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With emphasis on the physical interpretation, the structure of a recently constructed electromag-

netic propagator describing, within the framework of the semiclassical infinite-barrier model, the

nonlocal optical properties of adjacent vacuum-metal half-spaces, is analyzed. The tensor-product

structure of the rotational-free and divergence-free parts of the propagator is determined, and the

direct, the indirect, and the self-field contributions are identified. On the basis of a plane-wave ex-

pansion, the physical role of the different propagator terms is studied. The contributions to the

propagator from the collective polariton and plasmon excitations are separated from those stem-

ming from the electron-hole pair excitations. Via a damped-wave picture of the propagator, contact
with a new local propagator formalism of Sipe is established. The flexibility of the present formal-

ism is demonstrated by investigating (i) the excitation of nonlocal surface waves by an oscillating di-

pole and (ii) the concept of surface-dressed dipole polarizability in the nonlocal regime.

I. INTRODUCTION

When studying, for instance, the optical properties of
metals or the behavior of light-excited atoms and mole-
cules near the surface of a metal it is often necessary to
use a nonlocal formalism to describe the response of the
metal to the electromagnetic field. ' A very popular and
physically appealing, nonlocal description is based on the
so-called semiclassical, infinite-barrier (SCIB) model. '

Some problems in metal optics, however, require a
description which goes beyond that of the SCIB model,
and other problems in which light-induced "external"
current densities are added to the bare metal are often
cumbersome to describe even within the framework of
the SCIB model. ' In order to deal with this class of
more diflicult problems, a new type of screened elec-
tromagnetic Green's function associated with wave prop-
agation in adjacent, jellium-vacuum half spaces was con-
structed, recently. ' This propagator, constructed within
the framework of the SCIB model, was obtained from a
linear integro-differential equation, and incorporates in
its propagation characteristics screening effects stemming
from polariton, plasmon, and single-particle excitations
and deexcitations in the jellium. To describe in particular
the influence from plasmon and single-particle effects on
the propagation properties of the electromagnetic field a
nonlocal formalism is required as is well known. '

Within the framework of this nonlocal SCIB description
based on (i) the assumption that the electrons of the jelli-
um are scattered specularly at the surface, and (ii) the
neglect of quantum interference between the incoming
and reflected parts of the wave function of a given elec-
tron, also the reflection and transmission properties of
the field at the sharp-boundary surface were accounted
for. '

In the present work, we shall analyze the structure of
the SCIB propagator in order to gain physical insight in
the propagation characteristics associated with it. Also,
we shall point out, by applying the formalism to a few
problems, the flexibility of the present propagator
description and the clear picture it offers of the physics
involved in a given problem. However, let me emphasize
that the applications of the propagator formalism to a
major analysis of the nonlinear (and linear) electromag-
netic field inside a jellium selvedge and to a detailed study
of the nonlinear (and linear) self-consistent interaction of
two oscillating dipoles placed inside or outside the metal
surface will be postponed to a forthcoming paper.

The present paper is organized as follows. In Sec. II,
first we consider the time and translational invariance of
the propagator. Next, we discuss its tensor-product
structure and various classification schemes. Finally, we
analyze in detail the fourteen terms of the electromagnet-
ic Green's function. Rotational-free and divergence-free
so-called direct, indirect, and self-field contributions are
identified and a physical picture based on superposition
of plane-wave states is established. In Sec. III, the propa-
gator contributions stemming from collective excitations,
i.e., polaritons and plasmons, are investigated, and a
damped-wave picture of the Green's tensor is given. We
close the section by making contact to a recently estab-
lished local propagator formalism of Sipe. In Sec. IV,
we outline some applications of the present dyadic propa-
gator description. Thus, we consider the excitation of
nonlocal surface waves by an oscillating dipole, we men-
tioned the study of elastic and inelastic light scattering
from static and moving surface ripples, and we discuss
the surface-dressed dipole polarizability. The agreement
with the results of others in various limits is demonstrat-
ed.
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II. BASIC PROPERTIES OF THE SCIB PROPAGATOR a Fourier-integral analysis in time, i.e.,

A. Time and translation invariance

Let us consider the general expression for the dyadic
Green's function G(r, r', t, t') associated with adjacent
jellium-vacuum half-spaces. Under the assumption that
the light-unperturbed state of the jellium is time invari-

ant, i.e., t, t' —t —t', t' and t denoting the time of emis-

sion of the field from space point r' in the source region
and the time of observation at space point r, respectively,
a Fourier-integral analysis in time, i.e.,

G(r, r', t t—') = G(r, r', to)e '"" ' 'de,
277

(2.1)

is appropriate for our investigation. Taking advantage of
the assumption that the jellium-vacuum system in con-
sideration exhibits translational invariance under arbi-
trary vectorial displacements parallel to the surface
plane, which we assume coincides with the xy plane of a
Cartesian xyz-coordinate system, a Fourier analysis in the
x and y coordinates gives

I

G(r, r';co)= f S ' G(z, z', q[~, t)oSe " " ' d q[~,
(2n )

(2.2)

where r~~
——(x,y, O), rI ——(x',y', 0), and ql ——(q~~„,q~~~, O).

Denoting the magnitude of qll by qll, the explicit expres-

sion for the rotation matrix S is given by

G(x —x', z, z';co) = G(z, z';q~~, co)2'
lqll (x —x )

Xe dell (2.6)

S=
qll, y

0 0 qll

(2.3)
with the reinterpretation that qll is the x component of the
wave vector, cf. ipso facta —~ &q~~ & ~ in the equation
above.

