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It is shown that the Bloch function, as an element of the Hilbert space spanned by Bloch-
periodic planes waves, can be also represented as an on-shell superposition of Blocht-periodic orbit-
als which, however, exist in a distribution sense. By using this result and the multipole expansion
of the Bloch function at the origin, it is further shown that the integral eigenvalue equation of the
Bloch function for a general periodic potential is equivalent (both necessary and suf6cient) to an

algebraic system of homogeneous linear equations for the coef5cients of the multipole expansion of
the Bloch function at the origin, akin to the much simpler case of a finite-range potential, In con-
trast to the Korringa-Kohn-Rostoker (KKR) equation, the contribution of the ce11 potential
(whether of the muSn-tin or general form) introduces a supplementary structure dependence.
However, the separation between structure and potential, typical for the KKR equation, can be re-
stored by introducing various approximations.

I. INTRGDUCTION

Although the formal theory of a periodic Hamiltonian
has been well developed, ' the existence of a computa-
tionally convenient procedure for the case of a general
(non-Muffin-tin) potential still remains an open problem.
A major accomplishment was achieved very early by
Korringa, and by Kohn and Rostoker (KKR), with the
introduction of the muffin-tin (MT) approximation. In
the spherical coordinates description (i.e., in the L repre-
sentation}, it is universally accepted that the MT poten-
tial allows the structure to be separated from the poten-
tial, and the energy bands are given as solutions of the
KKR equation. Since then considerable attention has
been focused on Snding out in what sense, if any, the or-
dinary KKR equation can be generalized for a general
(i.e., non-MT} periodic potential. That is, how can the
general periodic potential be described in the I. represen-
tation? Speci6caHy, the question is to determine the ex-
tent to which the separation between structure and po-
tential, so typical for the muSn-tin approximation, sur-
vives in the case of an arbitrary periodic potential. The
continuing interest in this problem is motivated by the
fact that such a separation is not only academically intri-
guing, but very useful in computational studies of or-
dered materials —particularly surfaces and interfaces-
and almost a mandatory condition for impure or disor-
dered materials, as in the KKR-CPA (coherent-potential
approximation) method.

Until now, these investigations have been carried out
mainly in the framework of multiple scattering theory
and/or by use of the variational principle. The results
obtained by various authors ' —to cite only a few
references —are seemingly in convict. ' More precisely,
with a few exceptions, *' all authors agree that the
potential-structure separation is lost in the case of a
(general) non-MT periodic potential, and therefore one
has to consider the so-called "near-field corrections. *'

Essentially, these corrections come from the mismatch

between the nonsphericity of the unit cell and the I. rep-
resentation (spherical coordinate description) and their
expression appears to be different from author to author
(e.g., Refs. 7 and 8). Nevertheless, there is no soluble
case in which one can study the role of these corrections
analytically. As a result of some uncertainty in their ex-
pression, no attempts to compute these corrections have
been reported.

For the close-packed lattices and a constant periodic
potential, however, disregarding these corrections leads
to results which seem to be reasonably good, ' at least
for present needs. Thus, for most of the authors, the
"near-field corrections, " although diFerent from zero,
are usually neglected and except for an upper bound
(determined by neglecting them and comparing the re-
sult so obtained with the exact one in a soluble case' ) no
practical evaluation was done nor was any soluble case
studied. Both Refs. 9 and 10 conclude, however, that in
the case of close-packed lattices, the structure gets
separated from the potential as an exact result, but they
fail to agree on the analytic expression for the governing
band-structure equation. Thus, Ref. 10 concludes that
the band-structure equation derived previously and
known to be approximate, is in fact an exact result,
whereas Ref. 9 proposes a modification. As demonstrat-
ed in Ref. 13, by performing a highly accurate computa-
tion, both formulations 9 and 10 yield essentially the
same accuracy as the usual approximate methods when
computed in the case of a (non-MT} constant periodic
potential. Unfortunately, numerical tests are the only
ones available, since the equations given previously '
are not known to admit relevant (full potential} soluble
cases. (At least so far, these equations can be solved
analytically only in the case of 5-function potentials,
when they become identical and the result obtained coin-
cides with that of the Kronnig-Penney model. ) As dis-
cussed by us recently, ' the results presented (as exact
ones) in both Refs. 9 and 10 correspond in fact to an ap-
proximation which, essentially, breaks the Hloch periodi-
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city of the Bloch function; since this approximation is
more reasonable when the cell potential is zero in a vi-
cinity of the boundary of the unit cell, it was called the
"generalized muf6n-tin approximation. "

An interesting line of investigation has been developed
recently which contrasts with the multiple scattering
theory. " By the use of a variational principle, an 8-
matrix formalism is established for an (arbitrary shape}
unit cell; after introducing an approximate trial function
(which violates Bloch periodicity) and expanding in
atomic cell orbitals (in analogy to the linear muffin-tin
orbital method) the resulting approximate band-structure
equation can be put in a form which essentially coincides
with that presented (but claimed to be an exact result) in
Refs. 6 and 10.

Also recently, a new and eScient computational pro-
cedure for the case of finite clusters was developed. ' By
expanding the scattering states around each center and
by absorbing the contribution of the interstitial potential
in a (slightly modified) T matrix, a multiple-scattering
formalism was established which generalizes the muffin-
tin case along lines previously mentioned. '5

In a previous paper, ' we discussed the problem of an
energy band equation for a general, i.e., non-MT, period-
ic potential with a diferent approach from those known
so far, i.e., multiple scattering and/or variational princi-
ple. 's From the (integral) eigenvalue equation of the
Bloch function, we derived, by means of a proper mul-
tipole expansion analysis, a new band-structure equation
which difFers from previous results' '

by containing a
very specific term describing the Bloch periodicity
within the multipole expansion (and therefore, called by
us "multipole expansion periodicity corrections"). Al-
though this new band-structure equation was shown
analytically to yield the correct eigenvalues in the solu-
ble case of a constant periodic potential (a result not
achieved by any of the previous attempts3 '

) it is not
obvious that this is also the case for 'a general periodic
potential. (The reason is simply that this new equation
when applied to the general case might have roots other
than those given by the plane-wave diagonalization. )

It is the purpose of this paper to show that the new
band-structure equation introduced previously' yields
the same eigenvalues as those obtained from the plane-
wave diagonalization for any periodic potential and
therefore represents an exact result. More generally, we
show here that the eigenvalue equation of the Bloch
function (in the Hilbert space of Bloch periodic func-
tions) is equivalent (both necessary and sufficient) to a
system of homogeneous linear equations for the
coefBcients of the multipole expansion of the Bloch func-
tion at the origin. The general philosophy consists in
showing that the Bloch function (as a solution of a
diff'erential equation pius Bloch boundary condition) can
also be described as a superposition of the regular solu-
tions of the same differential equation which can be easi-
ly found with the variable-phase method. ' The
coef6cients of this superposition are determined from the
boundary conditions (which are contained in the eigen-
value equation) as satisfying a homogeneous linear sys-
tem of equations. Hence the compatibility condition

gives an equation for the energy, whose solutions are
shown to be the same as those of the plane-wave diago-
nalization. As a matter of fact, this procedure is a par-
ticular reAection of a more general observation: the
solution of a boundary problem (i.e., differential equation
pius certain boundary conditions) can be expressed as a
superposition of (arbitrary) independent solutions (in a
Wronskian sense) of the differential equation and the
coefficients are matched from the boundary conditions.
This allows us to explicitly construct elements of a cer-
tain Hilbert space (in particular, the Hilbert space of the
Bloch-periodic functions} by simply imposing certain
boundary conditions (in particular, Bloch boundary con-
ditions) upon the solution of a difFerential equation.

The paper is organized as follows: In Sec. II, we

briefly present the main idea of the variable-phase
method and, as a way of enhancing the understanding of
the above procedure (and also for later reference), illus-
trate it in a simple case (a finite-range potential). In Sec.
III we recall the (Bloch periodic} prolongation of the
Bloch function in an arbitrary large sphere' and, in
view of later developments, discuss in great detail the
multipole expansion description of this prolongation.
Subsequently, in Sec. IV, by using the Fourier transform
of the regular solution for a potential which is periodic
inside an arbitrary large sphere and zero outside, the
multipole expansion is converted into an on-shell super-
position of Bloch-periodic orbitals which exist in a dis-
tribution sense. (That is not too troublesome because we
are interested in calculating integrals and not their point
by point values. ) In other words, we find a base in the
Hilbert space of Bloch-periodic functions by which an
arbitrary Bloch function can be represented as an on-
shell superposition of Bloch-periodic orbitals. By using
the results established in the previous sections, it is
shown in Sec. V that the integral eigenvalue equation of
the Bloch function can be transformed into a homogene-
ous algebraic system in terms of the regular solution of
the differential equation, similar to the much simpler
case of a 6nite-range potential presented in Sec. II. Fi-
nally, Sec. VI presents a summary and conclusions.

II. VARIABI.K-PHASE METHOD, BOUND STATES,
AND SCATTERING STATES

FOR A FINITE-RANGE PGTENTIAI.

The variable-phase method converts the Schrodinger
equation into a linear system of first-order differential
equations (or into a linear system of Volterra-type in-
tegral equations) which can be solved more easily than
the initial problem. %e recall briefly here the basic idea
of this method, ' and transform the eigenvalue (homo-
geneous} integral equation of the bound states into a
(homogeneous) algebraic system in terms of the regular
solutions; similarly, the (inhomogeneous) integral equa-
tion of the scattering states is transformed into an (inho-
mogeneous) algebraic system in terms of the same regu-
lar solutions.

Consider the (partial derivative} equation

(b, +z )4 (z, r) = V"(r)4"(z,r),
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where z is an arbitrary complex number and assume that
the potential V (r) has a finite range denoted hereafter
by d; provided that the potential is regular enough, '" the
following treatment does not depend on the (explicit)
form of the potential which, in particular, can be chosen
to be that of Eq. (29) below. Note that in this section,
V" denotes a potential which is regular enough' and
otherwise arbitrarily chosen; in the next sections V will
denote a particular potential as defined by Eq. (29)
below.

