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Scattering-theoretic approach to elastic one-electron tunneling through localized barriers:
Application to scanning tunneling microscopy

A. A. Lucas, ' H. Morawitz, and G. R. Henry
IBM Almaden Research Center, 650 Harry Road, San Jose, California 95120-6099

J.-P. Vigneron and Ph. Lambin
Faeultes N. -D. de la Paix, 61 rue de Bruxelles, B-5QN, Namur, Belgium

P. H. Cutler and T. E. Feuchtwang
Pennsylvania State University, 104 Davey Laboratory, University Park, Pennsylvania 16802

(Received 27 May 1987; revised manuscript received 4 November 1987)

A new formulation of elastic one-electron tunneling through three-dimensional (3D), nonsepar-
able, spatially localized barriers is developed in terms of potential-scattering theory. To illustrate
the principles of the method, a model metal-vacuum-metal junction is used, consisting of two paral-
lel electrodes, one of which has a hemispherical protrusion. The electronic structure of each metal
electrode is assumed to be free-electron-like, for simplicity. The bias and multiple-image tunneling
barriers for this model are constructed on the basis of classical electrostatics and a simple quantum
correction at the metal surfaces. Regarding the barrier as made of a planar, separable part plus a
nonseparable, localized perturbation due to the spherical boss, the exact, unperturbed, one-electron
Green's function of the planar part is first obtained by numerical integration of the corresponding,
effectively 1D Schrodinger equation. Then the localized boss potential is treated to all orders of
perturbation by solving the Dyson equation for the full barrier Green s function, using a real-space
discretization of the integral equation on a finite grid. New useful formulas are derived for correct-
ing the discretization error associated with ignoring the singular diagonal matrix elements of the
Green's functions. The tunneling current density is then expressed in terms of the exact 3D wave

functions which are obtained at the grid points by discretizing the Lippmann-Schwinger equation.
The axial symmetry of the present barrier model leads to a reduction of the size of the Green's ma-

trices, since the wave functions of different axial angular momenta contribute independently to the
tunneling. The m =0 wave functions are found to contribute 90% of the total tunnel current at the
Fermi level. The new method is applied to a discussion of the lateral resolution of the scanning tun-

neling microscope. It is found that the current distribution peaks within a narrow angle around the
boss axis, confirming earlier estimates based on the transfer-Hamiltonian formalism and in agree-
ment with the observed atomic resolution of the microscope, when operating with atomic-size tips.
The present Green's-function method is applicable to several other problems of one-electron tunnel-

ing through localized barriers and may be extended to incorporate such effects as the corrugation
and the band structure of the electrodes. Moreover, the method lends itself to a quantitative assess-
ment of the accuracy of approximate tunneling theories such as the transfer-Hamiltonian formalism
when applied to elastic one-electron tunneling problems.

I. INTRODUCTION

As discussed in the classic review by Duke, ' tunneling
problems have been traditionally treated either with the
Oppenheimer-Bardeen transfer-Hamiltonian method, '

or by evaluating current-carrying eigenstates of a one-
electron model Hamiltonian. While the former method is
approximate and restricted to weakly coupled electrodes,
the latter is, in principle, exact for independent-electron
systems. However, up to now the model-Hamiltonian
method has been applied mainly to separable Hamiltoni-
ans, i.e., to situations which can effectively be reduced to
a one-dimensional Schrodinger problem through exploi-
tation of the translational or other symmetries of the tun-
nel barrier. By and large, tunneling through three-

dimensional (3D) barriers has been approached mostly by
the transfer-Hamiltonian method.

Recently, a more complete many-body theory of tun-
neling going beyond the transfer-Hamiltonian formalism
has been developed based on Keldysh's theory of non-
equilibrium processes. However, to our knowledge, the
theory has so far remained at the formal stage since, in
practice, no tunneling calculation has been done with it.

The recent development of scanning tunneling micros-
copy (STM) and spectroscopy has dramatized the need
for an accurate and feasible 3D tunneling theory. This is
because the atomic resolution of STM implies that the
tunneling action proceeds from a microscopic, perhaps
single-atom, metallic tip through a highly inhomogeneous
barrier. Since the radius of curvature of the STM tip is of
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the order of the metal Fermi wavelength, one cannot ig-
nore the 3D aspect of this barrier. Indeed, it is by virtue
of its high lateral inhomogeneity that the atomic resolu-
tion of the microscope is obtained. Thus, the transfer-
Hamiltonian approach has so far been the method of
choice for interpreting the micrographs and other prop-
erties observed by STM. ' One exception is the recent
theoretical work of Stoll et al. , who were able to treat a
model-Hamiltonian —type barrier having a periodic, one-
dimensional corrugation through the use of potential-
scattering theory.

Typical current intensities in STM are in the nA range,
under biases of a few meV only. It is straightforward to
estimate that such currents passing through small clus-
ters of atoms imply an unusually high rate of successful
tunneling attempts by electrons close to the Fermi level

impinging onto the barrier. One may then ask to what
extent a weak-coupling theory such as the transfer-
Hamiltonian theory remains adequate in such a situation.
The purpose of the present paper is to develop a new ap-
proach to the model-Hamiltonian method which allows
one to calculate elastic one-electron tunneling currents, in

principle, exactly even in the strong-coupling case. It
therefore should help in assessing the accuracy of the
widely used transfer-Hamiltonian technique as well as
other approximation methods.

The new method to be described applies to localized,
nonseparable barriers. By localized, we mean situations
in which nonperiodic spatial variations of barrier height
and thickness occur over distances not much larger than
the Fermi wavelength of the electrons. This is precisely
the case of STM, but several other tunneling problems
are of this category as well, such as, for example, the field
ionization of imaging gas atoms in field-ion microscopy
or the two-step tunneling through impurity states in
metal-insulator-metal (M-I-M) junctions, etc.

