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The electronic band-structure calculation of metals using a spherical cellular method is re-
viewed. The empty-lattice test is applied to the model, and the limitations of the model are dis-

cussed. A formula for the pressure in the local-density approximation derived earlier by Janak is

shown by a scaling method to be valid for the spherical calculation. First-principles local-density-
functional calculations of metals using the spherical cellular method are presented. The band
structure of three typical metals, Na, Al, and Cu, are given and compared with the calculations of
Moruzzi, Janak, and Williams (MJ%'). The total energy, equilibrium radius, cohesive energy, bulk

modulus, and chemical potential are obtained for H, Li, Na, K, Rb, Mg, Al, and Cu and com-
pared with the results of MJW and experiment. The agreement with MJW is good, particularly
for alkali metals, e.g., less than 10' disagreement is found for the cohesive energy of sodium.
Our analysis as well as the numerical results suggest that the spherical cellular method works well

for sp bands, but less well for d bands.

I. INTRODUCTION

This paper presents self-consistent local-density-
functional calculations of metals, in which the band
structure is calculated by a simplified spherical cellular
method. The electronic properties of metals, i.e.,
cohesive energy, band structure, equilibrium density,
etc. , have been extensively tabulated by Moruzzi, Janak,
and Williams (MJW). ' While this work is quite
comprehensive, we have found a need for calculated
values of these and related quantities beyond those pro-
vided by MJW. For instance, in the calculation of the
energy of a positron in a metal at arbitrary volume, one
requires the electronic density and, especially, the inter-
nal chemical potential at a given crystal volume, general-
ly diferent from the equilibrium volume at zero temper-
ature. As another example, in the pseudojellium model
of the properties of nonuniform metals, e.g., an AB aI-
loy or a bimetallic interface, one requires the cohesive
energy and the internal chemical potential as a functions
of average electronic and ionic densities, where due to
charge transfer the individual cells are not necessarily
neutral.

It is of course not feasible to tabulate such quantities
for every conceivable range of parameters; rather, what

is needed is a relatively simple method for calculating
these quantities with reasonable accuracy and computa-
tional eSciency. The purpose of our study is, therefore,
not to provide an alternative method for obtaining the
results already calculated by MJW, but to enable us to
extend their results to a wider range of conditions. A
main goal of this paper is to study the reliability of the
spherical cellular method and to examine the conditions
under which it can be expected to produce reasonable
numerical results.

The cellular method, of which we use a simplified ver-
sion, was used by signer and Seitz to calculate the
k =0 wave function of the 3s conduction band of sodi-
um. There have been continued attempts to make the
cellular method more practical and accurate, but since
we are interested in a simplified version we only mention
two important improvements. One is the use of symme-
try for a more eScient expansion of the wave function,
and the other is the application of variational principles
to the fitting of the boundary conditions over the surface
of the ce11.

In the spherical cellular model (SCM) we replace the
Wigner-Seitz polyhedron by a sphere of equivalent
volume and define a set of boundary conditions on the
surface of the sphere to simulate the Bloch conditions.
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Together with a central potential, we can expand the
wave functions in the spherical harmonics and easily
solve this simpli6ed model. A drawback of this model is
that periodicity is lost, because spheres cannot be space-
filling cells, neither can the band structure thus obtained
be periodic in a reciprocal lattice. However, if the posi-
tion and the width of the bands are well reproduced, the
model can be very useful for certain applications. We
also note that the differences in the total energy of met-
als calculated for different crystal structures, e.g., bcc
and fcc, tend to be a small fraction of their cohesive en-
ergy. Thus one can hope that SCM, which represents an
"average" over different structures, should lead to a total
energy in reasonable agreement with the full lattice cal-
culations.

The formalism of the SCM was developed by Brooks
who used it in the calculation of the cohesive energy of
the alkali metals. It has been generalized by
Gandel'man and by Berggren and Froman' to include
higher bands and it has been used in the study of metals
under compression. " Density-functional calculations
based on spherical cellular methods have been performed
by Tong, ' who calculated the cohesive energy of sodi-
um, and by Zaremba who applied the method to the

I

heat of formation of alloys. ' In these applications only
s-wave derived bands were considered.

In Sec. II we review the formalism of the SCM and
describe the procedure for self-consistent calculations,
and also rederive a formula for the pressure of the cell,
using the scaling method. In Sec. III we analyze the
model by making use of the empty lattice test and the
symmetries of the wave functions. In Sec. IV we present
the results of numerical calculations of several metals
and compare them with other calculations and with ex-
perimental results. Section V contains a summary and
d.lscussions.