Since Eq. (1) is defined over a spherical domain [in
contrast with Eq. (31) below], we can separate the Lapla-
cian in spherical coordinates and make use of the ortho-
normality of the spherical functions. Then any solution
4"'"(z,r) of Eq. (1), as given by a multipole expansion

@ '"(z,r)= g Yi (r)$1'"(z,r), r=rr
I.

is defined, up to (arbitrary) boundary conditions, by a
coupled channel equation

d I dr +z'r' l(I +1)—Pi "(z,r)
dr dr

= g VIL (r)PI'"(z, r)r . (3)

tion 4 '"(z,r) (later on, il will describe various boundary
conditions). If the potential V (r} is zero, then two in-
dependent solutions of Eq. (3) are given by the Bessel
function, j&(zr), and Neumann function, n&(zr}. Thus, in
the spirit of the method of variation of the constants, we
try to find the multipole components PL*"(z,r), in the
form

jl(zr) CL'"(z, r)+ni(z, r) Si "(z,r)=0
dr dr

(6)

so as to provide continuity of radial derivative of the
function 4"'"(z,r ) across any spherical surface. A
second equation for the derivatives of the coefBcients
Ci "(z,r) and SL'"(z, r) can be obtained by introducing
Eq. (5) into Eq. (3) and using the Wronskian of the
Bessel and Neumann functions; this finally results in the
equations

7TZ d d, q 2

dr 2
CI' (z, r)= — n&(zr) g VLL, (r)pl' (z, r)r

pr. "(z,r) =j,(zr)CL "(z,r)+n, (zr)SL "(z,r),
where CL "(z,r) and SLd'"(z, r) are functions required to
satisfy the relation

Here we introduced the matrix elements

VLI.(r)= f YI'(r)V (r)YI (r)dr (4)
4n

and the index g in order to completely specify the func-
l

where the function Pi'"(z, r) is given by Eq. (5) and the
potential V (r) was supposed to be regular enough. 's

Alternatively, Eqs. (7) can be given in a Volterra-type in-
tegral version

Cl'v(z, r)=C&'"(z, ro) — f n&(zr') g VII.(r')PI'v(z, r')r' dr',
f0

SL'"(z,r)=SL'"(z, ro)+ f ji(zr ) X VIL'(r )41''"(z r )r dr
2 ~0

(8)

where the (arbitrary) initial conditions Ci'"(z, ro) and SL'"(z, ro), at the (arbitrary) point r =ro, are connected to the
boundary conditions for Eq. (1). This connection becomes more apparent if we introduce Eq. (8) into Eq. (5) and
rewrite Eq. (3) in the form

QJ'"(z, r)=go'"(z, r)+ W&(z, r, r') g VIL (r')QL'."(Z,r')r' dr',
2 r0

(9)

where we introduced the function
Po'"(z, r ) =j I (zr)CI '"(z, ro ) + n i(zr )Si '"(z,r o )

and W&(z, r, r'), which is defined by

WI(z, r, r') =n&(zr)j&(zr') j i(zr)ni(zr'), —

( L, z)~rJ ( L, z)ras r~O, (12b)

whose multipole componeiits are given [from Eq. (8)] by

QI,L(z, r)=j&(zr)CLL (z, r)+n& (zr)SI,I (z, r)

is closely related to the %ronskian of Bessel and Neu-
mann functions. Thus if the boundary condition for Eq.
(1) can be described by means of a multipole expansion,
then finding the solution of Eq. (1} is reduced to the in-
tegration of a linear system, Eq. (7) or (8) or (9). In par-
ticular, we are interested in the regular solution

&Z+ Wi (z, r, r')
2 0

X g VI I., (r')piI(z, r')r' dr:' .

(12c)
@i(z,r)= g YL(r)PL.I(z,r), (12a)

Here jL (z, r ) stands, as usual, for the Bessel function
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multiplied with the spherical function and similarly for
ni (z, r ). We are also interested in the irregular solutions

(13a)

4~'"(z, r)~AL (z, r) as r ~d,
p&'.L(z, r}=j&.(zr)CL'L (z, r)+n&, (zr)SL', L(z, r)d, A,

=A, i (zr)5Lr

8'I z, r, r'

X g VL I (r')Pr"' I (z, r')r' dr',

(13c)

where A, stands for either a Bessel or Neumann function.
Clearly, the irregular solutions, Eq. (13), are closely con-
nected to the usual Jost functions; also, any superposi-
tion of regular solutions again represents a regular solu-
tion (but with other boundary conditions) whereas a su-
perposition of irregular solutions can be a regular solu-
tion as well.

Thus we have seen that the boundary problem for a
partial derivative equation, Eq. (1},can be converted into
a 6rst-order differential system or, alternatively, into a
Volterra-type integral equation. The gain here is not
only computational (which, however, is considerable) but
also theoretical: Providing the solutions of Eq. (13) are
known, by imposing proper boundary conditions upon a
superposition of these solutions we then can explicitly
construct physical states. These are elements of a cer-
tain Hilbert space which are usually found (by diagonali-
zation in a certain base) in the form of an off-shell super-
position. Hence, we have a method for explicitly 6nding
the physical states: From their integral equation we
determine boundary conditions of the type Eq. (10} and
proceed by using Eq. (8), which results finally in express-
ing these physical states as on-shell superpositions.

As an example, consider the bound states qi (E„,r )

with energy E„as defined by the eigenvalue equation'

1/2—1 cos(E ~r —r ~)
4~

(14)

in the space of square integrable functions [usually
denoted by L (R )]. An immediate procedure to solve
this equation would be to expand the eigenfunction

4"(E„,r)~ gjl (E„'~,r)AL(E„) as r —+0,
L

where the

E 1/2

AL(E„)= I nz" (E„',r)V (r)%'~(E„,r)dr

(17)

(18}

are functionals of O' . Then, from the uniqueness of the
eigenfunction and by using Eq. (12), it follows that the
bound state %(E„,r) can be represented as an on-shell

superposition

%~(E„,r) = g 4 (E„'~,r) A (E„)

which, when introduced into Eq. (18), results in a homo-
geneous linear system

QCJ L(E„'~,d)AL(E„)=0,
L

(20)

where the matrix C (E'~, r) was defined in Eq. (8),
Clearly then, the eigenvalues E„of the integral homo-
geneous equation (14) and the corresponding coefficients
AL (E„)of the expansion Eq. (19) are given by the solu-
tion of the following algebraic homogeneous linear sys-
tem of equations (which is not an eigenvalue problem)

difkrential equation. Therefore, the solution given by
Eq. (15) describes exactly the boundary conditions and
(only) computationally satisfies the differential equation.
It is also possible to realize the opposite situation, name-
ly to exactly satisfy the differential equation and compu-
tationally the boundary conditions. This can be done by
representing the solution of Eq. (14) as an on-shell super-
position of the regular solutions, Eq. (12}, and finding,
from Eq. (14), the equation satisfied by the coefficients.
Finally, this equation has to be solved by using the com-
puter. Such a procedure is made possible by the mul-
tipole decomposition

—1 cosE'i (
i
r —r'

i
)

4m. [r—r'
[

E 1/2

g jr (E',r )nL (E',r ) (16)
L

in conjunction with Eq. (8} or (9). Actually, from Eqs.
(14) and (16), by using the behavior of the Bessel and
Neumann functions at the origin, we find that the eigen-
function, i.e., solution of Eq. (14), satisfies the boundary
condition

4' (E„,r)= g a (E„)g (r) g CL L(E'~, d) AL =0, (21)

in a base which spans the space 1. (R ) and, upon intro-
duction into Eq. (44) or Eq. (1), to obtain a homogeneous
algebraic system for the coefficients a (E„)or an alge-
braic eigenvalue problem, respectively, which has to be
solved by computer. In the superposition given by Eq.
(15), each individual term expresses the boundary condi-
tions [i.e., g (r) belongs to L (R }] and therefore, the
coeScients are determined by the requirement that this
superposition satis6es the Schrodinger equation only as a

where both F. and the AL are unknown; obviously the
compatibility condition

detC (E'~,d)=0 (22a)

det[C (E',d)+iS (E',d)]=0, (22b)

gives the E„and hence, for each E„we obtain a set of
AL (E„). Alternatively, the (positive) eigenvalues are
given by the roots of
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which upon changing E' ~i{ E—)'/ gives the negative
ei envalues as weil. ' [The matrices C"(E',d) and
S (E'/, d) generalize the cosine and sine of the phase
shifts of the scattering theory for a spherically sym-
metric potential and gives account only of that part of
the potential V which is contained in the sphere with
radius r —hence the abbreviation C and S and the name
of the method. ] Thus we have seen that the eigenvalue
equation defined by Eq. (14) is equivalent to the system
of Eqs. (19) and (21).

As another example (also for later use), the scattering
states %&~+(E,r) defined by

1/2ir

+I (E,r)=ji(E'/, r)+ J4m r —r

X V (r')+L —(E, r')dr'

(23)

in the generalized l. (I ) space {i.e., including the func-
tions normalized to a 5 function) are found to be given
by

gad+(E ) y (yd (E 1/2 )[( d(E1/2 d)+ gd(E1/2 d)] —1

(24)

which clearly exist at any energy which is not a bound
state. Finally, at a bound-state energy, the function
4L (E„'/, r) is square integrable whereas at a scattering
energy, E+E„, we have the normalization (easily ob-
tained by transforming the volume integral into surface
ones and using the asymptotic behavior of Bessel and
Neumann functions)

E4 '(E' r)4 (E' r)dr hm —f E4 *(E' r)4 (E' r)dr
A~co 0

sin'W E'"—E'"
[C (E—' d)C (E' d) S t(E'/ d)S (E' d)] ~ lim

m' g 1/2 E i1/2

(25)

where we recall that lim„„[sin(Ax)/x]=m5(x) as
A ~go.

