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The electronic properties of recently developed icosahedral packing schemes using polytope

[3,3,5 ] (a packing of atoms on S3, the surface of the unit sphere in four dimensions, with perfect
icosahedral symmetry) are analyzed within the framework of a d-band, tight-binding model. It is

shown that there is a one-parameter family of prescriptions for defining the interatomic couplings,
which preserves the icosahedral symmetry and generalizes earlier schemes. The bonding energies
for several representative cases are calculated and compared to those in the fcc structure. The re-

sults are extremely sensitive to the prescription used to define the couplings.

Recent work' has suggested that icosahedral clusters
play an important role in the structure of metallic glasses.
In addition, the discovery of quasicrystals has stimulated
interest in models which attach particular importance to
icosahedra. Kleman and Sadoc have proposed the use of
curved-space polytopes to generate locally icosahedral
amorphous structures in three-dimensional Euclidean
space. Polytope [ 3, 3, 5 I, for example, is a generalized
polyhedron constructed on S3, the surface of the unit
sphere in four dimensions. It has 120 vertices, each with
perfect icosahedral symmetry. If atoms are placed at
each vertex, polytope [3,3, 5 [ may be taken as a model
for local icosahedral packing. The curved-space polytope
models are appealing because they allow one to propagate
icosahedral packing without the introduction of severe
packing defects, which is impossible in Hat space. They
also eliminate the spurious effects due to surface energies
in finite-cluster calculations. Polytope [3,3, 5 I has been
used by Sachdev and Nelson to approximate the struc-
ture factor in glasses. The calculated structure factor ex-
hibits the characteristic peaks observed in some metallic
glasses. DiVincenzo and co-workers ' have also used po-
lytope models to describe electronic structure in amor-
phous semiconductors. Widorn explicitly diagonalized
the s- and d-band model Hamiltonians for polytope
[3,3, 5I using group-theoretic arguments, and used the
electronic structure as a predictive tool in analyzing band
ferromagnetism in amorphous transition metals.

In this Brief Report we generalize Widom's method by
examining a range of coupling schemes which can be
defined for polytope [ 3, 3, 5 I in a d-band, tight-binding

model. It is shown that this method is a special case of a
one-parameter family of coupling schemes. We calculate
the moments of the electronic density of states, defined by
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use these to establish the accuracy with which the po-
lytope can model Hat-space icosahedral environments. It
is found that the moments are extremely sensitive to the
method for defining the couplings, and that most choices
lead to moments very different from those of the Aat-
space icosahedron. We show that by an appropriate
choice of coupling scheme, the moments up to and in-
cluding the third can be made to correspond closely with
those for the Oat-space icosahedron. This makes it possi-
ble for the atomic environment in the first-neighbor she11
to be reasonably well reproduced. Finally, we calculate
the bonding energy of the polytope for three different
coupling schemes. We compare these results to the bond-
ing energy of the fcc structure to ascertain how the bond-
ing properties differ for these various schemes.

We use a d-band, tight-binding model Harniltonian of
the form

H= g h "ti ~i,a)(j,p
~

(2)
I,J

(,i' )

a,P

where i (j) are site indices, a (p) label particular atomic
orbitals, and h'& is the Slater-Koster' hopping integral.
We neglect single-site terms for simplicity, since they do
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not affect the results for relative structural stability. To
define the couplings on the polytope, we employ the nine
d-hyperspherical harmonics" which form a basis for the
n =3 irreducible representation of SO(4). These nine har-
monic functions $3L~(r;) are defined at each site with
respect to a local quantization axis n;, ' shown in Fig. 1.

