the wave func-
tion ¥}’ on the left with the wave function ¥}’ on the
right at the ith potential site,

=M. 5)

Propagation of the electron from the jth site to the next
site is given by the matrix X/,
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FIG. 1. Calculated resistance (R) as a function of k =VE
for (a) 12th and [(b) and (c)] 16th-generation Fibonacci super-
lattices with a =1.0 and b =1.5 as the two fundamental
lengths. The self-similar structure can be clearly seen by com-
paring (a) and (c).

, (6)

where E =k? is the energy of the electron. The total
transfer matrix M for the system is given by

Mz(flMl)(izMz)(f3M3)'(AYNMN) (7)

Note that quasiperiodic, periodic, and random systems
can be simulated in our model by taking the sites x,’s to
be distributed quasiperiodically, periodically, and ran-
domly, respectively.

It can be shown!’ that the transfer matrix M defined
by Eq. (7) is related to the transmission coefficient by the
relation

1427 |2/t |? 2r /t?
M*M = 2, (8)
2r* /%2 1+—J—1—21 ’lz
t
where |t |?=T is the transmission coefficient and

|7 |2=(1—=T) is the reflection coefficient. Thus, know-
ing the diagonal components of the transfer matrix is
equivalent to knowing the (dimensionless) conductance
or the resistance of the system [cf. Egs. (3) and (4)].

We calculate the system resistance numerically by us-
ing Egs. (1)-(8). All our conductance (resistance) is
measured in units of 2¢2/h (h/2e?). In Figs. 1(a) and
1(b) we show our calculated resistance as a function of
k =V'E for 12th- and 16th-generation Fibonacci super-
lattices, respectively (with a =1.0 and b =1.5 as the two
fundamental lengths). The self-similar structure of the
resistance becomes obvious from Fig. 1(c) [by comparing
with Fig. 1(a)], where we have blown up Fig. 1(b) around
a small region of k values. In Fig. 2 we show our con-
ductance results with a =7 and b =1 for 12th-, 14th-
and 16th-generation Fibonacci systems. Results in Figs.
1 and 2 look quite similar, indicating that the ratio a /b
is not a significant parameter.

In Fig. 3 we study in more detail the self-similarity in
the transport properties of a 16th-generation Fibonacci
superlattice with ¢ =7 and b =1. We show our calculat-
ed conductance as a function of the electron momentum
k=V'E in Figs. 3(a)-3(e) with progressively higher
resolution. The resolutions Ak in k values are
Ak =0.02, 0.01, 0.002, 0.0005, and 0.0002, shown in
Figs. 3(a)-3(e), respectively. Thus these results show
self-similarity in the conductance up to a factor-of-100
magnification. In an ideal infinite Fibonacci quasicrys-
tal, the spectrum of states is a Cantor set and the self-
similarity exists to infinite resolution. In a real finite sys-
tem, natural limits to this self-similarity are set by the
finite system size and by inherent broadening effects
from fluctuations, impurities, and finite temperature.
The triplet structure of peaks seen in Figs. 3(a)-3(e) is a
natural property of Fibonacci quasiperiodicity arising
from the Cantor-set nature of the underlying spectrum.
Our simulation, as shown in Figs. 3(a)-3(e), indicates
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that this particular feature of the Cantor-set spectrum
should show up in the experimentally measured trans-
port properties of a Fibonacci superlattice.

The conductance (or, equivalently, the resistance) fluc-
tuations seen in Figs. 1-3 can be understood as the
physics of a finite Fibonacci superlattice, where, for a
given system size, the eigenenergies form a set of sparse
points (approaching a Cantor-set structure as the system
size approaches infinity). As the electron energy equals
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one of these energy levels, there is enhanced resonant
tunneling leading to high-conductance peaks. With in-
creasing length of the quasicrystal (i.e., for higher gen-
eration Fibonacci superlattices) the spectrum becomes
denser, leading to denser (i.e., “higher-frequency”) con-
ductance fluctuations as a function of electron energy.
In Fig. 4 we study the systematic dependence of the
average resistance R of a Fibonacci superlattice on its
total length. The averaging has been done by calculating
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FIG. 2. Calculated resistance as a function of k for (a) 12th, (b) and (d) 14th, and [(c) and (e)] 16th-generation Fibonacci se-

quences with @ =7, b =1.0. The self-similarity shows up in (a), (d), and (e).



