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Quantum-defect method and valence excitons in rare-gas solids
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In Resca’s Comment on three of our papers (preceding paper), he attributes to us a much greater
criticism of the quantum-defect method applied to valence excitons than we ourselves originally in-
tended. In this Reply, we attempt to clarify the issue (i) by stating very explicitly where we differ
with the original Resca-Resta quantum-defect model, and (ii) by recapitulating the experimental re-
sults which support our conclusions. In particular, we find ourselves in full agreement with the
basic Resca-Resta nonstructural theory of rare-gas excitons. Unlike the original Resca-Resta
quantum-defect model, however, we attribute nonatomic contributions to the exciton short-ranged

potentials.

The introduction of exciton quantum defects by Resca
et al."? and by Resta’ was a step forward towards the
development of a unified description of valence-exciton
series in the rare-gas solids. These authors! 3 replaced
the well-known Wannier formula*

E,=E;—B/n?, (0

where E, is the excitation energy of the nth exciton, Eg;
is the band-gap energy, B is the binding energy, and » is
the principal quantum number, by

E,=E;—B/(n—8)?, 2)

where 0 is the quantum defect.

It is unquestionable that Eq. (2) is applicable to solid-
rare-gas excitons. Where we differ with the comment of
Resca, however, is in the interpretation of the origin of
the quantum defect.

In the Resca-Resta nonstructural theory of excitons,
one begins with the Schrodinger equation for the atomic-
rare-gas s Rydberg states, namely (i=m =e =1),

—Hd?/dr®)i(r)+ Ur)s(r)=—Tede(r) , (3)

where ¢7(r) is the (reduced) radial wave function and T,
is the term value (i.e., the difference between ionization
and excitation energies) of the nth Rydberg state. The
potential U“(r) has the property that

—1/r, r>r§

Ur) 4)

= Var), r<rd

where V%r) is the short-ranged residual potential which
gives rise to the atomic quantum defect. For solid-rare-
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gas excitons, one replaces Eq. (3) by an analogous equa-
tion, namely,

—(1/2m*)(d?/dr*)¢s (1) + US(r)gs (r) = =T3¢5 (r) ,
(5)

where, now, m* is the reduced effective mass of the exci-
ton and T, is the term value (i.e., the difference between
band gap and excitation energy) of the nth exciton.
Moreover, Eq. (4) is replaced by

—1/€gr, r>rj

Us(r) (6)

= Vir), r<ry

where €, is the static dielectric constant of the medium
and V°(r) is the short-ranged residual potential which
gives rise to the quantum defect 8 of Eq. (2).

Equations (5) and (6) are certainly applicable to solid-
rare-gas excitons, provided that V*(r), m*, and g, are
chosen properly. It should be pointed out, however, that
both m* and €, might have to be modified for the n =1
excitons with an electron-hole separation, being smaller
than the nearest-neighbor distance (central-cell correc-
tion*>9).

Since the Resca-Resta nonstructural theory makes no
prior appeal to long-range order (i.e., band structures),
and since m* and ¢, of Egs. (5) and (6) are continuous
functions of the rare-gas number density p,” one could
also hope to apply the nonstructural theory to dense rare
gases and to rare-gas liquids.

The point where we differ with the Resca-Resta theory
is in their additional assumption that
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Var)=V*(r) . (7)

In order to facilitate the calculation of quantum defects
for excitons, Resca and Resta restricted Eq. (7) even more
to

Vi=VS=C, ri=r}, (8)

with a constant C. Equations (7) and (8), of course, imply
that the solid-rare-gas excitons are parentally related to
the s Rydberg states of the rare-gas atoms. In fact, our
experimental studies and analyses,~ ' as described
below, prove that Eq. (7) and consequently also Eq. (8)
are invalid.

The Resca-Resta nonstructural theory, when coupled
with Eq. (7), implies that the solid-rare-gas excitons
evolve continuously from atomic Rydberg states. (In oth-
er words, the excitons are perturbed atomic states.) We
undertook a test of this prediction by experimentally
measuring the number-density dependence of the energy
positions of Rydberg states and excitons in the rare
gases.>!!

For Xe,!' Kr, and Ar,? the Rydberg states broaden and
shift with increasing number density. At characteristic
densities, new peaks appear which are distinct from the
rare-gas Rydberg states, and which ultimately evolve into
the solid-rare-gas excitons. (These characteristic densi-
ties are different for the different excitons.) This is illus-
trated in Fig. 1 for the n =1 exciton of Kr. With increas-
ing density one sees that the exciton peak grows at the
expense of the Rydberg peak; moreover, the former nar-
rows with increasing number density while the latter
broadens, as is shown in Fig. 2. The most important
finding, however, is that there exists an intermediate den-
sity for which both Rydberg and exciton peaks coexist.
This is a clear contradiction to the Resca-Resta predic-
tion which, when interpreted in terms of conventional
line-broadening theory,'? requires a broadening of the
Rydberg peak with increasing number density, leading ul-
timately to a tail on the exciton peak. At no intermediate
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FIG. 1. Reflectivity R (solid line) and imaginary part €, of
the dielectric constant (dashed line) for the first Kr excitation at
a number density p=12.15x 10*' cm 3.
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FIG. 2. Evolution of the linewidths ¥ and oscillator strengths
f in Kr with number density. ¥,,f,; correspond to the n =1
(*P,) exciton and ¥ ,,, f,, to the 4p®—4p>5s 3P, Rydberg transi-
tion, respectively.