Thus we have solved the (integral) eigenvalue problem,
Eq. (14}, by considering the on-shell representation, Eq.
(19), which satisfies Eq. (1) for any choice of the A
coefficients and subsequently choosing these coefficients
in order to satisfy the boundary conditions contained in
Eq. (14). Technically, it means to first find the boundary
conditions at the origin, Eq. (17), then to derive the on-
shell representation Eq. (19) and finally to find the alge-
braic system, Eq. (20); similarly, in the case of the
scattering states, Eq. (23), we obtain an inhomogeneous
linear system which leads to Eq. (24). In other words,
Eq. (14) is equivalent to the system of Eqs. (19) and (21),
and similarly for the scattering states.

Ultimately, this procedure relies on the fact that the
regular solutions 4"(E'/2, r) [which are easily found by
solving Volterra-type integral equations, Eq. (12}] form
an on-shell base for both the bound states and scattering
states. Moreover, the coeScients of the expansions of
the bound states and scattering states in this base can be
found by using boundary conditions and not the scalar
product [as is usual in a diagonalization procedure, Eq.
(15)].

%'ith the corresponding modifications required by the
Bloch periodicity condition, we will follow essentially
the same philosophy in converting the Bloch-periodic ei-
genvalue problem [Eq. (31) below] into an algebraic
problem [Eq. (84) below]. Thus, in the next section we
find the analogue of Eqs. (17) and (19) for the case of a
periodic potential and, after discussing in Sec. IV some
particular questions raised by the Bloch periodicity, we

find in Sec. V the analog of Eq. (20) and prove its
equivalence to the result obtained by the plane-wave di-
agonalization (which represents the exact result}.

r=R+p,
k=K+sc .

(26}

Let V(r), rER, be a periodic potential over Xn cells
in the crystal with Xz~ oo, as given by a sum of cell
potentials

(27)

where

0 for r&R+p
V (r)= '

V(p) for r=R+p, (28)

III. BLOCH FUNCTION
AND ITS BLOCH-PERIODIC PROLONGATION

%e recall here some results' concerning the prolonga-
tion of the 81och function (with Bloch boundary condi-
tions) and, in view of later developments, proceed to a
detailed analysis of its multipole expansion.

Let R, KEZ be vectors of the direct and reciprocal
lattices, having the primitive cells Q and fl, with the
volume co and co, respectively. [R K=2m. X(integer),
coco=(2n} ]Let pE. Q. , ~EQ be vectors in the direct
and reciprocal primitive cell, respectively. Then, for any
vectors r, k in the whole space IR there is a unique
decomposition
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and the potential V(p) has an arbitrary range
a&max ~op where p denotes the modulus

~ p ~

and,
hereafter, r will denote

~

r ~; also, the potential V is sup-
posed to satisfy the usual regular conditions at the ori-
gin. ' In this notation, the muon-tin case is obtained
for a=p, where p denotes the radius of the inscribed
sphere in the unit cell Q. Finally, for any 6nite d, d &0,
we introduce the potential V (r), as defined by

where we introduced the abbreviations

(33)

Thus we find from Eq. (31) the following boundary
condition

Wa, E„,p)~ gji (E„' (a),p)AI (a,E„) as p~0,

V(r) for r &d
0 elsewhere,

(29)
~E„I"(a)

AI (a,E„)= I ni'(a, E„'~ (a),p)

where V(r) is de6ned in (27). Obviously, V"=V
denotes the cell potential restricted to the inscribed
sphere and zero elsewhere.

With this notation, the Bloch function 4'(a, E„,p),
aGQ, pCQ with energy E„(a)~0 (n =0, 1,2, . . . ) is the
solution of the eigenvalue integral equation

1 ei {z+K).{p—p')
%(a,E,p)=

Il „E—(ir+K)'

X V(p')W a, E,p')d p' (30)

or, alternatively,

;„.„—1 cos(E'i
i p —R—p'

i )

X V(p')%(a, E,p')dp' (31)

in the Hilbert space %(a') spanned by the plane waves' /v'~)lt. [Obviously, the function +(a,E,p),
being an eigenfunction, is defined only at E =E„; then
when we write %(a E,p) we do not mean an arbitrary
energy, but only E =E„.] Clearly, the eigenfunction of
Eq. (30) is a superposition of the type

~i{a+K)p
%(a,E„,p) = g ~ alt(a', E„), (32)

which, when introduced in Eq. (30) leads, by using the
scalar product in 8(ir)„ to the well-known plane-wave
diagonalization. Each term in Eq. (32) is Bloch periodic
and therefore, the aK coe%cients re6ect only the re-
quirement that the function given by Eq. (32) satis6es
the Schrodinger equation as a difkrential equation. Ex-
cept for the difkrent Hilbert spaces, which are refiected
by the use of di8'erent Green functions, we recognize
here the same problems as in Eqs. (14) and (15), respec-
tively. Similarly to these equations, we want to
represent the Bloch function (for reasons to be obvious
soon) as a superposition in which each individual term
satis6es the Schrodinger equation (as a differential equa-
tion) and the coe%cients are found by matching the
boulldaI'y colldltlolls (slid llcllcc rcquiI'c coInputatlollal
evaluation). Since the Bloch-periodic Green function in

Eq. (31) has a multipole decomposition which comes,
essentially, from Eq. (16), we can proceed by using the
procedure followed in Eqs. (16)—(22).

X V(p)4(ir, E„,p)dp, (34)

p & min[R I (36)

where XII.(x,E'~ ) is the usual structure constant. '

For those p with p) min[A I, the sum in Eq. (36) is not
convergent but we can isolate in Eq. (35) a finite num-
ber of terms with R &p (i.e., the nearest and perhaps the
next neighbors) and obtain for the remaining (infinite)
sum an expression similar to the last term in Eq. (36).
Thus the function defined in Eq. (35) exists for any
pEQ, p&0, and has a p

' ' singularity at the origin,
whereas the Bessel function is regular at the origin like
p'. As an example of the integral which appears in Eq.
(34), which is also useful later, we mention the result

E1/2 ~&i{a+K.)-p d
n L

(2') i'Yi'((a+K)l
~
++K

~
)

E —(a+K)
' I/2

2
X

mE'
(37)

which is easily obtained by considering the action [in

nl (a,E'~,p) =nI (E'~,p)+nI (a,E'~,p+R),
rtI (a,E'~,p)= g e '"

nI ('E'~,p+R),
8~0

and jI (E',r) denotes, as usual, the spherical Bessel
function multiplied with a spherical function and simi-
larly for ( the Neumann function) nI (E'~, r).

Now compare Eqs. (33) and (34) with Eqs. (17) and
(18), respectively. They reflect the same philosophy,
namely, from the (integral) eigenvalue equation we found
the boundary conditions at the origin; only the Neu-
mann function in Eq; (18) is replaced by the "Bloch-
periodic Neumann function" defined in Eq. (35), which
comes from the Bloch-periodic Green function expressed
in Eq. (31). [Or, alternatively, from the fact that Eq. (31)
has to be solved in the space %(a), whereas Eq. (14) is
solved in the space L (R ).] Note that the integral in
the right-hand side of Eq. (34) makes sense only if the
function qI belongs to the space %(a'). The function
defined in Eq. (35) contains information concerning only
the geometry of the lattice, exists for any complex ener-

gy and, for p & minR, has the representation
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&()r}] of the Bloch-periodic Green function which ap-
pears in Eqs. (30) and (31) upon the plane wave and by
taking the multipole expansion in the limit p~O.

%'e are now in a position to see why we chose to solve
Eq. (31) along the lines of Eqs. (16) to (22). Since in Eq.
(34) the Bloch-periodic boundary conditions were al-
ready introduced by means of the function n()r, E,p)
defined by Eqs. (35) and (36), it is reasonable to use for
the Bloch function required in this equation a represen-
tation which focuses primarily on satisfying the
Schrodinger equation (as a difFerential equation) and not
on the Bloch boundary conditions (which have already
been included). In other words, we want in Eq. (34) a
representation of the Bloch function as a superposition
in which each individual term satisfies the (Schrodinger)
differential equation and not the Bloch boundary condi-
tions [whose fulfillment is left to the coefficients of the
above superposition, akin to Eq. (19) and not to Eq.
(15)]. We now proceed along this line.

Since the Bloch function admits a multipole expansion
inside the inscribed sphere, and this expansion is
unique, we have, for p &p, the representation

'I)"()r,E„,p+R) =e'" "Wa,E„,p),

pq "()r,E„,p+R}=e'""&''p(~, E„,p),

(40a)

(40b)

/p+R/ &d . (41)

For fixed d, n (p) is a piecewise constant function,
monotonically increasing with d, and having the proper-
ties

i.e., with Bloch-periodic boundary conditions.
The function 4 ()rE„,r), r &d, is given then by the

right-hand side of Eq. (30) or (31) with p ~r and
E~E„. As we now have the Bloch function inside the
sphere with (finite) radius d, we need to know how
translational symmetry operates in this sphere. Clearly,
the translation group differs from point to point; for
each point pCQ there are a finite number n (p) of
translations R that leave this point inside the sphere
with radius d and given as solutions of the (Diophantine)
equation

%()r,E„,p) = gW~(E„'~ ()r },p) AL ()r,E„}, p &p (38)

where the functions @)L(E'~,p)=AIM (E'~,p) are the
regular solutions, as described by Eqs. (12) for the poten-
tial V"=V (in the inscribed sphere) (Ref. 18)

~(E' ',p)= g[J' (E,p)cg (E' ',p)

n "(p+R)=n "(p) for
~
p+R

~
&d,

n "(p}=1.

As d ~~, it has the limit

lim n (p)=N& Nn —+ao-—
d~oo

(42)

(43)

+n, (E ~ p}S,",,(E'~,p}]

Compare Eq. (38) with Eq. (19) and notice the restriction

p &p which, ultimately, is required by the orthonormali-
ty of the spherical functions.

