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Comment on "Microscopic stress tensors in quantum systems"
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We show that the expressions for microscopic stress fields derived previously by the present au-

thors encompass those given in a recent paper by Folland and are correct, in contradiction to claims
made by Folland.

I. INTRODUCTION

In a recent paper' Folland has derived expressions for
the microscopic stress tensor field in quantum systems
under the restrictions that (1) all particles interact via
Coulomb forces; (2} the nuclei are classical particles at
fixed positions; and (3) electronic exchange and correla-
tion are treated within a one-electron, a local density, or
a Hartree-Fock framework, respectively. The present au-
thors have also considered the microscopic stress tensor
field and have presented in a previous paper (denoted
here as NM) expressions valid for general many-body sys-
tems and general forms of the interactions. It is claimed
by Folland in two places in Ref. 1 that the results of NM
are incorrect. The purpose of this Comment is to present
our response that (1) the expressions in NM are correct
(except for minor corrections given in an erratum ) and
there is no basis for the claims by Folland concerning our
work, and (2) the expressions in NM are the same as
those given by Folland when specialized to the above re-
strictions. Thus we find that the results of Folland are
formally correct as far as we can ascertain, and that we
agree with him except for points of interpretation dis-
cussed below. In the following we will refer to equations
in the work of Folland' by F(Eq. no. ) and similarly for
equations in NM.

We first summarize the reasoning and expressions of
NM, hopefully clarifying the results by collecting togeth-
er central expressions from different sections of NM. We
subsequently discuss the relation to Folland's work.

II.MICROSCOPIC STRESS FIELDS

The microscopic stress tensor field cr &(r) in a quantum
system is defined by the condition that its divergence is
the force field, ' in correspondence with classical
mechanics. While the force field, NM(11), is uniquely
defined, the stress field is not unique because the curl of
any dyadic field (i.e., a divergence-free field) can be added
to the stress without affecting the forces. The stress field
can therefore be formulated using arbitrarily chosen
"gauges" that give identical physically observable forces.

In order to derive formal expressions for stress valid in

general cases, NM used a form (i.e., gauge) due to
Kugler. This form contains undesirable long-range
terms discussed by NM (see especially Appendix A) and
Folland, but it is to our knowledge the only form valid
for general interactions. Because NM concluded that
"for the important special case of Coulomb interactions
. . . it is preferable to use the Maxwell form" of the stress
field, they devoted Appendix B to that case and gave ex-
pressions which encompass Folland's results. We note
that for the case of Coulomb interactions a lucid exposi-
tion was given almost 50 years ago in a thesis by Feyn-
man.

The expressions for stress fields given by both NM and
Folland (denoted F in the following) are sums of kinetic
and potential terms. The explicit expression given by
NM(14) is

o tt(r)= —g ([p;,[p;tt, 5(r —r;)] ] )
1

,. 4m;

+ y(&;(v;„,) &(
~

—;
~

') ),4a,.

+ (& ( )E ( ) ——,'5 E'( )), (2)

where u and P are Cartesian coordinates, p; is the
momentum operator of particle i with mass m;, V;„, is
the interaction potential which in general is a function of
all the coordinates, [a,b]+ ab+ba de——notes the an-
ticommutator and ( ) denotes the expectation value over
the exact quantuin ground state. [In Eq. NM(14} the ex-
pectation values were omitted by mistake. ] The kinetic
terms are easily seen to be equivalent to the expectation
value of Folland's Eqs. F(25) and F(21) which, when spe-
cialized to uncorrelated single particle wave functions,
reduce to Eq. F(28b). In the above expression the poten-
tial terms are expressed in the Kugler form. In order to
give the Maxwell form of stress one must combine
NM(14) with Eqs. NM(B1) and NM(B2) giving the full
expression for the stress field in a Coulomb system,
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where

(r —r, )
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(3)

is the operator giving the electric field due to particles
(electrons as well as nuclei) with charge Z, and position
operators r;. This is still a full many-body form which in-
volves expectation values of the bilinear combinations of
the fields produced by pairs of particles which may be
correlated. In order to derive Folland's expressions from
the present Eq. (2), one must assuine that the particles are
uncorrelated. Within one-electron Hartree-like approxi-
mations, the potential term can be factorized in the form

[(E (r) ) (E&(r) ) —,'5 &(—E(r))2] (4)

which is just the classical Maxwell stress for the electro-
static field caused by the total charge density due to elec-
trons and nuclei and is the same as in Folland's Eqs.
F(38) and F(39). If the effects of exchange and correla-
tion are approximated by an additional term in the total
energy, e.g., in the local density approximation, there is a
term which is a local function of the charge density. The
full expression is given in NM(30a) —NM(30e) as integrals
over all of space, and in microscopic form using the
Maxwell stress in NM(14), NM(Bl) and NM(B2) [see Eq.
(2) above] plus the exchange-correlation term NM(29).
These results are equivalent to Folland's microscopic
equations F(28b) and F(37)—F(39). Folland also gives an
explicit expression, F(43), for the Hartree-Fock case,
where the potential term in Eq. (2) factorizes into direct
and exchange terms.