The basic ideas of the proposed method are as follows.
The tunneling problem is regarded as a problem in
potential-scattering theory. The current density, which is
a sum of expectation values of the current operator with
respect to tunneling wave functions, is determined by cal-
culating the scattering of wave functions incident on the
barrier potential. The total barrier is split into an unper-
turbed part [for example, a planar metal-vacuum-metal
(MVM) barrier in STM] and a perturbation localized in a
small region of space where most of the tunneling current
occurs. The unperturbed part is assumed to be an exactly
soluble problem by virtue of the separability of its Hamil-
tonian in some coordinate system. Then the unperturbed
wave functions, together with the known localized per-
turbation barrier, can be used to first construct the full
Green s function of the total tunneling Hamiltonian via
the Dyson equation and, secondly, the exact tunneling
wave functions via the Lippmann-Schwinger equation.
The crucial feature which makes this scheme feasible is
the localized nature of the perturbation. Because of this,
both the Dyson and the Lippmann-Schwinger integral
equations can be discretized on a grid of a finite number
of points covering only the spatial region where the bar-
rier perturbation does not vanish. The integral equations
for tunneling are thus transformed into simple matrix

equations easily handled on the computer. The method
represents, to our knowledge, the first application to a
tunneling problem of the localized Green's-function tech-
nique extensively used in the study of the electronic
structure of point defects in semiconductors.

In Sec. II the tunnel barrier is constructed for a model
MVM junction representative of the STM situation. It is
made of two parallel, semi-infinite free-electron metals,
on one of which is embedded a hemispherical protrusion.
One reason for considering this geometry is that both its
static-bias potential distribution and the all-important,
multiple-image contribution to the tunneling barrier in
the vacuum region can be given a simple classical repre-
sentation. ' '" The choice of working with free electrons
is dictated by our desire to test the feasibility of the gen-
eral approach on the simplest possible electronic struc-
ture of the electrodes. We outline, in Sec. III, the
scattering-theoretic method. Section IV is devoted to the
discretization scheme and to developing an important
correction formula which takes account of the effect asso-
ciated with the singularity of the diagonal matrix ele-
ments of the Green's functions. In Sec. V we solve the
planar tunneling problem. In Sec. VI we show how the
dimensions of the Green's matrices are reduced by ex-
ploiting the axial symmetry of the barrier model. In Sec.
VII we present numerical results for the tunnel current
density and its relationship to the lateral resolution of
STM; we also discuss possible improvements of the model
for this particular application. Finally, in Sec. VIII we

briefly indicate other possible applications of the new
method and also consider its future use for testing the ac-
curacy of approximate one-electron tunneling theories.

II. BARRIER MODEI.

The geometry of the tunnel junction is shown in Fig.
1(a). The electrodes are free-electron metals separated by
a distance D in vacuum. The left-hand electrode (z &0)
has a hemispherical protrusion of radius R. A hemi-
sphere is chosen for simplicity of construction of the
multiple-image contribution to the tunnel barrier in the
region of the boss as discussed below. ' '"

The potential barrier V(r) is decomposed into a pla-
nar, translationally invariant part Vz(z), valid far away
from the boss, and a nonseparable perturbation V~„(r)
due to the boss, as illustrated symbolically in Fig. 1(b):

V(r) = V~(z)+ V„,(r) .

The perturbation V&„ is not small but is localized, an
essential requirement in our subsequent application of the
Green's-function technique for scattering by localized
perturbations.

A. The planar barrier

The planar barrier has two terms,

V~(z) = Vb;„(z)+ V, (z),

where Vb;„ is the external bias potential and V; is the
electron image potential. Vb;„(z) is linear in the vacuum
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region and is constant within the metal electrodes beyond
a small field-penetration distance which we shall take
equal to zero. Solving Poisson's equation leads to the
simple representation of V; in vacuum as follows:

FIG. 1. (a) Plane-spherical geometry of the model STM junc-
tion. (b) Symbolic decomposition of the total tunnel barrier into
a planar part and a localized part.

where p=(e —1)/(a+1) is the familiar surface screening
factor involving the static dielectric constant of the ma-
terials (p= 1 for metals). The classical divergence at
z =0 and z =D of the normally infinite integral has been
removed by introducing a cutoff wave vector k, . This
cutoff is imposed by the physical requirement that the
Fourier components of the surface screening charge den-
sity have wavelengths no shorter than the mean valence-
electron separation in the material. The surface value of
the image potential is then —e k, /2 and can be adjusted,
through k„so as to join continuously to the inner poten-
tial V;„of the metal. Alternatively, we can expand the
denominator in Eq. (3} in powers and integrate term by
term to generate the multiple-image series of the method
of images. The divergence at z =0, D, of the first-order
image potential can then be eliminated by applying the
simple quantum correction prescribed by Seitz, ' i.e., by
withdrawing the image plane inside the metal by an
amount zo. zo is again adjusted to join continuously to
V;„. The result is (for P= 1)

e 2 1 1
(z) =

4 D D +zo —z zo+z
e " 2 1 1

4 „) (n+1)D (n+1)D —z nD+z
(4)

The two formulas (3) and (4) give very close results. A
more refined approach for constructing V; has recently
been given in Ref. 13 in a form identical to our Eq. (3)
above, but with k, = ~ and

butions are also modified. We can thus write

V„,(r) = V,„(r)+V,„,(r),
where, inside the boss,

(6)

P= [2(((+k/kz. ) —1] ', g=(1+k /kr)' (5)

where kT is the Thomas-Fermi wave vector. We have
checked that this approach does not differ from Eq. (3) or
(4) by more than a few percent if kT is adjusted to the
same boundary condition of joining to V;„. In our work,
we have used Eq. (4) because the method of images is
easily implemented in the presence of the hemispherical
protrusion, whereas a formula generalizing (3) to this
geometry is not known.