Now the description of the Bloch function as a mul-
tipole expansion inside the inscribed sphere has been
known for a long time. i' ' ' The real novelty of Eq. (38),
however, is that it was derived from the multipole ex-
pansion at the origin, whose coefficients [the AL(a, E„)]
were found to be given by Eq. (34) by means of the
decomposition Eq. (16), similar to the case of a finite
range potential, Eq. (19). The close similarity between
Eqs. (31), (33), (34) and Eqs. (14), (17), (18), respectively,
suggests that, provided the Bloch function in Eq. (34}
can be expressed in terms of the coefficients AL ()r,E„),
then the eigenvalue equation, Eq. (31), might be
transformed into a homogeneous algebraic system for
the A coefficients, similar to Eq. (21). The problem then
remains to properly express the Bloch function [as an
element of the Hilbert space %F(a)] in Eq. (34), i.e.,
within the whole unit cell, not only in the inscribed
sphere, in terms of the coefficients AL ()r,E„).

For this, we recall the prolongation of the Bloch func-
tion in any f][nite sphere. More precisely, we introduce
the function %~()r,E„,r}, defined, according to Eq. (26},
for r =

~
p+R

~

&d and for any finite d &p, as the pro-
longation of the function %(K,E„,p}, solution of Eqs.
(30) and (31), defined by taking

independent of p, where N& is the number of cells in the
crystal.

We now seek to 6nd a relation between the function
4 ()r,E„,r} and the Bloch function inside the inscribed
sphere, where we have the multipole expansion, Eqs. (38)
and (39). To accomplish this, we use the fact that the
function 4 ()r,E„,r ) has a multipole expansion [from
Ref. 23 and Eqs. (31), (40), and (16)]

%~(x,E„,r) = Q FL (r)PL ()r,E„,r )
I.

where the functions QL ()r,E„,r) are easily seen [by tak-
ing p~r in Eq. (31), commuting a finite subsum with
the integral and using Eq. (16)] to satisfy the coupled
channel equation [compare with Eqs. (9) and (12c)]

QI ()r,E,r ) =jI(E' r ) zX+nl(E '~ r )Zz~

E I /2
E]/2 )

2

y g VIL (r')PL. (z,E,r')r'2dr'

(45)

at E=E„and p & r & d. In Eq. (45), the function
W&(E ', r, r') and the matrix elements VLI. (r') are
defined in Eq. (11) and (4}, respectively; the coefficients
XL and ZI (whose dependence on a and E was omitted)
are given by
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X V"(r)%' (z, E,r)dr,
(46)

at E =E„. The system {45}can be solved in terms of the
functions 41' (E'/, r) defined in Eqs. (13) for the poten-
tial Vd(r) defined in' Eq. (29)

qI(a, E„,p)= +41 (E„'/ (x),p)AI (~,E„),
E

(50a)

~here, although the individual terms are not Bloch
periodic, the sum belongs to the Hilbert space &(z). In
fact, Eq. (50a) implies only the function +L'"(E„'/, r)
corresponding to the radius of the circumscribing sphere

periodic potential, Eq. (27), by means of the matrix ele-
ments defined in Eq. (4)]. Obviously, the restriction of
Eq. (49) for r=p CQ gives the values of the Bloch func-
tion inside the unit cell

d (a,E», r)= g [Pr.'&z {E» (z) r)Xi %(tc,E»,p) = g 4L'"(E„'/ (Ir },p) AL (x,E» ), (50b)

+yd, » (E 1/2(&) r )Zd] (47)

which, when introduced, together with Eq. (39), into
Eqs. (46), results in a linear system connecting the quan-
tities Ar (~,E„),XL, and ZL

y [Cd J (E l/2 +}Xd+Cd, » (E l/2 +)Zd ]

(48)

y [gdj {El/2 )Xd+gd, » (El/2 )Zd]

at E=E„. From Eq. (48) we learn [by using Eq. (8)]
that the function defined in Eq. (40) for r &ai and ex-
pressed by Eqs. (44)-(47) for p &r &d matches (in both
the function and the normal derivative) the superposi-
tion Eq. (38) on the sphere with radius }l2. We therefore
conclude that for any r &d {i.e., not only for r &lu), the
function q/ (Ir, E„,r) is given by [cf. Eq. (19))

lI/ (a,E», r}=+41 (E„' (~),r) AL (~,E„), r &d

where the functions 4L (E,r ) are given by Eq. (12) for
the potential defined in Eq. (29). The coefficients
AL (a,E„)are independent of d and coincide with those
defined in Eq. (34) and used in Eq. (38). [In fact, this
was the reason for introducing the prolongation
defined by Eq. (40)]. Note that the functions '0 (z,E„,r)
can be given a prolongation in the whole space by re-
moving from Eq. (49} the condition r &d [for r)d,
where the potential V is zero, the functions @I(E,r)
are represented from Eqs. (7) and (12), by a superposi-
tion of Bessel and Neumann functions]. This prolonga-
tion, however, coincides with the Bloch function only in-
side the sphere with radius d; in the limit d = Oo, howev-
er, it coincides with the Bloch function extended to the
whole space.

Now Eq. (49) says that the function 4 (a,E„,r), which
is the Bloch-periodic extension in the sphere r & d of the
Bloch function de6ned by Eq. (31},is a superposition of
the regular solutions, Eq. (12), with potential de6ned in
Eq. (29). These regular solutions are clearly not Bloch
periodic [although they carry some information about
both the translational and point-group symmetries of the

because the regular solution 4L (E„'/, r) has, from Eqs.
(29}and (12), the obvious property

4 (E',r)=4 (E„',r) for r & min(d, d') (51)

However, Eq. (50} does not represent the multipole ex-
pansion of the Bloch function (which, in fact, does not
exist) but the multipole expansion of one of its prolonga-
tions, namely that defined by Eq. (40). Finally, it is
worth mentioning that Eqs. (33)—(50) can be illustrated
in a soluble model, namely a constant periodic poten-
tial. "

So far we have seen that the Bloch-periodic extension
lP"(e,E„,r) of the Bloch function %(x,E„,p) can be
represented, in complete analogy to Eq. (19), as an on-
shell su erposition, Eq. (49), of the regular solutions
41 (E»/, r) corresponding to the potential Vd which are
not Bloch periodic. Accordingly, the Bloch function,
when restricted to the unit cell, can be represented as
given by Eq. (50b).

How can we use this information in order to compute
the band structure and wave functions for a periodic po-
tential'? Clearly, by using Eqs. (49) and (50), not only in
Eq. (34) but in both Eqs. (34) and (40), in order to obtain
a homogeneous linear system for the coeScients
Ar (z,E„). The point here is to properly describe the
Bloch function, as an element of the space %(x), in
terms of the AL (~,E„)coefficients, where we recall that
the sum in Eq. (50) is Bloch periodic in spite of the fact
that each individual term does not have this property.
This point pertains to the description of the Bloch func-
tion, as an element of the Hilbert space of Bloch-
periodic functions, by using multipole expansions. Be-
fore proceeding along this line in the next two sections,
let us 6rst obtain additional insight into the nature of
Eqs. (49) and (50) by comparing the ways in which the
coef5cients ax of the usual plane-wave expansion, Eq.
(32), and the coeScients AL(~, E„), Eqs. (49) and (50),
carry information about the Bloch function %(x,E„,p)
defined by Eq. (31).

It is easy to see that knowing a set of numbers a& in

Eq. (32) fully determines the Bloch function (i.e., both
the energy and the analytical form), whereas knowing
the numbers AI in Eqs. (49) and (50) needs to be supple-
mented with a knowledge of the energy E„(a) which
determines the function 4L(E„',p). This originates in
the fact that Eq. (32) is a superposition in the Hilbert
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space 3V(a), spanned by the (e'"+ 'i')K, whereas Eqs.
(49) and (50) were determined as superpositions in the
linear space of the regular solutions of Eq. (1). More in-

sight can be obtained by using variational principle
language according to which the eigenvalue problem,
Eq. (30) or (31), is equivalent to finding the minimum of
[H "'"(sc) E—] or, alternatively of the Kohn-Rostoker
functional, in the class of Bloch periodic functions, i.e.,
in the Hilbert space &(n). Then, since a superposition
of the (e'"+ 'i')z is already Bloch periodic, the
coefficients ax in Eq. (32) are subject only to the minimi-
zation of [H "'"(a)—E] or, alternatively, of the Kohn-

Rostoker functional. On the contrary, a superposition of
the 4I (E',r), solutions of Eq. (1) with potential Eq.
(29) at arbitrary E, with arbitrary coeflicients AL is not
granted to be Bloch periodic; such a superposition de-
scribes a regular solution of the Schrodinger equation (as
a difFerential equation only), and hence it describes not
only Bloch-periodic functions but the bound states and
scattering states (of the potential Vd) as well. It is there-
fore incorrect to take the minimum of [H "'"(x ) —E] or
of the Kohn-Rostoker functional in the class of such su-
perpositions (because this class of functions is larger
than the class of Bloch-periodic functions).

More precisely, in a variational principle approach, we
have to both (i), restrict the coefficients AL by means of
Eq. (40) (in order to achieve Bloch periodicity) and (ii)
minimize the above functionals. Thus the coeScients
AL in the right-hand side of Eqs. (49) and (50) with arbi-
trary E are not only subject to the minimization of the
above functionals but are also subject to some supple-
mentary conditions as well, in order to assure the Bloch
periodicity expressed by Eqs. (40). Surely, one can for-
get about the last requirement and deal with the
coeScients AL as they satisfy only the above minimiza-
tion condition, which means to break (partially) the
Bloch periodicity. [It is only partially broken, because
the Bloch boundary conditions are also included in the
functions n(a, E'~,p) which are not afFected by the
above procedure. Aside from the present proof and the
claim to be exact, this is equivalent to the procedure
used in Ref. 9.] In this approximation, a superposition

as given by the right-hand side of Eq. (50) at an arbitrary
energy will satisfy the (Bloch periodic) Schrodinger
equation at any interior point of 0, but not on the
boundary. Thus one can equally choose a superposition
of functions which satisfy Eq. (1) with V replaced by
the cell potential V(p). (Motivated by other reasons but
also presented as an exact result, such a superposition
was introduced years ago; subsequently, the need for
"near-field corrections" was pointed out. ' '

) Also, al-
though arrived at in a completely difFerent approach,
this type of superposition has been recently considered
as an approximation.

