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Self-energy of a positronium atom near a metal surface
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The attractive interaction energy between a positronium atom and a metal surface has been nu-
merically evaluated using our earlier-derived expression. In this derivation the interaction energy is
obtained by considering the multipolar excitations of the positronium atom and excitations of the
surface plasmons. It is shown that the interaction energy saturates to a constant value at the sur-
face, and near the surface the interaction energy is considerably weaker than that given by the well-

known semiclassical Lifshitz result.

The interaction energy between a metal surface and a
positronium atom, which we assume to be on the vacuum
side of the surface, is well known to be due to the induced
excitations of the positronium atom and the surface
plasmons of the metal electrons. The energy, which is
known as the van der Waals interaction energy, has been
studied extensively using semiclassical models? and
more recently within a quantum framework.>~> For a
sufficiently large distance z between the positronium atom
and the metal surface, Lifshitz,® using a semiclassical ap-
proach, showed that the interaction energy varies as
1/z3. But close to the surface the quantum nature of the
positronium atom becomes important as is demonstrated
by Manson and Ritchie® and by Paranjape and Pathak.**
The quantum effect weakens the interaction energy from
its Lifshitz value. Using the dipolar approximation (i.e.,
restricting to the dipolar excitations of the positronium
atom), Manson and Ritchie® showed that near the surface
the interaction energy varies as 1/z. However, Paranjape
and Pathak®> demonstrated that in addition to the dipo-
lar excitations, the higher-order multipolar excitations of
the positronium atom are important near the surface.
These authors extended the calculation of Manson and
Ritchie® to include these higher-order excitations of the
positronium atom to show that the interaction energy in-
stead of diverging at the surface, as shown by the earlier
authors, in fact converges to a constant value. Paranjape
and Pathak,* however, did not provide the numerical esti-
mates of the interaction energy at or near the surface due
to computational difficulties of evaluating a seven-
dimensional integral and an infinite sum over the mul-
tipolar excitations of the positronium atom. These
difficulties have now been overcome, and it is the purpose
of this report to give quantitative values for the interac-
tion energy using the analytical results given in our ear-
lier publication.

In the following we give the essential results from our
earlier paper* for the sake of completeness, while the de-
tails of calculation can be found in this publication. The
numerical values for the interaction energy as a function
of the separation between the positronium atom and the

37

metal surface are presented. In conclusion, we give a
short discussion of our numerical estimates of the in-
teraction energy and compare these estimates with the
works of Manson and Ritchie® and of Lifshitz.

The interaction energy E(r) of a positronium atom at r
due to the metal surface is derived by Manson and
Ritchie’ using the self-energy analysis. The analysis,
based upon the second-order perturbation theory, gives
the interaction energy E(r) as
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where the interaction Hamiltonian of the positronium
atom interacting with the metal surface (surface
plasmons) is given by

H'=3 Tolexp(—Q | Z, | +iQR,)
Q

—exp(—Q | Z_ | +iQR_)(ag+a' o).

(2)

In Egs. (1) and (2) the state associated with the center of
mass of the positronium atom is denoted by a plane-wave
state | ¢y ) =(2m) 73 %exp(ik-r) with the associated ener-
gy e, =#’k?/2m, | n) is the quantum state of the surface
plasmons with energy E, =fiwy(n +1/2), ay and aé are,
respectively, the destruction and creation operators for
the surface plasmons with wave vector Q assumed to be
parallel to the surface, | /) represents the internal state
of the positronium atom having the energy (e,+¢;). The
unperturbed state of the positronium atom is assumed to
be at the ground state for the internal coordinates, but
the state of the center-of-mass motion of the positronium
atom is assumed to be the plane-wave state represented

10 891



10 892

by ¢o— (27) 3/ %exp( —iky1), where the wave vector Kk, is
taken to be normal to the surface so that in cylindrical
coordinate system ky,=(0,k,). The intermediate states
for the center-of-mass motion are represented by the
wave vector k=(«,k;). The coordinates of the center of
mass of the positronium atom are deduced by (R,Z) in
cylindrical coordinates with Z measured positively away
from the surface on the vacuum side. The relative coor-
dinates of the positronium atom are given by (R’,Z’) so

Ze?
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that the positional coordinates for the positron and
the electron are given by R, =R*(R'/2) and Z,
=Z+(Z'/2). The coupling constant is defined by
Iy =e’nfiwy /L>Q, where e is the charge of the electron
and L is the periodic length parallel to the surface.

In Eq. (1) the summations over k and n and the in-
tegral over the angle made by the vector Q with respect
to an arbitrary vector parallel to the surface, are accom-
plished as was shown in our earlier publication,* to give
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where O(x)=1 for x >0 and zero otherwise, J, is the Bessel function of the first kind, ¢, is the /th excited state, ¥y(r) is

the unperturbed ground state of the positronium atom,
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D,=[a?+(ko+iQ)?], D,=[Q*+(ko—ia)],
Q2=(Q0M /%), Q}=(2Me,/#),
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?=Q2+Q}+Q*—k3, Z.=[Z2X(Z'/2)), Z'|\=[ZH(Z"/2)].