B. The localized barrier

The principal perturbation effect of the boss is to sub-
stitute a constant inner potential V;„ to the planar barrier
compound above within the hemispherical region occu-
pied by the boss. In addition, in the remaining vacuum
gap around the boss, the bias, and multiple-image contri-

Y;„(r}= [V;„—V~(z) ]8(r—rb„,),
whereas, within the vacuum gap,

V,„,(r) = [Vb;„(r)+ V; (r) ][1—8(r —r„„,)],
where 8 is the Heaviside step function and where Vb;„(r)
and V; (r) have been computed in Ref. 10. Explicitly,
Vb;„(r) is given by Eqs. (13) and (14) of the first of Ref.
10, whereas V; (r) is given by Eq. (16), from which the
planar image result V; (z) must be subtracted out since,
in the boss region, this term is already included in the to-
tal barrier of Eq. (1) above. Note that Eq. (16}of Ref. 10
must be corrected by applying Seitz's prescription to the
first-order images in order for this formula to coincide
with our Eq. (4) above at large distance from the boss.

The overall tunneling barrier so constructed is
represented in Fig. 2 for zero bias and for the indicated
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can write the Lippmann-Schwinger equation for the exact
state

~ gk ) scattered by the total barrier V(r) as

I fk ~ (I+GVlo )
I kk ~ (10)

where 6 is now the Green's operator at energy E for the
3D barrier. The planar and full Green's operators are re-
lated through the Dyson equation

G=(1—gVioc) 'g

FIG. 2. The 3D tunneling barrier of the junction of Fig. 1 for
0 0

D =5 A and R =3 A and for zero bias. The metal inner poten-
tial is —14 eV. The Fermi level used was at —4.5 eV.

values of the material and geometrical parameters. Note
that one could eliminate the cusps at the metal surfaces
by introducing a smooth joining of the vacuum barrier to
V;„. This, however, is unnecessary at this stage in view of
the coarseness of the grid that we shall use to sample the
barrier in our discretization scheme of the scattering
equations.

The highly inhomogeneous and localized nature of the
image-dominated tunnel barrier (Fig. 2 is for zero bias) is
evident. While it is obvious that the tunnel current will
pass predominantly through the thinner and lower axial
region of the barrier, it is impossible to reliably predict
how the current density will decrease away from this re-
gion without a full 3D tunneling calculation.

~~k(r)~4k(r) fk( )r~4k( )r]
2p72l

(13)

is the current density carried by the scattered state
~ fk ).

The k integration is over all incident (k, & 0) directions.
gk is given by the r representation of Eqs. (10) and (11),
namely

Hence, in principle, we can construct G and
~

1(k ) from
the knowledge of the planar solution

~ pk ) and g, togeth-
er with the localized perturbation V&„.

We are interested in obtaining the total current density
associated with all plane waves incident on the barrier
from the left, especially in the region of the planar elec-
trode immediately facing the boss (Fig. 3). Indeed, this is
the key quantity for appreciating the inhomogeneity and
anisotropy of the tunneling and hence the lateral resolu-
tion of this STM model in relation to the tip radius. At
zero temperature, we have

j(r)= f dE f dk jk(r), (12)
z

where Vk is the forward bias, k=k/k is the unit wave
vector of the incident plane wave of energy, E and where

III. INTEGRAL EQUATIONS FOR TUNNELING

Tunneling through the potential barrier of Eq. (1) will
now be described as a problem in scattering theory. We
envisage electron waves impinging onto the barrier and
being partly transmitted through it. In the present paper
we will consider only forward bias and zero temperature,
so that tunneling proceeds only from left to right (Fig. 2).
Our boundary condition for the scattering problem is
then one of plane-wave states

~

k ) of energy E below the
top of the barrier being incident from the left (z &0) and
being reflected and transmitted by the barrier.

We begin by writing the Lippmann-Schwinger equa-
tion for the state scattered by the planar barrier V~(z)
alone as

~
Pk) =(1+gV, )

~
k),

where g is the Green's operator for energy E appropriate
to the planar problem. The r representation of g and of

~ pk ) can be calculated to any desired accuracy due to
the translational invariance of V and the consequent
separabihty of this problem.

Once the unperturbed planar state
~ pk ) is known, we

FIG. 3. Schematic illustration of the expected tunnel current
density in the gap region close to the tip. The area A represents
the region of space where the localized barrier associated with
the boss perturbation does not vanish.
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gk(r)=pk(r)+ J dr'G(r, r'}V„,(r')pk(r'),

G (r r' ) = y d '( 1 —g Vioc )r, r"g (

(14}

(15)

We intend to discretize these integral equations over a
grid covering a region of space including the boss. The
numerical feasibility of this discretization hinges on the
crucial observation that in Eq. (14) both r and r' are re-
stricted to lie within some close neighborhood A of the
boss (Fig. 3}: r because we want j(r} in the enclosure A

and r' because Vi„(r'), by definition, vanishes outside A.
Hence we need only evaluate a finite number of matrix
elements of G(r, r') from Eq. (15). It is then an easily
demonstrated fact that because of the localization of V]„
the only matrix elements g(r, r') required to perform the
indicated matrix inversion in Eq. (15) are the finite set for
which both r and r' belong to A.