1100 S. DAS SARMA AND X. C. XIE 37

R (k) for each length between k =0.9 and 1.0, and then
defining the average resistance on a k mesh with
Ak =0.005. Thus, R=% 3% (R;(k;) with k;=0.90
+i(Ak). With other possible definitions of average
resistance the result shown in Fig. 4 does not change
qualitatively. The systematic increase of R with the
length of the superlattice in a power-law fashion is con-
sistent with our understanding of the power-law “locali-
zation” of the Fibonacci spectrum. Thus the finite con-

ductance of a 1D Fibonacci quasicrystal is entirely due
to its finite size. However, the increase in the resistance
with the increase in the system length is rather weak (not
exponential). This should be contrasted with the behav-
ior of the resistance in the energy-gap regions of the
spectrum where no resonant tunneling can take place
and the resistance is exponentially large. It should be
remarked that the Cantor-set spectrum of an ideal
infinite Fibonacci quasicrystal has gaps everywhere.
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FIG. 3. Calculated conductance (G) for a 16th-generation Fibonacci sequence with a =7, b =1.0. Results are shown with
different resolutions Ak =0.02 (a), 0.002 (c), 0.0005 (d), and 0.0002 (e).
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FIG. 4. We show the average resistance R (between k =0.9
and k =1.0) as a function of the total length L of the quasi-
crystal.
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However, in real finite systems, lack of infinite resolution
would allow one to see only the “large” gaps (larger than
the inherent energy resolution of the system). Thus, the
results shown in this paper indicate what transport prop-
erties of a real 1D quasicrystal, such as the one fabricat-
ed by Merlin et al.,'’ may look like.

Finally we consider the effects of departure from the
ideal Fibonacci structure on the transport properties of
our 1D quasicrystal. In any real situation, the funda-
mental widths ¢ and b from which the Fibonacci super-
lattice has been constructed will vary somewhat from
layer to layer, introducing random disorder into the
quasicrystalline structure. In the ideal (and infinite) situ-
ation, introduction of any disorder will give rise to An-
derson localization.'® But in practical situations a small
amount of random disorder will produce localization
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FIG. 5. (a) We show the resistance R as a function of k with a =1.0, b =1.5 for a 12th-generation Fibonacci superlattice. (b),
(c), and (d) are the same as (a), but with width fluctuations up to 1%, 5%, and 10%, respectively. (e) We show the localization

length § as a function of k for random order of @ and b.
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lengths substantially larger than the system size, thus
not affecting the quasicrystalline physics being studied
here. In fact, artificially structured 1D quasicrystals
based on semiconductor superlattices allow one to study
the interplay of quasiperiodicity and disorder in a con-
trolled fashion.

In Figs. 5(a)-5(d) we show the effect of disorder on
the transport properties of a 12th-generation Fibonacci
superlattice. We introduce disorder by making the
widths a and b vary randomly from layer to layer in the
Fibonacci structure. Thus we take a =ay+Aa and
b =by+Ab, with ay=1.0, b =1.5, as in Figs. 1 and 4
(where Aa =Ab =0). The width fluctuations Aa and Ab
are taken to be 1%, 5%, and 10%, as shown in Figs.
5(b)-5(d), respectively, whereas in Fig. 5(a) we show the
results [same as Fig. 1(a)] for the ideal system
(Aa =Ab =0). It is obvious from these figures that even
for width fluctuations as large as 10%, the transport
properties of the Fibonacci superlattice remain qualita-
tively unchanged. There is only a small overall shift in
the curves for various disorder compared with the ideal
situation shown in Fig. 5(a). This shows that if vertical
tunneling transport experiments!® can be carried out in
1D quasicrystals,’* the conductance fluctuations dis-
cussed in this paper should be experimentally observable
in real structures in spite of the existence of a small
amount of disorder. If we keep the respective number of
fundamental lengths a and b the same as in Fig. 5(a), but

put them in a random order, we find resistance R ~el7t
as expected. In Fig. 5(e) we plot localization length £ as
a function of k.

In conclusion, we have calculated numerically the
transport properties of a 1D Fibonacci superlattice using
the Landauer approach. We find considerable conduc-
tance fluctuations as a function of the energy of the tun-
neling electron. These fluctuations reflect the Cantor-set
spectrum of the system and are self-similar in nature.
We study the length dependence of the system resistance
and find a behavior consistent with a power-law localiza-
tion. Our calculated conductance fluctuations are fairly
insensitive to the existence of a small ( < 10%) amount of
disorder in the system. A fairly large number of experi-
mental papers!® have appeared in the recent literature
reporting the observation of Bloch transport in a period-
ic superlattice (along the superlattice direction) using a
variety of tunneling techniques. We strongly urge that
such experiments be performed on a 1D Fibonacci super-
lattice!® to directly study the conductance fluctuations
predicted in this paper.
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