The difBcult point with the multipole superpositions.
Eqs. (49) and (50), consists in the fact that each term
does not belong to the Hilbert space &(17) spanned by
the functions (e'"++'i')K, but their sum represents such
an element. As a way of circumventing this diSculty,
we may use [in the spirit of the augmented-plane-wave
(APW) method] a mixed representation22 23

4'(lr, E„,p)= +4L (E„'~ (~),p)AL(~, E„), p(p (52a)
L

for those points which belong to the inscribed sphere
SM~ and

i{x+K)p
4'(x, E„,p')= g — a&(ir, E„), pFQ, p) p

(52b)

for the rest of the unit cell hereafter denoted by Q~S
Here, the two sets of coefficients ate(ir, E„) and

Ar (x,E„) are connected by a matching condition for
both function and derivative on the inscribed sphere.
Since there are two independent conditions, one set of
coeScients, say ax, can be eliminated and hence we ob-
tain a condition for the A coeScients. By construction,
this condition expresses the fact that the Bloch function
represented by Eq. (52a) inside the inscribed sphere,
satisfies, in the rest of the unit cell, the Bloch-periodic
Schrodinger equation. We are then left to impose upon
the function, Eq. (52), only the condition of satisfying
the Bloch-periodic Schrodinger equation inside the in-
scribed sphere, i.e., to impose Eq. (34). This results in a
homogeneous system of equations

E 1/2
5L.L — f nz' (ir, E',p)V(p)41 (E'~,p) AL (a)

2 s

E 1/2

+g e i{e+K.).p&E,p p — - dpa a =0 53a
n sM

CO

which, together with the matching condition discussed
above, uniquely determine the eigenenergies E and the 3
coefficients. In the muffin-tin case, Eq. (53a) contains
only the A coef5cients

E 1/2

2 sf nL' (ir, E'i,p)V(p)

(53b)

I

Thus by using Eqs. (36) and (51), we have rediscovered
the KKR equation which, in the present context,
expresses the fact that the 81och function represented by
Eq. (52a) for p (p satisfies the Bloch-periodic
Schrodinger equation but only inside the inscribed
sphere. Hence, Eq. (53b) for E =E„(ir) appears to
represent only a necessary condition for the
coeScients which, in view of the equivalence with Eq.
(30), has to be supplemented with the (above discussed)
relation among the A coefficients expressing the match-
ing between the representations given in Eqs. (52a) and
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(52b). Obviously, Eq. (53b) might represent not only a
necessary but also a suScient condition; however, until
this is proven, we have to consider Eq. (53b}, by con-
struction, only as a necessary condition for the
coeScients.

Coming back to the point that each term in Eq. (50) is
not Bloch periodic but their sum belongs to the space of
Bloch-periodic functions, we have yet another way to
circumvent this diN][culty. Actually, in the limit d = m,
Eq. (49) provides (by constIllctlon) the Bloc11 fuIlctlo11 111

the whole space. Hence, the Bloch function in the unit
cell [which appears in Eq. (34)] can be obtained by a
folding back procedure of the prolongation Eq. (49) for
d = cc', thus the on-shell superposition, Eq. (50), can be
converted into a superposition in the space %(»), which
superposition still preserves the on-shell feature but in a
more general, distribution sense. This will be discussed
in the next section.

IV. SLOCH FUNCTION AND
ON-SHELL PERIOMC GRBITALS

By using Eq. (49) and Eqs. (40) to (42) in the form

g 4z (E„' {»),r) A&(», E„)=Vd(», E„,r)

=e '"' qI"(»,E„,r+R)
(54)

for each R with
~
r+R

~
&d [whose number is n (r)],

Eq. (50) can be written as

where we introduced the functions

q d(» Ei/2 p)= ' ed(» Ei/2 p)
11 P

{56a)

@d (» E1/2
R, ~p+Ri &d

—ia R(yd (E 1/2 +R )

(56b)

@d (» E 1/2 p) C,circ(E )+ d
( E1/2 (57a)

defined at E=E„(»). Note that their energy (at a fixed
»EQ) is allowed to take only the values E„, as in the
Bloch function. This naturally raises the question, what
would be the result if the folding procedure, Eq. (56),
with a fixed» is applied to a regular solution at E&E„.
But before considering this question, we first obtain
more insight into the meaning of Eqs. (54) and (55). Ob-
viously, Eq. (55) represents a step forward in transform-
ing Eq. (50) into a superposition in the Hilbert space
&(»). Actually, the 4I (»,E'/, p) (at any E) satisfy Eq.
(40a) but, apparently, are discontinuous [both
+z(»,E',p) and n (p) are discontinuous]. Thus the
superposition Eq. (55) is not (yet) a superposition of
Bloch-periodic functions, but for any required accuracy
one can find a d for which 4z (»,E'/, p) becomes con-
tinuous and hence Bloch periodic [i.e., C1 I (»,E',p) ex-
actly satisfies Eq. (40a) and within any accuracy Eq.
(40b)]. This can be seen by rewriting Eq. (56a) in the
form

qid(», E„,p}=g 4 ld {»,E„'/ (»),p) A, (»,E„), (55) where we introduced [use was made of Eq. (51)]

~d (» E1/2 )
1

itmt
[e llf R@d(E1/2(p+R))@circ(E1/2p))

II {P) R, ~I+R~(d
(57b)

and taking for an arbitrary d two points p,p'FQ that
are close enough but with nd(p) n(p')—) 1, and finally
using the fact that, according to Eq. (43), the limit
limd „n (p ) is independent of p. [The relations
(54)-(57) are illustrated in Ref. 16 for the soluble case of
a constant periodic potential. )

Now as stated above, the functions defined in Eq. (56)
are not Bloch periodic for they are discontinuous. How-
ever, these functions satisfy Eq. (40a), and the larger the
value of d, the smaller the discontinuities. Then we
might expect that in the limit d = Oc the functions
defined in Eq. (56) become continuous and hence Bloch
periodic. %'e now focus on this limit. Clearly, the ex-
istence of Eqs. (55) and (56) in the limit d = cc, i.e.,

'P'», E„,p)= g 4L (», E„' (»),p) Ai (»,E„),

4L(»,E„',p) = lim CrL(», E„'/,p) as Nn~ cc,
0

(59a}

4 {»E' p)= ge '"' 4 (E' p+R)
R

(59b)

should be determined by the periodicity of the potential
V, defined in Eq. (29). Thus the problem is to show
that the behavior of the regular solutions given by Eq.
(12) with potential Eq. (29) at E=E„justifies the limits
Eqs. (58) and (59). More precisely, the problem is to find
the limits, Eq. (59), by using only Eq. (12) with potential
Eq. {29) at E=E„and thus to rediscover Eq. (58)
without resorting to Eqs. (40), (42), (54), and (55). Ap-
parently, the diSculty here consists in finding the mean-
ing of the limit

N (E'/, r)= lim 4 (E'/2, r),d~ oo

where the regular functions 4L(E'/, r) are defined in
Eq. (12) with potential Eq. (29); for the sake of generali-
ty, we consider an arbitrary E. [This leads to consider-
ing the folding procedure Eq. (56) for a certain» with an
energy, as already stated, dimerent from the Bloch ener-
gies at the point a, and hence to 6nd the meaning of this
folding procedure. ] This is a rather delicate point, and,
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in order to obtain insight, we first recall the soluble case
of a positive constant periodic potential for which (E 1/2 r) ~, ((E—V)'",r), (61b)

ei t K+ K)-r

=&agj, ( ~»+K ~, r)V Qp

Xi'I'L'((»+K)/
~

»+K
~
), (61a)

where, by using Eq. (37), the AL coeKcients are easily
seen to verify their general definition, Eq. (34). By using
translational properties of the Bessel functions, Eqs.
(61) are easily shown' to result in

4L(»,E',p)= lim 41 (»,E',p),
N~~co

' I/2e'"+"'& g(E —V)'"—
~
»+K

~
) ~— V+(»+K)'4L»,E,p =Z, N

K E —V (»+ K)

Thus, by using the relations

f e'""d»=ma„,
0

ge '"' =m +5(»—K),
R K

1 if x=x'
'(K —K') 'R

0 otherwise,

i 'FL ((»+K)/
~
»+K

~
)

(62a)

(62b)

and the decomposition of the 5 function in spherical coordinates, we find that the limits Eq. (59) exist in the sense
I /2

f e'" "4r (»,E'~,p)d»=co
h

' E —V j ((E —v)'~', p+R),

+4L (»,E'~,p) +a)
' I/2

(»+K) ' Y'L((»+K)/~ »+K
~

}V+(»+K)

i(K+ K).p
if E = V+(»+K) (64b)

0 otherwise,

and hence we have rediscovered Eq. (58). (There are, of
course, other properties as well but we confine ourselves
here to only those needed for the band-structure equa-
tion. ) Essentially, we have seen in this example that, in
the limit d = ao, the function 4L(»,E',p) becomes a
superposition, Eq. (62b), of the corresponding Bloch
functions, where the coeScients are not numbers but
rather distributions which exist in the sense of Eq. (64);
also, the energy dependence appears only by means of a
5 function. Thus in the case of a constant periodic po-
tential, the meaning of the folding procedure, Eq. (59),
can be summarized as follows: the regular solution, Eq.
(12) with potential Eq. (29), when folded according to
Eq. (56), will select in the limit d = 00 and in the sense of
Eq. (64) only the Bloch energies. In other words, the
4L (»,E'~,p) are Bloch periodic in the sense of Eq. (62)
and they represent, in the sense of Eq. (64), an on-shell
base for the Bloch functions defined by Eq. (31}. Taking
this particular result as a hint, we now focus on the case
of a general periodic potential.