IV. DISCRETIZATION SCHEME

The localized property of the interesting part, V]„,of
the tunneling barrier allows us to cast the entire scatter-
ing problem in the form of matrix equations over a finite
set of grid points. Numbering these points by the integer
label i according to some convenient raster, we can write
Eqs. (14) and (15) as (dropping the wave-vector index and
writing V for short of Vi„)

g, =p; + g G,J V~ uij i';, .

Gjiy ( 1 g V)ik ~kgkj
k

(16)

(17)

where the w are weights characteristic of the numerical
integration method (trapezoidal, Simpson, Gaussian, etc. )

used to discretize the integrals.
An apparent difficulty with Eqs. (16} and (17) arises

from the fact that all Green's matrices have divergent di-
agonal matrix elements. Indeed, in the general Green's
equation

$2
[E—V(r)] G(r—, r') = —fi(r —r'), (18)

277l

form (19) of the Green's-function singularity. The de-
tailed procedure is shown in the Appendix. The result,
valid to order 5 in the linear spacing 5 of the grid
(chosen here to be simple cubic), is

~&'V )«+ &'GJVi~j&j
J

G;~ =[1—
—,'vP( V;+ V )][(1—gV) 'g],

——,'g'[(1 —g V) 'g V'(1 —g V) 'g],, (21)

(20)

where

4m

3 g j

and where the modified Green's matrix

(22)

g'j gij gk 'j j (23)

has zero diagonal matrix elements and incorporates the
weight factors. Note that those results are exact in the
perturbation sense, i.e., they regroup in closed form the

corrections of all orders of perturbation in the Born
series expansion of the Dyson equation (15).

V. PLANAR BARRIER TUNNELING

We need to solve the tunneling problem for the planar
barrier V (z) alone, in order to construct the Green's
function g(r, r') needed for the full 3D problem. This
can be done in two ways: (1) by solving the Schrodinger
equation, or (2) by using the Dyson equation again.

A. Schrodinger-equation approach

P(r)=e ~'

Pk (z),
II

(24)

where kll is the wave vector parallel to the surface. The
state satisfies (iri /2m =1)

In the first method, g is constructed from the wave
functions of the effectively 1D Schrodinger equation for
the potential Vz(z). Due to the translational invariance
in the p=(x,y) directions of the planar junction, we can
write the wave functions as

the 6 function is brought about by the Laplacian acting
on the limiting singular behavior of G,

d2

dz
+a —V (z) pk (z)=0,

II

(25)

lim G(r, r')=-
r' —r

1

4nIr —r' I. (19)

However, by inspection of, e.g., Eq. (14), we see that this
divergence is, in fact, canceled by the Jacobian or phase-
space factor in the r' integration (i.e.,

~

r —r'
I

in spheri-
cal coordinates centered at r). As a zeroth approxima-
tion, we are therefore entitled to exclude the diagonal
term in the summations of Eqs. (16) and (17). In doing
so, we neglect altogether the finite contribution of the en-
tire "diagonal" cell j =i at each computed grid point i.

While this approximation becomes exact in the limit of
very small grid spacing, it may be desirable to improve on
it when using the coarser grids imposed by limitations of
realistic computing time and storage. Such an improve-
ment can indeed be achieved by exploiting the known

where a =F. —k
II

is the "normal" tunneling energy.
Also, the Green's function can be Fourier-analyzed ac-
cording to

g (r, r', a) =g (p —p', z, z', a)
I

=(2n)J d k~~g(z, z.', a)e (26)

d2
+a —V (z) g(z, z', a)=5(z —z') .

dz2
(27)

Let P, (z), $2(z) be the two independent solutions of Eq.
(25) that have the following boundary conditions:

and the Fourier components satisfy a Green's function
equation
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(28)

(30)

the efficient continued-fraction algorithm developed by
Vigneron and Lambin' for the one-dimensional
Schrodinger problems. Note that the wave function Pz(z)
(normalized to unit incoming flux: A2 ——1) is also needed
to implement the Lippmann-Schwinger equation (14) or
its discretized form (20) since $2 satisfies the proper
boundary condition in forward bias.

Once g(z, z', a) is calculated from Eq. (31), it must be
Fourier-transformed in Eq. (26). Since a depends only on
k~~, the k~~ integration reduces to a single quadrature:

g(r r'a)=
2

d ii"ii o ti fp p f g( z )

(32)

are the left- and right-hand wave vectors in the interior
metal regions and where the A's and 8's are incoming
and rejected amplitudes. Then, it is easily verified that
the Green's function is given everywhere by

g (z,z';a)= (31)

where z (z ) is the smaller (the larger) of z,z' and
where IV=/~(z)gz(z) —$2(z)P', (z) is the constant Wron-
skian of the two solutions.

The wave functions P&, $2 have been calculated using

When computing this integral, convergence difficulties
are encountered at large kff for the "z-diagonal" matrix
elements (i.e., for z =z'). This is caused by the oscillatory
behavior and slow decay rate of the Bessel function Jo(x)
for large x. A scheme to accelerate this convergence
must be introduced. It is based on the physical property
of g that it should tend towards the free-electron g at
large k~f. This property can be checked by inspection of
the Green's equation (27) which, for large k~~, has the
so u ion exp kii I

z —z'
l

)~ kii Eq~~tion (32) can
then be rewritten as

1
—q Jz —z'J

g(r, r';a)=gf(r, r', a)+ f dkf[k[[JO(k[[ f p —p'
f

) g(z, z';a)—2' —2g
(33)

where the free-electron Green's function gf has been add-
ed and subtracted and where' q =k

~~

(E —V;„). —
Indeed, it is straightforward to check, by contour integra-
tion, that the free-electron g of energy E, and

V„,p(z)= .
V;„, z (0
V;„—Vb, z) 0 (36)

iqo ~

r —r'~

gf(r, r';a) =— (34)4nr —r'.
where qo=(E —V;„)' is the wave vector in the constant
inner potential V;„, ' has the Fourier transform indicated
as the subtracted term in the large parentheses of Eq.
(33). This subtraction scheme has been found to guaran-
tee adequate computational convergence of the integral.