density, however, should one be able to observe two
separate peaks. (This contradiction remains unchanged
even when one takes into account the density fluctuations
mentioned in Resca’s Comment. In fact, we included
these fluctuations in our analysis.®)

Thus we are forced to conclude that Eq. (7) is invalid
for valence excitons in rare-gas solids. We do not thereby
conclude that the nonstructural approach itself is invalid.
Indeed, the appearance of excitons in dense rare gases
and rare-gas liquids appears to be a striking confirmation
of the nonstructural theory. The additional interactions
contained within V*(r) might be tentatively ascribed to
the transfer of excitation to neighboring atoms in a medi-
um of sufficiently high density. At any rate, it seems
clear that V*(r) must contain terms that are non-atomic
in origin. This finding is further bolstered by density-
dependent measurements of the n =2 exciton in Xe,!!
and Kr:'3 In this case, the exciton peak appears out of
nowhere (i.e., in the absence of any nearby atom-related
transition) when the dense liquid is approached.

The main result of the experimental work®!! is that
valence excitons and perturbed Rydberg states are
different entities. It is worth mentioning that the latter
ones in fact exhibit the expected density dependence,
namely, a continuous energy shift over the entire range
from the isolated atom to the solid. This can be studied
most easily for doped systems, like Xe in Ar, where the
peak positions of the Xe Rydberg states were monitored
with increasing Ar density.!*

This now brings us to the two other papers addressed
in Resca’s Comment, namely, Refs. 9 and 10. In Ref. 9
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we reported direct measurements of E; for all of the
solid rare gases, and compared the experimental E; of
Ne with that predicted by the Wannier formula (exclud-
ing the n=1 exciton), and with that predicted by the
Resca-Resta nonstructural theory, assuming Eq. (7) and a
constant quantum defect as originally proposed by Res-
ta.> Our data were of sufficiently high accuracy to distin-
guish between the Wannier and Resta values for E; in
the case of Ne. Indeed, we found that the Wannier value
is more in accord with experiment than is the Resta
value. Again, we suspected that Eq. (7) is invalid, at least
if a constant quantum defect is assumed.

In his Comment, Resta points out that the assumption
of nonconstant quantum defects leads to a prediction?® of
E; that is in accord with our measured value, to within
experimental error. We agree. However, we must point
out the following.

The original calculation! of nonconstant quantum de-
fects assuming Eq. (7), leads to an Eg that is not in ac-
cord with our measured value.

The improved calculation? of nonconstant quantum de-
fects alluded to by Resca results from an adjustment of
m*, which is not known with sufficient accuracy.

Finally, in line with the second comment above, we
quote from our paper:’ “Certainly, the introduction of a
quantum defect allows to incorporate the intermediate
n =1 excitons in a modified Wannier formula but on the
expense of an additional parameter 8 which is hardly ex-
perimentally accessible if it is state dependent.”

In Ref. 10 we reported empirical term-value—band-gap
correlations for solid-rare-gas excitons. These correla-
tions are linear and have the form

TS (M)=aSEg(M)+b} | )

where M =Ne, Ar, Kr, and Xe, and where the slopes and
intercepts are state dependent. These correlations are
analogous to those known from atomic spectroscopy,'’
namely,

TUM)=a’I(M)+b? (10)

where I is an ionization limit.

In Ref. 10 we demonstrated that for both the atomic
Rydberg states and the excitons the correlations [Egs. (9)
and (10)] are linear. However, we do not interpret this
finding as a confirmation of the quantum-defect model.
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The reason is as follows: For the atomic case the lineari-
ty between

THM)=R /[n—8M)]? an

and [ is due to a linear dependence of (7 —8)~2 on the
ionization energy. The basic point is that the ‘“‘unit of en-
ergy” R is the same for Xe, Kr, Ar, and Ne. In the solid,
however, we have to consider

T;(M)=B(M)/[n —8M)]*, (12)

with B (M) varying strongly between =1 eV for Xe to
~4-5 eV for Ne. From the correlation plots, especially
for excitons with n >2, we can easily conclude, that
B(M) rather than [n—8(M)]~?% varies linearly with
E;(M). Furthermore, rescaling of the solid correlation
plot by

B=(m*/€})R (13)

does not yield the atomic correlation plot, as was pointed
out in Ref. 10. This means, that even after correcting for
the most obvious solid-state effects, we are not able to re-
veal an atomic parentage of the excitons in the correla-
tion plots.

In summary, we continue to stand by the statement of
Saile and Koch,'¢ namely, that the Resca-Resta non-
structural theory of valence excitons in the solid rare
gases was a “‘remarkable progress in describing the whole
exciton series for all rare-gas solids.” We accept the va-
lidity of Eq. (5) for solid-rare-gas excitons (provided m *
and €, are carefully evaluated for small excitons). More-
over, we accept the validity of Eq. (2), since it is directly
implied by Eq. (5). For the evaluation of experimental
data, however, Eq. (2) is rather useless, if the quantum
defects 6 (and probably even the binding energies B for
the n =1 excitons) are state dependent. Where we
disagree with the Resca-Resta theory is in the choice of
the short-ranged potential ¥*(r). We persist in attribut-
ing nonatomic terms to V*(r), and consequently non-
atomic contributions to the quantum defects resulting
from V*(r).
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