In this case, a complete analysis of the limit Eq. (60)
pertains to the theory of difFerential equations with
periodic coelicients and, in fact, consists in analyzing
the Hamiltonian [acting in L (R )]

(65)

when d ~ oo. (A soluble model, Kronnig-Penney with 5
functions, can be found in Grossman et al. ') Here, we
confine ourselves only to those properties which give
sense to the folding procedure Eqs. (56) and (59). Thus
we notice [from the normalization, Eq. (25) and theorem
XIII 98 in Reed and Simon'] that for any finite d, ir-
respective of E, we have the expansion

4L (E'~, r) = g f 1» %(»,E„,r)4 &~(»,E„,E'~ ), (66)

where the coef6cients are given by

4 I (»,E„,E ' )= f,%'*(»,E„,r )4L (E', r )d r

and have the property

f, ~

4L(E', r)
~

dr= g f 1»
~
41(»,E„,E' )

~

n

(68)

In Eqs. (67)—(68), +(»,E„,r) represents the (Bloch
periodic) prolongation, Eq. (40), of the Bloch function
%(E»„,p} defined by Eq. (30) or (31). Also, from Eqs.
(12}and (49) we find
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pe, ,(E'/2, a)A, (,E„) —i K..p
V~= f (73b)

E 1/2

= AL (z,E„)— f nL' (sc,E„',p)V(p)

Xq/(~, E„,p)dp

where nt (x,E'/, p) denotes the function

we find the limit d = ao of Eq. (72b) in the form

(E —p )ki (E'/, p)= QV~4L(E', p —K), (74)

which further becomes [from Eqs. (26) and (73b)]

[E (~+—K)'g, (E'",~+K)
nL (~,E '/, p) =

R„ I p+R
~

&d

e
—ir Rn (E1/2 p+R) = g VK ~ C&L (E'/, ~+K'), (75)

K'

which, in the limit d = ao, becomes the function
nL (z,E'/ p) given in Eq. (35). Then in the limit d = 00,
we find, by using Eq. (34), that the right-hand side of Eq.
(69) becomes zero. Since [from Eq. (35)] the coefficients
AL (ir, E„)are difFerent from zero, it follows that

(71)

Hence we have shown that the Bloch energies represent
the limit d = 00 of the bound-state energies, Eq. (22), of
the Hamiltonian H defined by Eq. (65). Thus from
theorem XIII 98 in Reed and Simon, ' it follows that the
expansion Eq. (66) at a Bloch energy E=E„(a) with n

and z arbitrary, has a limit when d ~ oo and, moreover,
this limit appears to be an on-shell superposition. '

[That is, when d ~ oo the bound states of Eq. (65) at an
energy Eb,„„~~E„(~)as d~oo become less and less
bounded and, in the limit d = w, they appear to be a su-
perposition of the Bloch functions (with various sc} hav-
ing the same energy as the limit just given. ]

To find this on-shell superposition, we introduce' the
Fourier transform

where ir is arbitrarily chosen in Q. From Eq. (75) we
learn that in the limit d =00, the Fourier transform
4L (E'/, p) has a very particular form: for each irG 0,
the components with p=a'+K are independent of the
components with p'=a'+K'. More than that, Eq. (75)
looks very familiar: if E happens to be an eigenvalue cor-
responding to the wave vector e, i.e., E =E„(~),then the
solutions a K (Ir, E„)of

[E„(ir)—(~+K)']air ——gV~ ~ait (76)

are numbers having the property gz ~
ait(ir, E„)

~
& ao,

they give the Bloch function as a superposition, Eq. (32),
in the Hilbert space %(ir), spanned by the plane waves
(e'"+ 'i')K. If the energy E in Eq. (76) does not
represent an eigenvalue then this equation has only the
trivial (zero) solution. Thus by using the definition of
the 5 function, ' we have, for E =E„,(~') (with arbitrary
n' and ir')

@L(E'/, r)= f d~+4(», E„,r)0

i p.r
@d (E 1/2 r)

e
@d (E i/2 p)ypa' (2~)'" (72a)

x5(E E„(z))AI (x,E„—)

(77)
(E p2)f) d (E 1/2 p) f Pd(p p~)@ 4 (Ei/2 p)gp~

R

'I

f i', Fq(p)4I.(E',p)dp=5rl
R3 E 1/2

(72c)

P'(p)= +5(p —K)VK, (73a)

Hereafter, the limit d~ao is defined by removing the
superscript d, i.e., 4i (E'/, p) = limz „4L(E'/, p)
Since the Fourier transform of the periodic potential,
Eq. (27), is given by

where the coefficients AI (~,E„) are determined from
the boundary conditions Eqs. (72c)

dN. g AL (K,E„)5(E E„(lr))AI (x', E—„)=51Lh
(78)

and use was made of Eqs. (33) and (32). From Eq. (77)
we learn that the function 4i (E'/2, r) can be represent-
ed as a superposition of the Bloch functions with various
x but having the same energy, i.e., an on-shell superposi-
tion, where the coefficients are obtained from the bound-
ary conditions at the origin. By now introducing Eq.
(78) into Eq. (58) and by using the normalization of
Bloch functions (in the whole space} and Eq. (63), one
obtains

1
1

—5„„ for a=x''
lim g AL(a, E„)5(E„(a'}—E„(a'))AL (a', E„)=

0 otherwise,

(79)

which results in
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1
—AL (a', E„.) if E =E„,(a)l

g ~, (~,E„)5(E E—„(~))A,(~,E„) W, (~,E„,)= a
0 0 pg 0 otherw1se .

[Equations (77)—(80) represent the generalization of the
corresponding relations for the case of a constant period-
ic potential' where these equations are easily derived
from the translational properties of the Bessel func-
tions. ' ] Then the function defined in Eqs. (56) and
(59) becomes [compare with Eq. (62) and notice the same
E dependence]

@L(ir, E '~,p) = lim 4L (a.,E '~', p ), (81a)

4L (ir, E',p)= g%'(ir, E„,p)A@5(E E„(K)—)AL (ir, E„)

(81b)

and has the property

dire'" "4L (ir, E''~, p) =co@i(E'~,p+R),
fj

(82a)

O(a, E„,p) if E=E„(a)
5

&0 otherwise

(82b)

[compare with Eq. (64)]. Thus we have found the mean-
ing of the folding procedure, Eq. (56), in the case of a
general periodic potential: The regular solution, Eq. (12)
with potential Eq. (29), at an arbitrary Bloch energy
E„(ir') when folded according to Eq. (56) for a fixed
wave vector, say ir, will select, in the sense of Eq. (57),
only the Bloch energies E„. In other words, we have
shown the existence of the Bloch-periodic orbitals
4L(i,E'~,p), Eq. (811), which form an on-shell base,
Eq. (821), in the Hilbert space of Bloch functions defined
by Eq. (31).

Equations (81) and (82} represent the main result of
this paper. [Ultimately, it is Eq. (82b) which allows us
to show that the band-structure equation derived in Ref.
16 represents an exact result, i.e., it generates the correct
eigenvalues. ] In fact, Eqs. (81) and (82) express the con-
crete (practical) relation between the Hamiltonian Eq.
(65) (acting in the Hilbert space of square integrable
functions) and the Bloch-periodic Hamiltonian (acting in
the Hilbert space spanned by the plane waves
[(e'"+ 'i'/~co)it}. In this sense, Eq. (811) represents
the extension of a result given in theorem XIII 98 in
Reed and Simmon; in the present notation, this result is
written as

(E E„)f,%"(rc,E„,r—)41(E', r)dr

=(E E„)f 4'(x, E„,p—)@L(a,E'~ r)dr=0 (82c)
0

So far, we have derived the existence of a new repre-
sentation of the Bloch function as defined by Eq. (82b):
Among various representations of the Bloch function as

a superposition of Bloch-periodic orbitals, there is only
one (by construction) which also has an on-shell charac-
ter, although in a distribution sense. For completeness,
we briefly compare this result with various related repre-
sentations (complete details can be found in Ref. 16). By
combining the representation given by Eq. (82b) with the
multipole expansion Eq. (38) (which exists only for the
inscribed sphere '

) we are led to the representation'

g 41(E',p) AL (a,E) for p & p
L

4'(z, E,p)= '+4L (ir,E',p)AI (a,E}

for pEQ, p&p,

(82d)

which, at E=E„(ir), is to be compared with that given
by Eq. (52}. By retaining only the first term in the
definition, Eqs. (57) and (59), of the (on-shell Bloch

periodic} orbitals 41 (K,E',p) and introducing the cor-
responding Eq. (82b) into Eq. (34), one obtains a band-
structure equation (derived by other means and claimed
to be an exact result in Ref. 9) which represents a rather
good approximation to the exact result. ' Hence one
might expect that by including the qv correction in Eq.
(57), even for a small d, we may simulate the effect of
many plane waves of Eq. (52). Finally, it needs to be
emphasized that the existence of these on-shell Bloch-
periodic orbitals was inferred solely from the eigenvalue
equation, Eq. (31}—in a similar fashion to the case of a
finite range potential, Eqs. (16)—(19)—and that no addi-
tional conjecture (such as is usually made concerning the
completeness of the expansion functions) was invoked.

At this point one might ask for the difference, if any,
between Eqs. (58) [or rather (821)] and Eq. (50). As al-
ready mentioned at the end of Sec. III, a superposition
of the regular solutions, 4(E',p), is not necessarily
Bloch periodic, whereas a superposition of the orbitals
defined by Eq. (811) will automatically be Bloch periodic
and, providing the coef5cients are properly chosen, will
give the Bloch function, Eq. (821). More precisely, Eq.
(58) or Eq. (82b) (in which each term is Bloch periodic)
is a superposition in the Hilbert space &(e}whereas Eq.
(50) describes the multipole expansion of a function
which coincides with the Bloch function only in a cer-
tain domain, namely, r &d. In this sense, Eq. (50) con-
tains less information than does either Eq. (58) or Eq.
(32).

Actually, the Bloch function defined by Eq. (31) can
be specified either (i) by giving the coefficients in Eq. (32)
or (ii) by giving the coefficients and the regular solutions
4L (E'~, r) in Eq. (49) in the limit d = 00. In (ii), Eq.
(50} corresponds only to a finite d, namely, the radius of
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the circumscribing sphere. However, for the interior
points of the unit cell, Eq. (50) can be approximately
considered' as a superposition in the Hilbert space
&(«) . To show this, we ffrst recall the convergence
property of the Fourier series assume the function

f (x), continuous in [0,2m] and the corresponding
Fourier coeScients

f„= I e '""f(x)dx . (83a)

f(E„,P)= +@i'"(E„,P)AI («,E„), (83b)

where 4~"'(E„'/2, r) are the regular solutions, Eq. (12), of
the cell potential V(p). Long ago, such a superposition
was believed to describe the Bloch function as an exact
result; it 18 now considered as an approximation.