II. THEORY

A. Spherical cellular method and self-consistent calculations

The formalism of the SCM reviewed in this section is
similar to the derivations of Refs. 9 and 10, though it
was developed independently. %'e shall use atomic units
for length and Rydbergs for energy. It is convenient to
write the boundary conditions on the spherical cell with
the phase factor exp(2ikR, cos8) distributed on both
sides of the equation:

e ' Vk(r, 8,$)=e * %k(r, rr 8,$+m ),—
ikS, coss—Q ikR, cosS i)

e * +k(r, 8,$) „„=—e '
haik(r, n8, p+.m—),

dr Br

(la)

(lb)

where R, is the radius of the spherical cell. We point
out a difFerence in the way the boundary conditions are
fitted on a Wigner-Seitz polyhedron as compared to
fitting them on a sphere In. a polyhedron the boundary
conditions are applied to a pair of points r and r' on op-
posite faces related by reflection in a plane parallel to the
faces, whereas Eqs. (1) are applied to the pair of points r
and —r related by inversion (see Fig. 1). Obviously, the
difference will be small if the polyhedron is nearly spher-
ical and its faces are small. We shall return to this point
in the discussion of the empty lattice test.

It is important that the Hamiltonian is Hermitian
with respect to the space of the functions satisfying Eqs.
(1). To check this we consider the kinetic energy of a
wave function that satis6es these boundary conditions:

f 4'( —V )%dr= —f V (qi'Vqi)dr

+ f Vqi' Vqidr

= f qi'Vqi. dS+ f Vqi'. Vqidr .
S V

(2)

I

butions from r and —r cancel each other for each r on
the surface.

We note that an axis of symmetry along k is implied
by Eq. (1), and that for zero k, spherical symmetry is re-
stored. The states at k=0 are, therefore (21+1)-fold
degenerate and can be labeled by the l and m quantum
numbers. For states of even and odd parity under inver-
sion, corresponding to even and odd 1, the boundary
conditions simplify to 4'k 0(Rs)=0 and 'Pk 0(Rs)=0,
respectively. For k&Q, the eigenstates become admix-
tures of different I; however, m remains a good quantum
number, with bands of given

~

m
~

remaining doubly de-
generate for

~

m
~

&0. Assuming the efFective potential
has spherical symmetry, we can expand the wave func-
tions in spherical harmonics

It would be enough to show that the surface integral is
zero. From Eq. (1) it follows that

,Bqi(r), i)+( —r)
dr " ~ Br

and this makes the surface integral zero, because contri-

(a)

FIG. 1. The boundary conditions are applied to a pair of
points r and —r, (a) in a %'igner-Seitz polyhedron and (b) in its
spherical cell equivalent.
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%k(r)= g i'Ai~Yp(8, $)Ri(Ek, r),
I=m

where u&(r) =rR&(r) satisfies the radial equation

Bi Rl(EI Rs)I!7(kRs) ——0, even I-
I=m

(6a)

g i'Bi Ri(Ek, Rs)Iir (kRs)=0, odd I. ,
I=m

where

d Q —i'& cos8
Iil (kRs)= e Pi ( cos8)PL ( cos8),

2m

(6b)

' t/2
21+1 (i —m)!

4ir ( i +m )!

The matrix I&L is most conveniently calculated by
direct quadrature. Expanding the exponential plane
wave term in spherical Bessel functions as in Brooks
yields a less eflicient expression for numerical evaluation.
The band energies are found for given k and m using
Eqs. (6) by locating the zero of the determinant of the
coeScients that multiply the 8&, using an interpolation
method.

The effective potential V(r) in Eq. (5), as obtained
from a self-consistent all-electron density-functional cal-
culation, '" is given by

+[E—V(r) i(—1+1)]u&——0 .
dr

The energy Ek depends only on the magnitude of k since
there is no preferred direction for k.