Vi„(z)= V; (z) —Vb(z D)/D, 0—&z &D . (37)

The ID Green's function g (z,z'; a) can now be construct-
ed from the suitably discretized Dyson equation

g (z,z';a) = f dz "(1—g, V~„),,'„g,(z",z', a), (38)

where V„,(z) is given in Eq. (37) and where g, is the
Green's function appropriate to the step barrier (36),
namely

B. Dyson-equation approach

V (z) = V„, (z)+ V„,(z),
where

(35)

In this approach, g is constructed from the Dyson in-
tegral equation exploiting the localized nature of the pla-
nar barrier in z space. Indeed, V (z) can be split into a
step potential V„,~ plus a part localized in the junction
region V„,(z):

4,(z()42(z) )

g, (z,z';o. )=
ia]a2(a, +a~)

where

—ia z
1

( )
a28, z&0
a2cos(azz ) —Ea&sin(a, z ), z ~ 0

and

(39)

(40)
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a,cos(a,z)+ia2sin(alz), z &0
@p(z)=

CKI8, Z)0
(41)

tained by irlverting (43) and using (24):

(z,p) =(21r) ' f dP e l "'e PP(z),

where

(44)

are the two solutions of the Schrodinger equation for the
step potential and where a„az are given in Eq. (30).
With g (z,z', a) available from Eq. (38), one can then con-
struct the 1D wave functions p, (z), 1}}2(z)of VP(z) through
the Lippmann-Schwinger equation

((},(z}=4,(z}+f dz'g(z, z';a)V„,(z')4, (z') (42)

discretized on the same grid as Eq. (38).
It has been found in a few test cases that the 1D

Green's functions g(z, z', a) as calculated from Eqs. (31)
and (38} agree within 1% of each other as long as a
sufficiently fine grid on the z axis (100 sample points) is
used to discretize Eq. (38). Which method is more
efficient is a matter of the speed and accuracy of the ma-
trix inversion and quadrature routines used to solve Eq.
(38) compared to the Schrodinger integration algorithm
used to solve Eq. (31}. This question has not been investi-
gated in depth, as we have chosen to use the latter
method for our Anal numerical runs.

VI. AXIALLY SYMMETRICAL BARRIERS

The computational scheme described in Secs. IV and V
is applicable to general localized 3D perturbations. How-
ever, one rapidly reaches the limits of realistic computing
time and storage with relatively few sampling points in
each of the three directions of space when no reduction of
the size of the Green's matrices (whose dimension is
equal to the number of grid points) is possible through
the exploitation of some spatial symmetry of the local
barrier. Twenty grid spacings in all three directions may
be an upper limit with present generation computers, but
this limitation is likely to be lifted in the near future with
the development of more powerful machines.

Fortunately, many tunneling problems of practical in-
terest do allow a reduction from three to two dimensions
as a result of the axial symmetry of the tunneling barrier,
as in the case for our model STM junction of Fig. 2. This
greatly improves the possibility of reaching satisfactory
accuracy in the discretization scheme with a reasonable
number of grid points. We will now present the deriva-
tion of this reduction.

A. 2D Dyson equation

We start by expanding the planar wave function in Eq.
(24) in Fourier series:

NkP=NP —4k .

Hence,

(z,p) =e™"J~(k~~p)P(z),

(45)

(46)

where J is the cylindrical Bessel function of order m.
Consider now the planar Green's function g in Eq. (32);
its rotational invariance is apparent through the depen-
dence on

~ p —p'
~

of the argument of Jo. Hence it has a
Fourier-series representation

im(p —p )
g(r, r')= ge g (z,p;z', p') . (47)

The coefficients g could be obtained via the spectral rep-
resentation and the explicit form (46) of the wave func-
tions, but it is simpler to substitute for Jo in Eq. (32) its
expansion in terms of the J 's as given by Neumann's ad-
dition theorem'

I

Jo(kl I p p I
)= P J (k~~p)J (klp )e (48)

The result is

~(z,p;z', P'}=(2m) ' f dk~~k~~ J~(k~~p)J~(klp )

Xg(z, z';a) . (49)

The full wave function and the full Green's function
must also have a Fourier-series representation,

g(r)= ge™~PA (z,p), (50)

im(p —p )

G(r, r', E)= pe P 'G (z,p;z', p'), (51)

in which we introduce the expansion (47) for g and noting
that V(r, ) = V(z„p, ) is independent of 1I)„we find angu-
lar integrations such as

by virtue of the axial symmetry. It is now easy to demon-
strate that the Fourier components of the wave and
Green's functions for each m are related to each other by
separate Lippmann-Schwinger and Dyson equations. For
example, starting from

G(r, r')=g(r, r')+ f dr, g(r, r, )V(r, )g(r, ,r')+

(52)

$(p, z) = g e PP (z,p), (43) (53}

where r = (z,p, pP ) are the cylindrical-coordinate com-
ponents of r. The Fourier components are easily ob-

I

which eliminate cross terms m&m' in all orders of the
Born series. Thus, there is a separate Born series for each
m component of the Green's functions in the (z,p) plane:

Qo + Qo

(z P'z P )=g (z P'z P )+ 2'lrpldpl dzlg (z P zl Pl }V(zl PI)g (zl Pl'z P )+
0 —Qo

(54)
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Using the notations

x=(z,p),
g (x,x', a)=g (x, x', a)2vrp',

(55)