In our Hamiltonian matrix we wish to retain only the
orbitals which have d character about n, . It is thus
necessary to evaluate matrix elements of the form

-„~' L =2 M
I
H

lj L =2 M ~-„ (3)

where i and j are labels describing the particular atoms
being coupled, and the kets denote basis orbitals whose r
dependence is not treated explicitly. Since we consider
only n =3 we do not include a label for this quantum
number in the ket. Figure 1 shows the three choices of n,.

and n used in these calculations. The angle 8 gives the
difference in direction between the quantization axis
n; (n~. ) and the vector normal to S3 at site i (j). We have
used 8=0, 18', and 36' in this work as illustrative exam-
ples, with 8=18' corresponding to earlier work by Wi-
dom. The angular dependence of the couplings is con-
tained in the difference vector r=r. —r;, and also in the
orientation of the quantization axes n; and n .. n; and n.
are chosen so as to have equal and opposite angles. For
any given pair of nearest-neighbor atoms, the angle 8
defines a one-parameter family of quantization axes
which ensure that every triplet of near-neighbor atoms
has the same third moment. This ensures that each site
has icosahedral symmetry.

The interatomic coupling strengths were obtained in
the following manner, which is similar to the convention-
al R case. ' ' If the difference vector r=r —r; is along
the [1,0,0,0] axis and the d-like orbitals are defined rela-
tive to this axis, the coupling matrix is diagonal. The
couplings then have three distinct values, denoted by
h„d~, hdd~, and hd„z, corresponding to different orbital
character about the bond axis.

Thus, to obtain a general matrix element of the form
given in Eq. (3), we use the representation matrices for
SO(4) to perform three distinct rotations which bring the

FIG. 1. Three prescriptions used to define local quantization
axes for the polytope. 8 is the angle between the normal at the
surface and the quantization axis. Dashed line, 8=36', dotted
line, 0=18', solid line, 8=0.

difference vector and the axes defining the orbitals into
coincidence with the [1,0,0,0] direction. This yields a
coupling which is a linear combination of the hdd s. First
we take the hyperspherical harmonics defined with
respect to the local quantization axes, and rotate them
into coincidence with the fixed Cartesian R axes. The
rotation is carried out using the four-dimensional analog
D of the 3)&3 Wigner matrices. The D matrices form a
representation for the rotation group SO(4). We use the
homomorphism" between SU(2) X SU(2) and SO(4) to ob-
tain the matrix elements of the representation. Thus

l
i,L =2,M )-„

DL M, 2M( A&B) 11 L1,M1 )[1 p p p] & (4)
LI, M)

where (A, B) labels the SU(2) pair that effects the rota-
tion. This is the four-dimensional analog of the transfor-
mation equation for the three-dimensional spherical har-
monics under rotations. At this point we have expressed
the hyperspherical harmonics at site i, defined with
respect to the axis n;, in terms of hyperspherical harmon-
ics defined with respect to the [1,0,0,0] axis. Thus we
have

„(i,L =2,M
l
H Ij L =2 M

DL M 2~(A, ,B, )DL 3r 2M (A2, B2)[1,0,00](i,L1,M1 I
H Ij,L 2M2 ~[1, 00]0

Ll, Ml L2, M2

In order to obtain the matrix element on the right-hand side of Eq. (5) we now perform another rotation so that the
difference vector is along the [1,0,0,0] direction so that our coupling matrix will be diagonal. This leads to

„(1,L =2,M
l
H

l J,L =2,M)- = g g g g DL' 3r 2M( A1,B1)DI ~ 2~(A2, B2)
L3 M3 L4 M4

XDI ~ L ~ (A ', B ')DL ~ I I (A ', B ')

X[1,0,0,0](1 L3 M3 I
H

lj L4 M4 &[1 oo o] (6)

where now the difference vector in the matrix element on the right-hand side points in the direction [1,0,0,0]. In this
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case the couplings [] p p p](i,L3,M3
~

H
~j,L4, M4 ) [~ p p p] are diagonal and are given by

[]()()o), 3, 3~ ~J, 4, 4 [, ()()())——L, L 5M Mhdd 3)

where hdd(0) =hdd„hdd(1) =h„d, and hdd(2) =hdds. Thus our final expression for the coupling matrix element is

(i,L =2,M
~

H
~
j,L'=2, M') = g Dl* M 2~(A 'A), B 'B) )DL M 2M.(A A2, B B2)hdd(L)),

1 1

(7)

where we have used the multiplicative properties" of the
D matrices.