Folland first criticizes (F Sec. III) the results of NM for
microscopic stress fields integrated over surfaces, NM(17)
and NM(18), and states that they are "not consistent [be-
cause] the divergence is nonzero. " The so-called "planar
stress" NM(17) is defined by NM as "the force in the a
direction transmitted across P&" (the infinite plane nor-
mal to the P direction), and its derivation and physical in-
terpretation is discussed in detail by NM. The diver-
gence of the planar stress is in general nonzero because
NM considered general systems where the atoms are not
necessarily at their equilibrium positions (whereas the
electron system is in the ground state for the given atom-
ic configuration). This property, which is illustrated in
Fig. 1 of NM, allows the calculation of atomic forces
from the divergence of planar stress. This is in fact one
of the main results of the NM paper. Also, NM point out
that "If the solid is in equilibrium [planar stress] is a con-
stant tensor, " which of course means that it has zero
divergence, and that the macroscopic stress is found by
integrating the planar stress. Thus, there is no basis
whatsoever for Folland's claim of inconsistency in NM.

Folland's other criticism is stated more strongly: "their
expression for the macroscopic pressure, N[M](35), is in-
correct, " supported only by the claim that the nonzero
divergence discussed above will invalidate our expression.
We have shown above that the nonzero divergence is al-
lowed and is essential for general surface integrals. How-
ever, the surface integrals for stress, NM(33), and for

pressure [which equals —tr(stress)/3], NM(35), were de-
rived with the explicit condition of zero forces on the
atoms. As stated in NM before Eq. NM(31), "We will as-
sume that all forces in the unit cell are zero, so that the
planar stress is constant everywhere. Nonzero forces
have to be dealt with by averaging over planes cutting the
unit cell." Thus we have established that Folland's criti-
cism does not apply and apparently is based upon a
misreading of NM.

In fact, we can show that Folland's result, F(60), agrees
exactly with that of NM(35). The Maxwell form needed
to compare explicitly with Folland is not written out by
NM, but it is stated in words clearly following NM(33):
"In the case of Coulomb interactions the potential terms
may alternatively be given by integrating the Maxwell
stress on the face A. [meaning each part of the surface]
since this involves only the electric field on the face."For
the pressure this is exactly what Folland has given in Eqs.
F(60a} and F(60b}, where the stress field is given by Eqs.
F(37)—F(39). A slight generalization of Folland's equa-
tions gives the Maxwell form of the complete stress ten-
sor, corresponding to NM(33). Thus the results of NM
are the same as those of Folland for Coulomb interac-
tions, and should not have been described as incorrect by
Folland.

It may be useful to point out that the actual expres-
sions given by NM [Eqs. NM(33) and NM(35)] are given
in a form where the potential terms are expressed as the
total force crossing a surface. To our knowledge, for gen-
eral interactions there is no way to find the force crossing
a surface strictly from information evaluated on the sur-
face itself. This is fortunately possible for the Maxwell
stress, where the total force is given in terms of the elec-
tric field evaluated on the surface.

We wish to point out that our results differ from
Folland's in one respect, namely concerning expressions
for macroscopic pressure. Equation F(57) states that for
finite systems the pressure is given by kinetic terms only,
with no contribution from potential interactions. This
result, based upon "Slater manipulations, " is referred to
as "Liberman's identity, " which should be contrasted
with the result F(60) for periodic boundary conditions
which include potential interactions as well. We find that
in general both kinetic and potential terms are always
present, in accordance with Sham and Kleinman', and
with the "Pettifor-Andersen force theorem. "" Further-
more, Andersen et al. ' have recently arrived at the same
conclusion using a scaling method and the variational
principle. Lehmann and Ziesche' also found that poten-
tial terms are required. The "Liberman identity" F(57) is
valid only in cases where the potential terms are mani-
festly zero, such as for a single particle interacting with a
fixed potential. Other examples include the special case
of a monatomic solid with the Wigner-Seitz cell approxi-
mated as a neutral sphere, as discussed by Liberman, and
selected one-body problems in which interactions are not
included. We believe that it is incorrect and misleading to
identify the surface integrals of the kinetic terms alone as
a macroscopic pressure, as Folland does in Eq. F(57).
The reason is that the identification with the macroscopic
pressure is valid only if the surface encloses a periodic
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cell or completely encloses a finite system: if it encloses a
finite system the integral is trivially zero and if it encloses
a periodic cell, it is in general not correct to omit the po-
tential terms.

Finally, after Eq. F(40) Folland imposes conditions
upon the forms that stress fields can take, and in Appen-
dix A criticizes the Kugler form of stress since it violates
his conditions. However, as stated above no alternative
form is known for general interactions. While we sym-
pathize with the desire for mathematically well-behaved
forms, we reemphasize that the stress field is not unique
and can be subjected to arbitrary "gauge transforma-
tions" (see above and Ref. 5). This property is shared by
the classical stress fields as well. In fact, the stress field is
not necessarily an observable object in the quantum
theory, in contrast to the statement by Folland. For ex-
ample, the arbitrary gauge field may be chosen to contain
an anti-Hermitian part giving imaginary components to

the spectrum of the stress operator, which consequently
is nonobservable. The physically observable forces are
independent of any gauge transformations and therefore
of the form of the stress field.

III.CONCLUSIONS

In conclusion, we hope that the properties of stress
fields in quantum systems, as derived in NM (Ref. 2),
have been clarified by the interpretations and discussions
given in Folland's paper and in the present Comment.
We regret that Folland has made erroneous claims con-
cerning the work of NM seemingly based upon misunder-
standings. Except for these problems and more minor
points of interpretation, we find that the results of Fol-
land agree with those given by NM when specialized to
the cases considered by Folland.
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