(56)

we finally obtain the 2D Lippmann-Schwinger equation,

(x)=P (x)+f dx'G (x, x')V(x')p (x'),

and the 2D Dyson equation

G (x,x')= fdx, (1—g V)„„'g (x, ,x') . (57)

The actual computation of g demands that the k~~
in-

tegration in Eq. (49) be accelerated by the add-subtract
procedure of Eq. (33), the m component of which is given
by

—2g

—q [z —z'j

g (x,x')=g (x,x')+(2~) ' f dk~~k~~ ( ~~p)J (k~~p') g, ')—
0

(58)

iqo(, a —b costI5 )
1/2

gI = —(2n. ) f dPcos(mP)
0 (a bcosP—)'~

where

(59)

g~(x, x') is the m component of the free Green's function
given by

since the singularity arises from the neighborhood of
/=0. This is the complete elliptic integral of the first
kind which behaves like

lim f dP
b z~' 0 (a bcosg)—'~

a =p'+p'+(z —z')', b =2pp' . (60)

Note that, for computational efficiency, it is preferable to
use the direct inversion of Eq. (34) to write the m com-
ponent of gI in Eq. (59) rather than its representation in
terms of Bessel functions [i.e., the subtracted term in
(58)]. This is because the integral in Eq. (59) is well
behaved for all matrix elements, except the singular diag-
onal ones (at x=x' or a =b), which are not required,
whereas the expression in terms of the Bessel functions
converges too slowly for the "z-diagonal" terms (z =z').

Going from three to two dimensions weakens, but does
not remove, the singularity of the diagonal matrix ele-
ments of the Green's functions. Indeed, we can write in
Eq. (59)

—2 (a b)'—
ln

(a +b)1/2 8p
(62)

lim g (x,x+e) = ln
4m' p 8p

(63)

from which we finally get the logarithmic singularity of
the Green's function,

iqo(a —b cosP) 1 /2

lim f dPcos(mP)
a~0 0 (a bcosP)'~—

7r 1—lim dP
(a bcosP)'— (61)

This behavior also characterizes the planar or full
Green's functions. It can be exploited to correct for the
error of ignoring the diagonal cells in the discretization of
Eqs. (56) and (57). The result, demonstrated in the Ap-
pendix, is

(x)=[1—s'(p) V(x)]P (x)+ g'(G VP )„„ (64)

G (x,x')=[1—[s (p)V(x)+ (p')V(x')]][(I —g V) 'g ]...—[(1 gV} 'g —s V (1—g (65)

where
2

s (p)= —,'g 1 —ln4 64
(66)

has zero diagonal elements and incorporates the integra-
tion weights w-.

B. 2D tunnel current

(67)

g (i,j)=[g (i,j)—g (i,j)6;,]2vrp w, . (68)

6 being the spacing of the square 2D grid. In Eq. (65},
In Eq. (12}for the total current density, the integration

over all incident planewaves of energy E and unit wave
vector k amounts to a 2D integration over a semicircle of
radius Q'0 in the k~~ plane. Introducing then the Fourier-
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series representation (50) of the full wave function, we
note that there is an overall phase factor exp(i/i, ) in each
of the m components 4, due to the form (46) of the pla-
nar wave functions. Hence, the angular part of the k~~

in-
tegration (over the angle Pi, ) in the expression for the
current density eliminates all cross terms with m&m';
the result is proportional to

j(r)= f dE f dk~~k~~ g j (r) .

This expresses the fact that each m component of the
wave function contributes independently to the tunneling
and gives rise to additive contributions

(70)

to the total current. Writing the gradient operator in (70)
and the current j=(j„j,j&) in cylindrical coordinates,
one can show that there is no net j& component in the to-
tal current as a result of the cancellation of the m and
—m contributions. This comes from the easily verified
property of the wave functions,

(x)=( —1) P'(x),
(x)=( —1} 4*(x),

(71)

(72)

and the corresponding symmetry property of the Green's
functions,

g (x, x') =g (x,x'),

G (x,x')=G (x,x'),
(73)

(74)

which follow from Eqs. (56) and (57) and from the fact
that J = ( —1) J . ' Hence we obtain, as a final for-
mula for the 2D current density, valid for Vb &&EF,

j(x)=—
Vb g f dk~~k~~lm 4'(x)

&
4 (x)

kF

J = ' Vf 'd. k„k„(V'( )&,a( }—0( )~,0'( ))
mi ho (76)

as a result of the addition property of Bessel functions

J' (k~ip}=1 (77)

The integral can be calculated at any value of z in the
barrier, e.g., at z =D, where

P(z) = T(a)e' ', (78)

in which a =kF —k~~. T(a) is the transmission ampli-

tude for a wave of unit amplitude incident onto the bar-
rier. Hence,

kFj,=—Vo f a
~

'r(a)
~

da, (79)

(75)

where (B„B ) is the gradient operator in the (z,p) plane.
Note that, without the boss, the planar MVM current

j has no j component and reduces to

and this can serve as a reference current density to which
to compare the actual distribution through the boss as
computed from (75).

VII. RESULTS

As a first and simple illustration of the method, we
have assumed vanishingly small forward bias and zero
temperature, which allows us to confine the tunneling
calculation at the Fermi level in the forward direction
(tip to surface). The calculational steps proceed as fol-
lows:

(1) Construct the 3D barrier for a set of geometrical
and material parameters (see Fig. 2).

(2) Choose a square grid to sample the localized barrier
(we used a 9 X 9 grid).

(3) For a few values of the angular momentum m (we
used m =0—10), compute the planar wave functions from
which the elements of the planar Green's matrix of Eq.
(58) are calculated at the grid points.

(4) Solve for the Dyson equation (57); then solve the
Lippman-Schwinger equation (56) at the grid points for
enough values of the k~~ wave vector to allow integration
over k~~ in Eq. (75).