The hd«, hd«, and hdd& were selected to reproduce ei-
genvalues for the flat-space dirner reasonably similar to
those found in canonical band theory' (+ l. 230, +0.667,
and +0 049. eV). For 8=0', hdd ———1.566 eV, hdd
=0.729 eV, and hdd~ ———0.049 eV; for 0=18', hdd
= —1.378 eV, hdd ——0.665 eV, and hdd~ ———0.049 eV;
for 8=36', the parameters are the same as for 0=0'.

Figure 2 shows the densities of states (DOS's) for the
three different choices of quantization axes, with the fcc
density of states also shown for comparison. The densi-
ties of states were approximated by using six moments in
the "maximum entropy" method. ' ' The DOS's ap-
pear very different even qualitatively. For 0=0' and 18',
these DOS's bear little resemblance to those seen in typi-
cal topologically close-packed phases, ' ' which exhibit a
single pronounced "pseudogap" rather than the two gaps
seen here. As an aid in interpreting Fig. 2 we give the
values of the third moment of the density of states for the
flat-space icosahedron and for the three coupling schemes
on the polytope: p3(flat space) = —16.91 eV,
p3(8=0)=26.25 eV, p3(8=18')=8. 17 eV, and
)M3(8=36')= —13.05 eV . The different shapes of the

E„h—2f Ep, (E)dE (9)

DOS's reflect the widely different values of the moments
of the DOS for them. As 8 goes from 0' to 36', we see
that the DOS's change from having two dips to only one.
As p3 becomes positive, the asymmetry of the DOS shifts
from left to right. The choice of axes with 8=18' (n; and

nj parallel to one another, and perpendicular to the
difference vector r=r —r, ) is equivalent to earlier work
by Widom, as was found by the present authors by ex-
plicitly diagonalizing the Hamiltonian using that
prescription. ' It is seen that the third moment in this
case is different in both sign and magnitude from that of
the flat-space icosahedron. Of the three cases considered,
the best value of the third moment is found for 8=36
[n; (n, ) given by the direction of the position vector
pointing from the origin to atom j (i)].

Although the shapes of the DOS's are clearly quite sen-
sitive to the choice of 8, one might expect that total ener-
gies, which are integrals over the DOS, would be less sen-
sitive. To test this conjecture, we have calculated the
differences in bonding energy between the polytope with
the three different coupling schemes and the fcc struc-
ture. The bonding energy per atom is approximated by
the one-electron sum (the factor of 2 accounts for spin de-
generacy)
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FIG. 2. DOS's per site for the three coupling schemes.
Dashed line shows fcc density of states for comparison. First
DOS corresponds to 0=36', second DOS to 0=18; third DOS
to 0=0.

FIG. 3. Structural energy differences between polytope and
the fcc structure as the number of d electrons per atom (Nd ) is
varied. Dotted curve, 0=0', dashed curve, 0=18', solid curve,
0=36'.
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where p, (E) is the density of states projected on site i .In
Fig. 3 we show the structural energy differences versus
d-band filling to elucidate the dominant chemical trends.
The structural energy differences for 0=0 and 0=18' ex-
hibit an unphysically large energy scale, in comparison
with typical structural energy differences, which are of
order 0.5 eV. ' ' Furthermore, they do not display the
bonding properties associated with common topologically
close-packed phases like the Frank-Kasper phases, ' '
such as the characteristic preferability of topological
close packing at about four d electrons per atom (for ele-
mental systems}. ' '

In conclusion, we have seen that electronic structure
calculations using polytope I3,3, 5I lead to a one-
parameter family of tight-binding coupling schemes
which preserve the icosahedral symmetry. If the po-
lytope is to be used as a model for local icosahedral pack-
ing schemes in real solid environments, then special care

must be taken to choose a coupling scheme which repro-
duces physically reasonable values of the low-order mo-
ments. The majority of choices for these couplings lead
to densities of states with little resemblance to those usu-
ally seen in topologically close-packed structures, ' '
such as the A 15 structure. In this work, we have treated
only the d-electron case. This case exhibits strong angu-
lar dependence of the wave functions. We might expect
that properties which depend less strongly upon the an-
gles, such as s-p electronic structure and structure fac-
tors, would be better modeled by the polytope.
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