If we substitute Eq. (4) into Eq. (1), multiply by
YI '( 8,$ ), and integrate over angle, we obtain

In order to make our results as comparable as possible
with those of MJ%, we use the Hedin-Lundqvist param-
etrization for e„,:

e„,= — ' —0.0456(x),0.916
rg

(12)

with x =rs/21. Here rs is the radius parameter related
to density by p '=4m. rs/3, and

G(x)=(1+xi) ln(1+1/x) —x +x/2 ——,
' . (13)

B. Total energy and pressure

The total energy is

E =T+U+E„, , (14)

where the kinetic energy is given by

T = g f ql'i( —V'i)%, dr= pe; —f p(r)V(r)dr,

Numerical solutions for energy eigenvalues, ek, and
eigenfunctions, in terms of the A&, are obtained from
Eq. (6). A total of 8 to 12 values of k were calculated
for each band. Termination of the infinite sums atI,„=6 was found to be adequate, i.e, , increasing I,„
did not change the results significantly. The radial func-
tions RI were obtained from a numerical solution of the
radial equation. In order to obtain a starting potential
for the band-structure calculation, we simply used the
potential of the bare nucleus, and performed several
iterations with k =0 boundary conditions for all states.
Self-consistency was achieved in about a total of 20
iterations.

the sum extending over all the occupied states, and the
potential energy is given by

where the first two terms are the electrostatic potential
and p„,(r) is the effective exchange-correlation potential.
The electron density for band m is given by

I

U= f p(r) dr+ f fP, drdr' .
r , r —r'I (16)

pill�

( r )
I
q'k«) I' (10)

%e restricted the summation to a spherical zone having
the same volume as the first Brillouin zone. For states
suSciently far below EF, i.e., core levels, 4'k can be re-
placed by %'k 0. The total density is the sum of all band
and core densities. The Fermi energy, and hence the
Fermi momentum, is in general determined by the total
number of electrons. The Fermi surface is spherical in
the SCM, so for metals with only a single band present
at the Fermi level, k+ will be given by (9~/4)' 1/Rs
for a half-filled band or (9ir/2)' 1/Rs for a completely
filled band. Equation (10) implies that the density and,
consequently, the potential is spherically symmetric.

%'e used the local-density approximation of the
exchange-correlation potential

The last term in Eq. (14) is the exchange-correlation en-

ergy given in the local-density approximation by

F.„,= f p(r)e„,(p(r)}dr, (17)

with e„, given by Eq. (12}. The integrals are carried out
within the unit cell, r ~R&, in the SCM there are no
corrections due to intercell interactions.

A numerical calculation of the pressure, requiring
several calculations of energy at various values of R&,
can be based on

p dE 1 dE
4 R2 dR

It is, however, more useful to have a formula for the
pressure requiring a single calculation at a particular Rz.
Such a formula was obtained by Janak by considering
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FIG. 2. Comparison of the empty lattice band structures for (a) a spherical cell and, (b) and {c),special symmetry directions of
bcc and fcc lattices, respectively. The cells are adjusted to have the same volume, so that with R, =1, a&, ——(Sn./3)' ' and
a&„——(16m/3)' . The I point of each band is labeled, in (a), by the angular momentum quantum number I and, in (b} and (c), by
their representations of the cubic point group. The bands in (a) are specified by the m quantum number; for zero m values they are
nondegenerate and otherwise doubly degenerate. The numbers next to the bands in (b) and (c) are the degeneracies of the bands.
In all three cases the 6rst band is given by e=k'.

the expectation value of the r V operator. This ap-
proach involves the evaluation of surface integrals of the
polyhedral cell, making it diScult to verify with the
boundary conditions of Eq. (1). We derive the same for-
mula by an approach used by Slater' to derive the virial
theorem and pressure equation in the Xo. approximation.

In this approach one apphes the variational principle
to a particular set of scaled trial wave functions. To ob-
tain this set, we imagine solving the same Hamiltonian
but for a cell of radius A.E.&, calling the wave functions

P;(r, AR&). The norm preserving scaled wave functions

T =A, 'T(A,Rs) (21)

U =A, U(ARs),

where T(ARs ) and U(ARs ) are the kinetic and potential
energies of the system of radius ARs. So far this is fol-
lowing Slater's derivation, but the exchange-correlation
energy, not necessarily being a homogeneous function of
the coordinates, scales differently:

4;(r)=A, P;(Ar, AR, )

can then be used as trial wave functions for the original
problem. The corresponding densities are related by

p(r) =Aw(Ar, A,,Rs ),

E„,= Ip(r)e„,(p(r))dr

= I w(Ar)e„, (A, w(Ar))d(A~r)

= I w(r)e„,(A~w(r))dr . (23)

~h~re p(r)= g, ~%', (r) ~' and w(r)= g,. ~P, (r)
~

with the sums extending over all the occupied states.
Substituting these forms for the wave function and the
density in Eqs. (15) and (16) for the kinetic and potential
energy, it is obvious that

Since the Kohn-Sham wave functions for the k= 1 prob-
lem exactly minimize the energy functional of Eq. (14), a
modified virial theorem can now be found by applying
the variational principle, dE/d A,

~ z, ——0,

TABLE I. I -point energies and corresponding group representations for SCM, bcc, and fcc cells of
equal volume. The numbers in parentheses are the degeneracies of the levels. The entries of each row
are selected according to the correspondence between the representations as given by Eq. (29).