It follows that Eq. (831) coincides with Eq. (13) only
for p(}iI, and therefore, that it correctly describes the
Bloch function only within the inscribed sphere. For
p &p, however, the question is whether or not the sum
in Eq. (831) is convergent. In this respect, we notice
that Eq. (50) was derived from Eq. (31), whereas Eq.
(831) was obtained by taking a particular prolongation of
Eq. (38); also, Eq. (50) can be illustrated in a soluble
case, ' whereas there appears to be no particular case
which shows the convergence of the sum in Eq. (831).
Suppose, however, that the sum in Eq. (831) is conver-
gent for p&iLI (not only for p(iu}, then the question
arises as to its meaning. Clearly, such a superposition
satisfies ihe Schrodinger equation for the cell potential
V(p) (as a differential equation) but its being Bloch
periodic [which has to be derived from Eqs. (34) and
(37)] is very doubtful. Moreover, the representation of
the Bloch function as given by the right-hand side of Eq.
(83b) for pE'Q but p) p can neither be obtained from
the eigenvalue equation, Eq. (31), nor from completeness
considerations [because the Bloch functions and the reg-
ular solutions 4L s(E '/, r) belong to completely different
Hilbert spaces']. Finally, the soluble example of a con-
stant periodic potential' shows that the representation
given by Eqs. (49) and (50) is true whereas that given by
Eq. (831) is not. We conclude, therefore, that the right-
hand side of Eq. (83b) can represent (approximately) the

Then the Fourier series g„e'""f„converges to f (x) if
x &(0,2Ir) and to —,'[f (0)+f(2m. )] at the endpoints. It
follows that the function rI3L"(E',p) corresponding to
d, the radius of the circumscribing sphere, can be
represented at any I'nterior point of 0 as a series of the
plane waves (e""+ 'I')I, whereas on the boundary of
the unit cell this series converges to

1 [@circ(EI/2 +)+cia"R@circ(Ei/2 p+R)]

Thus in every domain included in the interior of the unit
cell, Eq. (50} can be (approximately) handled as a super-
position in the Hilbert space .P(«), i.e., as a superposi-
tion of Bloch-periodic terms.

Now that we have obtained more insight into the
meamng of Eq. (50), we briefiy examine (for complete-
Ilcss) tlic Illcanilig of tile sllpcrposltioli

Bloch function at most in any interior domain of the
unit cell 0 but definitely not at the boundary.

Concluding this section, we have shown that the rnul-

tipole expansions, Eqs. (49) and (50), can be transformed
into an on-shell superposition of Bloch-periodic orbitals.
That is, we have shown the existence of a new base in
the Hilbert space of Bloch-periodic functions which has
an on-shell character. Based on this result, we show in
the next section that the integral eigenvalue equation,
Eq. (31), is equivalent (both necessary and sufficient} to a
homogeneous system of linear equations for the AL

coefficients.

V. BAND-STRUCTURE EQUATION

As discussed at the end of the Sec. II, the band-
structure equation can be obtained by collecting all the
conditions satisfied by the A&(«, E„). In this respect,
the homogeneous system obtained by introducing Eq.
(50b) into Eq. (34) represents only a necessary condition;
for sufficiency it has to be supplemented with the homo-
geneous system obtained by introducing Eq. (56) into Eq.
(40) 32

Now the point is that we can keep track of the condi-
tions given by Eq. (40) by simply using in Eq. (34) the
superposition defined by Eq. (58) where each term be-
longs to the space %(«) in the sense of Eq. (56). Actu-
ally, assume, for a fixed wave vector a and an arbitrary
Bloch energy E (not necessarily at the point «), the fol-
lowing homogeneous linear system

y„C„,(«,E)A, =0,

where both E and AL(N ) are unknown and the matrix
C(«,E ) is defined by

1/2

CII («,E)=5LL — ni («,E,P)V(P)
mE e 1 /2

X@L («,E'/, p)dp,

(85)

which, by using Eqs. (56) and (34), becomes

N
C IL («, E)=5II hm—

Xg AL(«, E„)5(E E„(«))AL.(«,E—) . (86}

By now using Eq. (80) we conclude that Eq. (84) has a
nonzero solution if and only if E happens to be a Bloch
energy at the point «[i.e., E=E„(«)] and the corre-
sponding solution is represented by the AL(«, E„) as
deffned in Eqs. (33) and (34). Thus we have found that
the eigenvalue problem, Eq. (31), in the space &(«) is
equivalent to an algebraic homogeneous linear system,
Eq. (84), similar to the simple case of a finite-range po-
tential, Eqs. (14) and (20), respectively. This finding
represents the main result of the present paper. [The
soluble case of a constant periodic potential can be
found in Ref. 16 where Eq. (84) was derived as a neces-
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sary condition only, but revealed itself to be also a
sufficient condition. ) Equation (84) provides a solution
to the problem of the periodic potential by using the I.
representation and a limiting procedure: For successive
values of d ~ m, the system

g CLL (a', E)AL 0——, (87)

where the matrix C (K,E' ) is defined by

1/2

CLL (K,E)=5LL — nL(a, E,p)V(p)d +E 1/2

XCdL, (K,E'",p)dp (88)

ofkrs a systematic approximation to the Bloch function,
Eq. (31), and in the limit d = co yields the exact result.
In particular, the eigenvalues are solutions of

detC (a,E ) =0 (89)

and, therefore can be approximated by the solutions of

detC (a,E)=0 . (90)

mE'/2
hLL.(K,E)=— f nL(K, E'i,p)V(p)

)(9 dL, (K,E'",p)dp (91)

where the matrix fa'"'(K, E) corresponds to the regular
solution of the potential enclosed by the circumscribing
sphere

pcirc(K E) I circ(E} @circ(K E }

1/2
I'LL'«}=~LL— nL (E,p)V(p)

2 0

The main advantage of Eq. (84) or (87), (which, in
fact, motivated the present analysis) is represented by
the fact that the effect of the structure was partially
separated by means of the Bloch-periodic Neumann
function nL(K, E'~,p) which, in the case of close-packed
lattices, can be further written in terms of the usual
structure constant, Eq. (36). This feature comes from
Eq. (34) which suggested the use of an on-shell represen-
tation for the Bloch function; along this line, it is advan-
tageous to use Eq. (57} to write

C(K,E)=C""(K,E)+ lim bd(K, E),

and the matrix N(K, E} represents the usual structure
constants. ' As we can see, the effects of structure in
Eq. (92) are decoupled from those of the potential; even
more, the structure in Eq. (93) is described by means of
the usual structure constants, as in the KKR equation.
Thus, if we neglect the second term in Eq. (91) and
con6ne ourselves to the case of close-packed lattices, we
obtain the result derived and claimed as exact in Ref. 9:
the structure is not only separated but is also described
by the usual structure constants. It is clearly that the
exact result, Eq. (91},differs from that of Ref. 9 by the
presence of corrections b, which reflect the Bloch period-
icity described within the multipole expansion. It fol-
lows that the result of Ref. 9 [obtained here by simply
introducing Eq. (50b) into Eq. (34)] corresponds to an
approximation which breaks the Bloch periodicity in the
sense that the Bloch function in Eq. (34) is not represent-
ed as a superposition in the space %(K). However, in
view of the convergence properties of the Fourier series
discussed at the end of Sec. IV, Eq. (50b) can be con-
sidered as an approximate superposition in %(K} but
only at the interior points of the unit cell. Since the
Bloch function in this approximation satisfies the
Schrodinger equation only as a difFerential equation (i.e.,
without Bloch-periodic boundary conditions) it can also
be represented as given by Eq. (83b). By introducing Eq.
(83b) into Eq. (34) and again restricting oneself to the
case of close-packed lattices, we obtain a band-structure
equation which was first derived and claimed as an exact
result in Ref. 6. Subsequently, this equation was shown
(by using either theoretical considerations,

or by computational means' or by studying a soluble ex-
ample' ) to represent only an approximate result. Re-
cently, however, Ref. 10 claims to have proven that such
an equation represents an exact result. In Ref. 16, we
showed that the results presented in Refs. 9 and 10 as
exact results correspond, in fact, to the same approxima-
tion which we call the "generalized muIn-tin approxi-
mation. "

Alternatively, the relation between structure and po-
tential in Eq. (91) can be studied by isolating, with the
help of Eq. (82d), the muffin-tin contribution

C(K,E}=C™(,E)
g 1/2

—lim f „nL {K,E,p)V(p)d~ oo 2 ASS

&(4 L (a,E,p)dp,
X@L"(E,p)dp, (92) C"'(K,E)=r"'(K,E) N(K, E)Z"'(K—,E) (94)

1 /2
@c~lfc(» E) nL (K,E,P)V(p)@L"'(E,p)dp .

2 Q

Now in the case of close-packed lattices, we have
[from Eq. (36)]

C""(KE)=I"""(E)—N(a E)X""(E)

1/2
~LL'(E}= J JL(E P}V(P}@L'(E P}dP2 0

where the matrices are obtained from Eqs. (92) and (93b)
by replacing the function @""with the function 4M .
Now compare Eq. (94) with Eq. (53a); since in Eq. (52b)
each term alone does not satisfy the Schrodinger equa-
tion, we have to consider in Eq. (53a) many plane waves.
By contrast, Eq. (58) represents an on-shell superposition
which, by retaining only the first term in Eq. (57a), coin-
cides with an approximate result" that was already seen
to yield good accuracy. ' It then appears plausible that
including the second term in Eq. (94) [or considering the
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b, correction in Eq. (91}]will be equivalent to the in-

clusion of many plane waves in Eq. (53a).
Equations (84)-(91) were first derived in Ref. 16

where they reflected only a necessary condition which,
however, happens to also be sufhcient in the soluble case
of constant periodic potential. [In fact, the sufliciency
proof contained in Eqs. (54}-(86) was inspired by this
case.] Reference 16 also contains a detailed discussion
of the b, corrections (called, after their effect, "multipole
expansion periodicity corrections") including the illus-
tration of their role in a soluble case as well as the cir-
cumstances in which these corrections might be disre-
garded (the generahzed muffin-tin approximation).