(5) Estimate the wave-function derivatives in Eq. (75}
via differentiation of a smooth parabolic interpolation be-
tween three successive grid points in each direction.

The method yields a map of (j„j ) at all grid points.
The grid chosen for this first test calculation was too
coarse to obtain accurate derivatives in Eq. (75) in those
regions where the wave functions vary substantially. As
shown in Fig. 4, which is a 3D map of

~

4 (x)
~

for
m =0 and k~~

——0, there are strong accumulations and
variations of amplitudes inside the boss as a result of the
focusing effect of its concave surface for incoming waves.
We have therefore restricted the calculation of j to re-
gions where 4 is more slowly varying, such as along the
planar surface facing the boss, which is also where we are
most interested in discussing the lateral spread of the
current. The results are shown in Figs. 5 and 6. The
complete range of radial distances from the tip axis
shown on these figures represents 5 A, i.e., a length equal
to the planar gap width D. The tip radius R was 3 A.
The tunneling is dominated by the m =0 cyclindrical
waves. The m =+1 contribution to j, peaks at less than
7% of the maximum value of the m =0 term. The total
j, current carried by all waves with

~

m
~

& 0 amounts to
less than 10% of the m =0 current. In this region of the
tunneling junction, the j component remains everywhere
small (at most 5%) as compared to the j, current on the
axis. In general, the contribution of successive m waves
to the current peaks farther away from the axis with in-
creasing

~

m ~, as one should expect from the radial
dependence of the incident cylindrical wave functions.
[In fact, the m =0 wave is the only one to have a nonvan-
ishing incident amplitude on the z axis; see Eq. (46)].
Turning to the principal tunneling component j„m =0,
at a radial distance from the tip axis equal to the tip ra-
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the planar electrode. Note the accumulation of amplitude in
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Note that j~, can be estimated from the asymptotic value of
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FIG. 5. Components of the tunnel current density as a func-
tion of the radial distance from the tip axis along the surface of

e
the planar electrode. The tip radius was 3 A. The contributions
to the currents are shown for three values of the axial angular
momentum m. A continuous curve has been passed through the
grid-point results. The planar MVM current j~, has not been
subtracted because it is too insignificant on the present scale. It
can be estimated from the plots on the expanded scale in Fig. 6.

dius the current has fallen to 10% of its value on the axis.
In the present model geometry, this means that variations
of barrier width or height occurring on a lateral scale of
the order of the tip radius as a result of atomic corruga-
tion of the planar surface would be easily detected.
Hence our first-principles calculation confirms the fact
that the lateral resolution of STM has its root in the
sharp anisotropy of the tunneling phenomenon in the
presence of a 3D inhomogeneous barrier. '

We are aware of the unrealistically small tip-to-surface
0

distance used in our first calculation (D —R =2 A) as
compared to estimated gap widths in the actual junctions
(5 A or more). The reason was that we wanted to use a
coarse grid for getting numerical estimates in short com-
puter times and this, in turn, forced us to a rather tight
geometry in order for the wave functions at the Fermi
level (Fermi wavelength of order 4 A in our model) not to
have too many oscillations over the tip region which is

sampled by our grid. Numerical work in progress will
remedy these shortcomings and also examine a range of
ratios between tip radius and gap width so as to estimate
the dependence of the lateral resolution on this parame-
ter. Also, the sirnplifications of using zero temperature
and zero bias will be removed so as to study the role of
tunneling away from the Fermi surface and, particularly,
the geometrical and thermal asymmetry of the tunneling
current for backward versus forward biases as predicted
by simple 1D tunneling calculations. '

To what extent can the present method be generalized
to incorporate realistic features of the atomic and elec-
tronic structures of the tip and surface? One obstacle is
the dimensionality of the barrier as any consideration of
atomic corrugation makes the tunneling problem fully
three dimensional. In the absence of the tip, a periodic
2D corrugation representative of an assumed atomic dis-
tribution on the planar surfaces can be treated by includ-
ing higher Fourier components at reciprocal-lattice vec-
tors of the corrugation into the unperturbed wave func-
tions. From these Bloch wave functions, a pseudoplanar
Green's function can then be constructed and used as the
input to the Dyson equation for treating the tip perturba-
tion, along the lines of the present scattering theoretic ap-
proach. While the difficulty of dimensionality is likely to
be rapidly overcome by the availability of more powerful
computers, the real problem posed by realistic material
models resides in the construction of the corresponding
3D tunneling barrier, especially its correlation part which
we have represented by a simple electrostatic, multiple-
image potential in the calculations of this paper. The
shape of the barrier is, however, intimately linked to the
electronic structure of both the tip and the surface as ex-
amined by STM. Indeed, the micrographic contrast orig-
inates from such features as the density of states of the
combined tip-surface system as well as from spatial inho-
mogeneities of the barrier. We believe that the Green's-
function approach of this paper, by eliminating the un-
certainties associated with the use of approximate
methods to handle the tunneling part of the calculation,
will facilitate the construction of barrier models
representing more realistically the atomic and electronic
structures of the junction materials.
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VIII. FURTHER APPLICATIONS

One systematic application of the new method will be
in testing various one-electron tunneling theories as ap-
plied to one and the same tunneling barrier. For exam-
ple, we consider a test of the transfer-Hamiltonian
method as applied to the model STM junction of the
present paper.