0.0 0.0 0.0

I Iq{2)
I pg(3)

18.09
24.12

I zs(3)
I Iq(2)

I,(1)
I 15(3)

18.09
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FIG. 3. Empty lattice DOS obtained by the spherical cellu-
lar method. Also shown is the exact free particle DOS-e'
The section of the first band, that is, e ~ (9m/2), is exact, but
the sections of the higher bands are only on rough agreement
with the exact result, The SCM has introduced arti6cial gaps
and infinities in the density of states.

FIG. 4. Band structure of sodium, (a) from MJW and (b)
calculated by the SCM, for an r~ derived from the tabulated
lattice constants of MJ%'. The Fermi energy, for both cases, is
drawn at the same level for comparison. The zero in (a) refers
to the mu5n-tin potential, but in (b) it refers to the electrostat-
ic potential. Below Ez, , the bands are in excellent agreement.

dr .
A. =1

From Eq. (18), with v =4nRs/3 volume of the cell, it
follows that

In the last term we have

(24) 3Pv =2T + U —3 J p(e„, p„,)d r .— (27)

Be„,(A, p) de„,
3k'p

d

d6xe
Together with the LDA result, p„,=p +e„„and

dp
Eq. (25) we can rewrite Eq. (24) as

dE
~s = —2T—U+ 3 p Exc pxc

s

This is the formula obtained by nanak. It will be used in
the following to provide a check for the numerical accu-
racy of our calculations, since P as calculated by Eq. (27)
or Eq. (18) must agree.

III. EMPTY I,ATTICK TEST

Free electrons with wave functions 4& ——exp(ik r) and
energy e=k provide a simple test of a band-structure
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FIG. 5. Same as Fig. 4, but for aluminum. The overall
agreement is quite good, although the second band is Aatter in
the SCM calculation.

FIG. 6. Same as Fig. 4, but for copper. Hybridization be-
tween s and d bands ean be seen in both cases. In the SCM,
hybridization is the result of the fact that the I =0 levels can-
not cross. The bandwidths, below EF, are quite similar, and
the d bands are in rough agreement, in both location and band-
width.
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TABLE II. Energies of special points in Rydbergs (relative to Fermi energy). Degeneracy of a
point is given in parentheses. The radii are derived from the tabulated lattice constants of MJ%'. The
spherical cell radius is r, n ' ' where n is the valency.

Zone center
MJ%' This work

I point

—0.254

Zone edge
MJ% This work

X point Z point

0.129

—0.823 —0.818
—0.208
—0.131

—0.387

—0.202

—0.085

2.64

—0.692
—0.238(3)

—0.713

—0.364(5)

—0.344
—0.234

—0.117(2)

—0.314
—0.158(2)

—0.221(2)

0.120 0.225

calculation. plane waves are seen to satisfy the bound-
ary conditions of the spherical cellular model, with
e=k, and are exact solutions. However, the band
structure obtained from SCM is not periodic in lt space,
and jts properties have to be investigated in the reduced
zone. %e restrict k to a sphere of the same volume as
the first Brillouin zone giving a radius of
kz —(9m /2) 'r31/Rs, satisfying

R k =(2n)s 3 Z

In Fig. 2 are shown the empty lattice band structures of
the SCM, fcc and bcc lattices for special directions of
high symmetry. ' %e point out that in the SCM the
band structure does not depend on the direction of k,
whereas in the real lattices it does. The lowest band,
which does not depend on the structure, is given correct-
ly by SCM as e=k, but the higher bands depend on the
structure and cannot be compared. A direct quantita-
tive comparison„except a semiquantitative one at k=0,
is not useful, but the density of states, being a sum over
all directions, can be used for an indirect comparison.

%'e first compare the k=O levels of SCM, bcc and fcc,
including both the values and symmetries. In the SCM,
the atomic levels s,p, d, etc. are shifted but not split; for

free particles, the s and p levels, except for the lowest
band, turn out to be degenerate.