The integrations and summation in Eq. (3) are evalu-
ated numerically using the hydrogenlike wave functions,
appropriately modified to represent the wave functions of
the positronium atom. All the degenerate states corre-
sponding to the first four excited states of the positroni-
um atom are included in the summation over /. The sum
is sufficiently convergent so that there was no need to go
beyond the states / >4. The seven-dimensional integral
in Eq. (3) was evaluated by the application of the Monte
Carlo technique using 10000 sampling points. The
Monte Carlo technique was tested on a similar problem’
in which we evaluated the interaction energy of the elec-
trons in the helium atom. In this test problem, a six-
dimensional integral similar to the one occuring in Eq. (3)
is evaluated. Since the exact value of the six-dimensional
integral in the test problem is known, it is possible to esti-
mate the reliability of the Monte Carlo method by com-
paring the computational result with the exact result.
The comparison allowed us to achieve an accuracy of 3%
or better in the numerical evaluation of the interaction
energy E(Z), given by Eq. (3). The result is depicted in
Fig. 1 which gives the variation E (Z) with separation Z
for two speeds of the positronium atom and for an
aluminium surface. The corresponding Lifshitz’s results
which are independent of the speed of the positronium
atom, are also drawn comparison.

The results given by the figure allow us to draw the fol-
lowing conclusions. Firstly we observe that the variation
of the potential energy E (Z), over the size (~1 A) of the
positronium atom, is small compared with the binding
energy of the positronium atom. Hence, the distortion
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FIG. 1. The variation of E(Z) with Z. Curve 1 gives the
Lifshitz result. Curves 2 and 3 show the results of our calcula-
tion for a positronium with zero energy and with energy 4 eV,
respectively.
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produced by the interaction potential in the unperturbed
hydrogenic ground-state wave function of the positroni-
um atom is expected to be small. The use of the pertur-
bation theory is therefore justified. Secondly we see from
the figure that E (Z) saturates to a constant value at the
surface. The saturation is a consequence of our con-
sideration of the multipolar excitations of the positroni-
um atom. As we remarked earlier, the restricted con-
sideration of only the dipolar excitations led to a diver-
gent value for the interaction energy as was shown in the
work of Manson and Ritchie.? Finally we note that, in
this paper, we have considered the interaction energy be-
tween the positronium atom and the surface modes of the
metal electrons (surface plasmons), but we have neglected
the interaction of the positronium atom with the bulk
electrons (bulk plasmons). The later interaction is impor-
tant near the surface when the positronium wave func-
tion significantly overlaps the bulk electrons. For Z less
than the effective Bohr radius a,, such an overlap is
indeed large. Therefore, our theory (and also the theory
of Manson and Ritchie) is inadequate to give reliable
values for the potential energy of the positronium atom
at these small distances.

For values of Z > a, the results obtained by us are ex-
pected to be reasonably accurate since the interaction of
the positronium atom with the bulk electrons is small.
Furthermore, our consideration of the multipolar excita-
tions of the positronium atom should give more accurate
values of E (Z) than the values obtained, under restrictive
conditions, by Manson and Ritchie.* The ratio of the in-
teraction energy E(Z) as given by Eq. (3) to the value
given by the Lifshitz’s result is different from unity for
Z > ag and is significantly smaller than the corresponding
ratio obtained by Manson and Ritchie.> For example, at
Z =2a the ratio obtained in this report is close to 0.6
while the same result for the calculation of Manson and
Ritchie? is close to 0.94 if the positronium atom is con-
sidered to be at 4 eV. Our results also show that the po-
tential energy experienced by the positronium atom is
weaker as its speed is increased. This is evident from our
figure where we have shown E(Z) for 4-eV and zero-
energy positronium atoms.

For values of Z <ag,, the potential energy E(Z) is
strongly influenced by the interaction between the posi-
tronium atom and the electrons of the bulk metal. The
overlap of the positronium atom wave function with the
electrons of the bulk metal is large, and consequently the
use of hydrogenic wave function for the positronium
atom is also not justified at these distances. Unfortunate-
ly, we are unable to make a quantitative estimate of this
interaction since our Hamitonian [Eq. (2)] excludes the
interaction. The effect on E(Z) of the interaction be-
tween the positronium atom and the metal electrons has
been analyzed recently in some detail by Platzman and
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Tzoar® and by Takada and Kohn.® These authors show
that near the surface a strong repulsion occurs between
the positronium atom and those electrons of the metal
having the same spin as the spin of the electron forming
the positronium. The results obtained by these authors
and the results obtained in this publication together
should provide a reasonably accurate variation of E (Z)
for all positive values of Z.

The results obtained in this report are of some
relevance to the experimental work of Lynn and Welch!®
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who demonstrated the production of thermal energy posi-
tronium atoms as a result of the interaction between a
low-energy positron and a metal surface.
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