The transfer-Hamiltonian approach requires the
knowledge of the left- and right-hand wave functions of
the disconnected electrodes (i.e., removed far away from
each other). The tunneling rate is then computed
through a current-density expression similar to Eq. (13).
Can we calculate these disconnected wave functions?
The right-hand electrode alone poses no problem as the
wave functions are plane waves specularly rejected and
phase-shifted by the single-image potential barrier of the
semi-infinite metal. On the other hand, the isolated left-
hand electrode, with its hemispherical boss, constitutes a
case to which our localized Green's-function technique
can be readily applied to work out the wave functions:
starting from the unperturbed plane waves of the flat sur-
face, the effect of the localized boss perturbation can
again be obtained to all orders of perturbation by solving
the corresponding scattering-theoretic equations. Thus,
the left-hand wave functions can also be calculated to the
desired accuracy and, hence, the transfer-Hamiltonian
current density can be computed and compared to the ex-
act results of the present work.

Finally, we wish to conclude by pointing out that some
other classes of tunneling problems are amenable to a
treatment by the present method. A partial list of exam-
plt.'s follows: field emission of electrons through adsor-
bates' or through very small, atomic-size surface pro-
trusions; field ionization of atoms in vacuum or near a
metal surface; ion neutralization by electron tunneling
near a solid surface; ' broadening of quasistationary lev-
els close to a surface in chemisorption problems; reso-
nant tunneling in M-I-M barriers through quasistation-
ary levels of localized atomic impurities' or through
small metallic clusters; tunneling out of electron bub-
bles at the surface of liquid helium; electronic interac-
tion of vacancies or small voids in metals, etc. All these
physical situations have in common the fact that tunnel-
ing occurs predominantly through a very restricted re-
gion of space and that the one-electron Hamiltonian,

without the localized tunneling barrier, reduces, by virtue
of its symmetries, to a separable problem. This is just
what is required for the applicability of our new tech-
nique based on localized Green's functions and we intend
in the future to exploit the method for some of the prob-
lems listed above.
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APPENDIX

+ f dr]G(r, r])V(r])P„(r]},
S

(Al)

where f ' means an integration excluding a small spheri-
cal volume S of radius g centered on r. This radius is ad-
justed so that S has the volume of the cubic discretization
cell, as in Eq. (22). For rl ~0, we can evaluate the f s by
using Eq. (19) and noting that V and Pk are continuous
functions of r:

lim f dr] ————,]rl V(r)gk(r) .g~0 S (A2)

In the discretization scheme, we can incorporate this
small correction into the unperturbed wave function Pk..
the result is then Eq. (20) in the text.

Similarly, in the Born expansion of the Dyson equation
(15),

In this appendix we treat the singular diagonal Green's
matrix elements in Eqs. (16) and (17). Equation (14) may
be rewritten as ( V stands here for V]„)

y/, (r)=y/, (r)+ f '«] G(r, r]) V(r ])y k( r])

G(r, r')=g(r, r')+ fdr, g(r, r, )V(r, )g(r, , r')+ fdr, g(r, r, )V(r, ) fdr2g(r„r2}V(r2)g(rz, r')+ . (A3)

all integrals are given the same treatment as in Eq. (Al). We keep all terms up to order rl . Thus the first Born approxi-
mation that we designate by I, can be written

II
I, = dr, g(r, r, }V(r,)g(r, , r') ——,]g [V(r)+ V(r')]g(r, r') . (A4)

The double prime on the integral sign means that we exclude two small spherical volumes around the "dangerous"
points r and r'. We see that the first term can now be discretized excluding the diagonal matrix elements while the
second term renormalizes the unperturbed Green's matrix g (r, r'):

I, =(gVg), , ——,'g [V(r)+ V(r')]g(r, r'), (A5)

in which g has no diagonal elements and incorporates the weights [see Eq. (23) in the text]. The second Born term,
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designated by I2, is

I2= ' r,g r, r, Vr, "r2g r„r2 Vr2g r2, r'

——,'tl [V(r}+V(r')] I "dr,g(r, r, )V(r, }g(r„r')——,'rl I "dr,g(r, r, }V (r, )g(r„r') . (A6}

The first term can be discretized; the second term renormalizes the first in the previous order, (A5); the third term will
be treated below:

I, = (g Vg Vg), , —
—,
' tl [ V(r )+ V(r') ](gVg), , —

—,
'

71 (g V g), ,
After similar contractions, the third Born term I3 becomes:

I3 =gVgVg Vg —
—,'ri2[ V(r)+ V(r')]gVg Vg ——,'t) (g V g V+g VgV )g .

(A7)

(AS)

Again, the first term can be discretized, the second renormalizes the first in the previous order, and the third will be col-
lected below. Clearly, the renormalization propagates throughout the entire Born series which can therefore be
resummed. The terms proportional to V(r}+V(r ) simply 'renormalize the original Dyson expression. The leftover
terms, involving distributed V factors, can also be resummed in closed form via simple algebraic manipulations which
the reader will easily rediscover by expanding the inverted matrices in (A9) in powers of g V. The end result is

G(r, r'}=
I 1 —

—,'ri [V(r)+ V(r')]I[(1—gV) 'g], „.——,'ri [(1—gV) 'gV (1—gV) 'g]. . . (A9)

which is Eq. (21) in the text.
The demonstration of the results in Eqs. (64) and (65)

proceeds exactly along the same lines as above, except
that in two dimensions we use exclusion circles (instead
of spheres) around the "dangerous" points, the radius of
which, g, is adjusted such that the circle area coincides
with the area of the square discretization cell [Eq. (67)].
The logarithmic singularity of the 2D Green's functions
in Eq. (63) allow us to evaluate the diagonal-cell contribu-

tion and involves the elementary integral

2

dc, c ln =-,'g ln —1
0 8p '

64p
(A 10)

which is the s (p) convergence factor shown in Eqs. (65)
and (66). Care must be taken here to incorporate the p
dependence of s into the calculation of the matrix ele-
ments of Eq. (65).
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