The angular momentum representations, DI, are re-
ducible in terms of the representations of the octahedral
group 0„:"

Do ——I ),

D2=I F2+I z5

(29)

In Table I we compare a few levels at k =0 based on
their symmetries. The s and p levels compare well, but
the d level is considerably lower than the corresponding
levels in bcc and fcc. This disagreement is a conse-
quence of the point we made in Fig. 1, together with the
dift'erent boundary conditions for even and odd parity.
%e recall that for k =0 the boundary condition for even
parity is zero slope and for odd parity zero value. The
zero-slope condition requires less curvature of the wave
function than zero value condition, and thus mill give a
lower energy. (An exponential atomiclike boundary con-
dition will give something in between. ) In a spherical
cell, where parity refers to inversion, one or the other
boundary condition is satis6ed exclusively over the entire

TABLE III. Total energies in Rydbergs of several metals at
the rz used by MJ%'.

TABLE IV. Equilibrium values of rs compared with experi-
mental values and MJ%'. Spherical radius R, is related to the
radius parameter rz by R, =r, n ' where n is the valency.

H
Li
Na
K
Rb
Mg
Al
Cu

1.68
3.16
3.79
4.65
5.03
2.60
2.06
2.64

—1.076
—14.832

—322.985
—1196.448
—5872.525
—398.401
—482.922

—3275.768

Present work

—1.081
—14.839

—322.991
—1196.456
—5872.544
—398.421
—482.912

—3275.803

Metal

Li
Na
K
Rb
Mg
Al
Cu

r,
Experimental

3.25
3.93
4.86
5.20
2.65
2.07
2.67

3.16
3.79
4.65
5.03
2.60
2.06
2.64

rg
Present work

3.07
3.69
4.47
4.65
2.52
2.19
2.60
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TABLE V. Cohesive energy in Rydbergs and bulk modulus in Mbars.

Li
Na
K
Rb
Mg
Al
Cu

ga
Experiment

0.120
0.082
0.069
0.063
0.111
0.249
0.257

0.121
0.082
0.066
0.047
0.124
0.282
0.301

This work

0.131
0.089
0.075
0.071
0.149
0.289
0.346

0.116
0.068
0.032
0.031
0.354
0.722
1.37

0.15
0.09
0.04
0.03
0.41
0.80
1.55

0.16
0.09
0.04
0.03
0.48
1.20
1.80

'Reference 19.

cell surface, but in a %igner-Seitz polyhedron parity
refers to reAcction and s mixture of zero-slope and zero-
value boundary conditions msy have to be satisfied. The
cigcnstates of angular momentum with nonzero I, having
nodal surfaces that pass through the origin, are examples
of this point, whereas the I =0 state hss even parity un-
der both inversion and re6ection. From this we con-
clude that we csn expect ihc SCM to work well for s
states, but less well for p and d states.

We now turn to the other test of the model by the
density of states defined by

)
1 dS

4~'
I

~k& I

(30)

where the integral is over a constant energy surface.
This is simple to calculate for spherical energy surfaces,
which is the case in the SCM for free particles as well as
particles moving in s potential. The exact result for free
particles is given by N(e)=e' /2n . The empty lattice
DOS by the SCM is shown in Fig. 3, which, except for
the first band, shows considerable local deviation.

We conclude this section by saying that for alkali met-
als, with a nearly free-electron spectrum and a single
valence electron, we can expect the SCM to work well.
As more valence electrons are added in aluminum, or d
bands are filled in the transition and noble metals, the
results become less reliable. %e further investigate this
question in the next section by presenting the results of
numerical calculations of several metals,

IV. NUMERICAL CALCULATIONS

In this section we will make extensive use of the tabu-
lated results of MJW to compare with our calculations.
They use the Korringa-Kohn-Rostoker (KKR) method
and the muSn-tin approximation of the potential, but,
otherwise, use the local-density approximation with the
same form of exchange-correlation energy' as this work.

In Figs. 4-6 we compare the band-structure calcula-
tions of three typical metals, sodium, aluminum, and
copper with those of MJ%. In Table lI we list the band
energies at special symmetry points. The band structure
of sodium below the Fermi energy is similar to that of
MJ%', as can be seen from Fig. 4 and Table II. The
similarity between our calculation and MJW is also evi-
dent for aluminum in Fig. 5. For all three metals, the
overall bandwidths (below the Fermi energy) are in good

agreement. For copper, hybridization between s and d
bands can be seen in both Figs. 6(a) and 6(b). In the
SCM calculation, hybridization results because the
m =0 levels cannot cross. The s bands are in good
agreement, but the d bands are only in rough agreement
in location and bandwidth.