Finally, the striking resemblance of Eq. (85} with the
corresponding equation for a Suite-range potential, Eq.
(22b), raises the question as to the possible meaning of
the X and I matrices in the sense of (generalized) phase
shifts depending not only on E but also on x. In fact,
such a meaning is brought about by a study of the T
operator corresponding to a general periodic potential3
and, perhaps more relevant, by finding a Friedel-type
sum rule for a general periodic potential. s

VI. SUMMARY AND CONCI USIONS

%e have developed a method to solve the boundary
condition problem of a differential equation by express-
ing the corresponding solution as a superposition of the
independent solutions of this differential equation (in a
Wronskian sense}. The coefficients of this superposition
are determined from an algebraic linear system which
expresses the boundary conditions. (Note that in a diag-
onalization procedure the boundary conditions are al-
ways satisfied and the corresponding linear system ex-

pressed the solution of the differential equation. ) Hence
the main virtue of our procedure consists of treating on
an equal footing various boundary conditions, in particu-

lar Bloch-periodic boundary conditions and those for a
Hamiltonian with finite-range potential. However, while
the implementation of this method is almost trivial in
the case of a 6nite-range potential, the case of a periodic
potential raises the problem of describing the Bloch
periodicity by using multipole expansions. Thus we 6rst
described the (Bloch periodic) prolongation of the Bloch
function in an arbitrary sphere as a multipole expansion
and, subsequently, by using a folding procedure, we
found the Bloch function as an on-shell superposition of
Bloch-periodic orbitals. The crucial point in obtaining
this representation was expressed by Eqs. (81) and (82),
which established the existence of a new base in the
space of Bloch-periodic functions. By using these equa-
tions, we demonstrated the equivalence between the in-

tegral eigenvalue equation of the Bloch function and an
algebraic homogeneous linear system of equations (first
introduced in Ref. 16) for the coefficients of the mul-

tipole expansion of the Bloch function at the origin. In
contrast to the KKR equation, this system exhibits a
supplementary structure dependence which does not al-
low for the structure to be separated from the potential.
However, this supplementary structure dependence can
be isolated in the form of a correction (multipole expan-
sion periodicity correction' ) which, ultimately, assures
the equivalence mentioned above (an example was previ-
ously considered for the soluble case of a constant
periodic potential. )' Finally, the band-structure equa-
tion derived here (for a general periodic potential) coin-
cides with the equation of the poles of the on-shell T ma-
trix recently determined in Ref. 35 by establishing (and
using) a direct integral decomposition of the T operator
for a general periodic potential.
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Phys. 60, 187 (1985).
As usual, the potential is allowed to be singular at the origin
at most as 1/p '-, e&0. In view of using the variable-phase
method, i.e., Eqs. (12c) and (13c), to compute the functions
defined in Eqs. (12a)-(13b) we need the supplementary con-
dition that the potential is spherically symmetric at the ori-
gin„ that is VLL (p)~5« /p ' as p~0. (This condition is
required by the behavior of Bessel and Neumann functions
at the origin. ) In order to compute the solutions of Eqs.
{12c)and (13c) for potential Eq. (29) we should make a cutoff
near the origin, and, obviously, the larger d is, the higher L
should be, which is not convenient for practical computa-
tion. However, as will be seen later, it is not necessary to
consider large d in practice. Without introducing this cutol;
the potential is singular at the origin, and hence at any lat-
tice vector r=R; Eqs. (12a)-(13b) still have solutions which,
however„can no longer be computed with Eqs. (12c) and
(13c}across the spheres having radius R. In this case, (as
well as in the case of many atoms per unit cell} the solution
should be computed around each unit cell center and after-
wards matched on an intermediary sphere or, alternatively,
along the computational lines introduced in Ref. 14.

~9%e discuss here only the case of positive energy. For
E ~0, we should replace the kernel of the (Bloch periodic)
Green function in Eqs. (14) and (31) according to

E ]]/2&cosE' r~e ' E' '. This results in everywhere changing
E' '~i( —E)' ~ and nL ~jr +inL.
M. Danos and L. C. Maximon, J. Math. Phys. 6, 766 (1964),

2'J. M. Ziman, in Sohd State Physics (Academic, New York,
1971},Vol. 26.

2The Bloch function obeys an ordinary Schrodinger equation
with potential V" inside the inscribed sphere. In this
domain the Laplacian can be separated in spherical coordi-
nates and the orthogonality of spherical functions can be
used to obtain a coupled channel equation for multipole mo-

ments which finally results in Eq. (38). See also Ref. 23
below.
The philosophy behind the introduction of the function
Ve(tt, E„,r) can be summarized as follows: A function f"(p)
defined on a nonspherical domain 0 does not have a mul-

tipole ex ansion, for we can calculate the integrals
fP(p) =

~
I't. (p)f"(p)dp only for those spheres which are

included in Q. However, we can build up various prolonga-
tions f (r) defined in the circumscribing sphere S of II, and
having the ProPerty f"(P)=fs(r)

~ „ec„.Every Prolonga-
tion f (r) has a multipole expansion and we also have

f"(p )= g &t. {r )fL ( r )

However, this is not a multipole expansion of f"{p),for, in
particular, it is nonunique. %'e choose, in the text, a Bloch-
periodic prolongation only because its equation can be easily
obtained from Eq. (31). Note that in contrast to the Bloch
function %'(F,E„,p}, the functions Mz, (E',p) exist for any
energy; hence the notation. We omit the x dependence of E
in %(~,E„,p) and AL (x,E„), but keep this dependence in

~&(E]f2(z') p), j&(E„»(z),p), +L {z„E„'2(pc},p), and, later

on, in every function which, in contrast to the Bloch func-

tion, contains the energy E and x as independent variables.
24Because their expansion [as elements of L~(R'), cf. Eq. (25)

and theorem XII 98 in Reed and Simmon'] in terms of the
Bloch functions, Eq. (66), contains all the wave vectors
«CQ. A more detailed analysis of the regular solution fol-

lows in Sec. IV.
~5The matrix elements Vl"L (r) have selection rules given by the

crystal symmetry, which reduces the dimension of the I.
space. Alternatively, one can work from the beginning with

superpositions of spherical functions having the lattice sym-

metry.
zsThe representation, Eq. (50), was previously addressed'9 but

only for d, the radius of the circumscribing sphere, and
without introducing the coef6cients A&(~,E) as derived in

Eqs. (33) and (34).
~In the case of a constant potential, the function 4L(E', r),
E)0, still remains an element of L (I') in the sense of

f je(Ei/2 t)j (Ei/2 r)Edr=5 5(gi/2 g'I/2)

which guarantees the existence of the Fourier transform

&iP r Z( E1/2)

and

IP r

(2~)'"
= g jt, (p, r)i'I't'. (p),

which, in turn, makes the limits Eqs. (58) and (59) obvious.
This type of property is not apparent in the general case of
an arbitrary potential. Then, in order to still get some illus-

trative information, we avoided'6 the use of the above nor-
malization and confined ourselves only to the use of transla-
tional properties of the Bessel functions. 2 Later on, the
treatment of the general potential will consist of finding a re-
lation which expresses 4L(E', r) in terms of %'(a,E„,r)
which, in fact, generalizes the above Fourier transform, and
hence makes the translational properties of 41 (E', r) obvi-
Ous.

2sJ. Callaway, Quantum Theory of the Solid State {Academic
New York, 1974).

2sln fact, Eqs. (64) represent a complementary point of view to
that illustrated by Eqs. (58). Actually, Eqs. (58) [derived
from the eigenvalue equation (31)] gives the Bloch function
as an on-shell superposition of periodic orbitals defined in
Eq. (59), whereas Eq. (64) says that the periodic orbitals
defined in Eq. (62) [and derived from Eq. (12) and from the
translational properties of Bessel functions (36)] exist as an
on-shell base in the space of Bloch functions.

3oOne might say that Eq. (22a) with potential Eq. (29) has no
solutions for a positive potential because a particle at a posi-
tive energy will be able to tunnel any (finite) wall and eventu-
ally reach infinity. [That is, the Hamiltonian, Eq. (65), has
no bound states for a positive potential. ] However, accord-
ing to Eastham and Kalf (Ref. 2) "this guess is wrong be-
cause it does not take account of the possibility that a suc-
cession of well arranged bumps at suScient height might
create a standing wave pattern and thus trap the particle. "
The first such example was given by von Neumann and
Wigner (in 1929} and an extensive discussion of this point
can be found in Eastham and Kalf (Ref. 2}.

3iThis result can be easily checked in the case of a constant po-
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tential, where the regular solution is known and its Fourier
transform was given in Ref. 27. Details concerning the
definition of the 5 function as solution of the (functional)
equation x5(x)=0 can be found, e.g., in J. Schwinger,
Quamtutn Kinematics and Dynttrnics (Benjamin, New York,
1970).

An approximate (and perhaps computationally convenient)
result can be obtained by adding to the equation obtained by
introducing Eq. (50b) into Eqs. (34) the system of equations
obtained by considering Eqs. (50b) and (40a) on a grid on the
surface of the unit cell.

38ecause the Bloch function, as an element of the Hilbert
space JV(tt), is described by Eq. (58) and not by Eq. (50).

34Essentially, this result was obtained by using Eq. (80). Alter-
natively (in a more formal way), one can say that Eq. (34)
expresses a property which holds in the Hilbert space of
Bloch-periodic functions. Then the use of representation Eq.
(58) or (82b) in Eq. (34) becomes mandatory. Yet we do not
know whether Eq. (84) gives the same band structure as that
given by the plane-wave diagonalization or has other roots
as well; hence the need for the proof contained in Eqs. {85)
and {86),which relies on the results derived in Sec. IV.

5E. Badralexe and A. J. Freeman, Phys. Rev. B 36, 1401
(1987).

6E. Badralexe and A. J. Freeman, Phys. Rev. 8 36, 1389
(1987).