In Table III we compare the total energies for several
metals with thc results of MJW. For the alkali metals
we find that several of the topmost core states have large
enough amplitude at Rz that they must be treated as
bands. This is made evident by applying zero-value or
zero-slope boundary conditions to the particular states,
and using the fact that the zero-value condition always
increases the pressure, while the zero-slope condition al-
ways decreases the pressure. If the difFerence in pressure
between the two types of boundary conditions is
significant, then that state must be treated as a band.
The agreement with MJ% for the alkali metals is good;
the discrepancy is in part due to the core states, because
they have s more complicated band structure.

Our equilibrium values of rz, given in Table IV, are,
except for Al, smaller than those of MJ% which are in
turn smaller than experimental values. Again, for alkali
metals, since the minimum of energy versus r, is very
shallow, the equilibrium r, depends on the treatment of
the core levels, and we could have expected better agree-
ment with MJW hsd the core levels been less important.

The results of the calculations for cohesive energy and
bulk modulus are given in Table V and compared with
experimental results' and MJW. Our results for cohen-
sive energies are larger, by 10 to 30%%uo, than the results of
MJ%, the best agreement being for the alkali metals and
the worst for copper. Both theoretical calculations tend
to give higher cohesive energy than experiment, but the
agreement is still quite good. For lithium and sodium
MJ% reproduce the experimental values and our results
are only 8% larger. %'e note that the cohesive energy is
the difference between two large numbers: The total en-
ergy of Table III and the energy of separated atoms.
Thus we regard the agreement obtained as impressive.
Our results for the bulk moduli are virtually the same as
MJ% for alkali metals, but as much as 50% higher for
aluminum snd about 20/o higher for magnesium and
copper. Both theoretica1 calculations tend to give higher
values than experiment.

The values of the chemical potential at two different
volumes are given in Table VI. The chemical potential
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at zero temperature is the Fermi level, measured relative
to the zero of the electrostatic potential. For a neutral
system the electrostatic potential becomes zero on the
surface of the spherical cell. Our values of p are com-
pared with the theoretical values of Weinert and %'at-
son who based their calculations of the chemical poten-
tial on the data MJ%', who tabulate the Fermi energy
only relative to the muSn-tin zero. Our values at the
equilibrium volume of MJW are within 0.2 eV of
Weinert and Watson. We also point out the strong
dependence of the chemical potential on the cell volume.
The chemical potential generally increases in magnitude
with ~, and the increase is of the order of 0.1 eV per 0.1

units increase in r, for the alkali metals and closer to 1

eV for aluminum and copper for the same increase in r„
all near the equilibrium r, . %'e therefore expect p calcu-
lated at the experimental r„rather than the equihbrium

r„ to be the reliable value.

V. SUMMARY

%'e have investigated the use of the spherical cellular
method combined with a self-consistent density-
functional calculation in the calculation of the band
structure and bulk properties of metals. From the emp-
ty lattice test we found that the band structure for sp
bands can be quite accurate. By comparing with the
band structure of three typical metals, Na, Al, and Cu,
this was confirmed for real metals as well. For bands
that develop from the p and d atomic states we found
only rough agreement with more accurate calculations.
We also compared the numerical results for the bulk
properties, w'ith calculations of MJW and experiment.
For cohesive energy we found good agreement with
MJW and experiment, and could explain the discrepan-
cies based on the analyses of the method. The results for

TABLE VI. Internal chemical potential in eV.

—2.2
—2.2
—2.1

—2. 1

—1.4
—0.2
—0.8

—2.4
—2.3
—2.2
—2.2
—1.9
—0.3
—0.8

—2.2
—2.1
—2.0
—1.8
—1.5
—1.6
—0.4

'Reference 20.
Calculated at rs values of MJ%, given in Table IV.

'Calculated at equilibrium rs values, also given in Table IV.
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equilibrium radii were usually smaller by a few tenths of
atomic units than the results of MJW, and this was attri-
buted in part to the eFect of the core states. The bulk
moduli of alkali metals were in good agreement with the
results of MJW, but for Al, Mg, and Cu the agreement
was only fair. The results for the chemical potential
were in good agreement with the calculation of Weinert
and Watson. We determined the chemical potential at
two diS'erent sets of rz, and found that it varies sensitive-
ly with this parameter. In fact, it is useful to be able to
calculate the chemical potential as a function of volume,
or other parameters, for applications to nonuniform sys-
tems. In conclusion, we have shown that the SCM can
be a relatively convenient way of calculating bulk prop-
erties of metals, and have also analyzed its applicability
and limitations.
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