G(z, z';q~~, co) =
G, 0 Gxz

0 (2.4)

6,„0 6„

In proportion to the original analysis in Ref. 5, we have
made two minor changes in the mathematical notation.
Thus, since we want here to multiply the propagator with
the external current density from the right the old propa-
gator has to be transposed (T), cf. Eq. (4.1) of Ref. 5.
Also, the chosen sign convention of the exponents in Eq.
(2.2) is opposite to that used in Ref. 5, Eq. (3.31). The
two changes in the notation imply that the components of
our new propagator G(z, z', q~„co) are related to the old
ones as follows 6new 6old

' 6 new 6old 6 "ew 6old
xx xx ~ yy yy ~ zz zz

G"; = —6, , and 6"' = —Gx, as demonstrated in Ap-
pendix A.

In many contexts one wants to utilize the propagator
formalism to study the solution to field problems which
exhibit invariance under arbitrary translations parallel to
the y axis. As described in Appendix 8, the effective
Green's function for such field problems is of the form

G(x —x', z, z', co) = f G(r, r', co)dy' . (2.5)

By inserting Eq. (2.2) into Eq. (2.5) and performing the
integrations over y

' and q
ll y

it turns out, cf. Appendix B,
that the effective propagator is given by

One should notice that the propagator G(z, z', q~~, to) de-

pends on the magnitude of qll only, and has the general
form

B. Tensor products and classi6cation schemes

G('z'qadi ~)= ]t"""r',"'(z
qadi

")
n

er',"'(z',
q~, , ), (2.7)

where we have introduced a generalized summation sym-
bol g„ to indicate that the tensor-product superposition
contains both a summation g„over discrete n values and
an integration Jdn over a continuous n spectrum. We
have added a superscript R (z,z') to f to indicate that z
and z' in the individual tensor products are restricted (R)
to specified intervals (see Sec. II C). If there were no re-
strictions on z and z', the selvedge-field problem in nonlo-
cal metal optics could be solved exactly by analytic
methods, cf. the analysis in Ref. 8. Despite the presence
of the restriction R (z,z'), obvious advantages are
achieved by the division of the individual tensor product
into vectors I o'(z;q~~, to) and rs"'(z', q~~, co) which are
functions of the "observation" (0) coordinate z, and the

Substantial, physical insight in the properties of the
propagating, electromagnetic field can be obtained by
splitting the propagator G(z, z', ql, to) into a superposi-
tion of special tensor products. In this subsection, we
shall undertake a fundamental discussion of the tensor-
product structure of the Green's function, and in the fol-
lowing subsection, we shall present the explicit expres-
sions for the different components of the propagator and
investigate the physics hidden in these expressions.

Resolved into appropriate tensor products ( ) it turns
out that the propagator can be written as
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"source" (S} coordinate z', only. The reason that this
very important separation in z and z' can be achieved
stems from the fact that we are considering the semi-
infinite half space geometry. To realize this by a qualita-
tive argument one notes that a point source located at r'
leads to a propagator —

~

r —r'
~

'exp(ia
~

r —r'
~

) which
due to the factor

~

r —r'
~

' cannot be separated into a
single product of functions of r and r', alone. For an
infinitely extended, plane source located at z', however,
the associated propagator -exp(ia.

~

z —z'
~

) is separable
in restricted intervals.

Of interest in the following is also the transposed ( T)
propagator

[G(,';, }]'=]~""r'"'(';
n

G(x —x', z,z'; co) =Grr(x —x', z,z', co)

+G rL (x —x,z,z; co )

+GL r(x —x,z,z;co)

+GLL (x —x', z,z', ~), (2.14)

where the individual terms on the right-hand side of the
equation fulfill the conditions

to coincide.
By inserting the tensor-product superposition of Eq.

(2.7) into Eq. (2.6) and utilizing the division of the vector
fields given in Eq. (2.9), it is realized that the propagator
in Eq. (2.6) can be written as follows:

I o'(z;qll, co) . (2.8) V' [Grr] =V Grr ——0, (2.15)

iqlle„+e, „
Oz

I ~o ~z'(z;qll, co) =0 (2.10}

and

To make progress for instance, in the investigation of
selvedge fields in nonlinear ' ' and linear ' nonlocal
optics on the basis of the present propagator formalism,
it is of importance to study the substructure of the indivi-
dual tensor products from a physical point of view.
Hence, we divide each of the vectors I 0' and 1"z"' into
two pieces ( T and L), i.e.,

(2.9)

The two vectors I O'T and I 0'I which are functions of
the observation coordinate z are chosen to obey the con-
ditions

V''[GTL ] =V X GrL —0 (0), (2.16)

V'X [GLr] =V GL z.——0 (0),

V'X[GII ] =VXGIL =0 .

(2.17)

(2.18)

Note that the diferent parts of the propagator each have
been given two subscripts. The subscript to the left indi-
cates whether the propagator part in question is diver-
gence free (index T) or rotational free (index L) with
respect to the source coordinates (x', z'). The subscript
to the right classifies the propagator part as being either
divergence free (index T) or rotational free (index L) with
respect to the observation coordinates (x,y).

In terms of the tensor-product decomposition one has
in explicit form

8 (n)~qlle„+e, X ro I (z;qll, to) =0,
Bz

(2.11)
G~(x —x', z,z', ~)= $,

""' rg~', (z;qll, co)
7T n

where ex and e, are unit vectors in the x and z directions.
Unit vectors in the y direction will be denoted by e~ in
the following. The requirements in Eqs. (2.10) and (2.11)
can be given a straightforward interpretation. Thus, if
one considers the vector field I'o'(z)exp(iqllx) it readily
appears that the conditions in Eqs. (2.10) and (2.11) en-
sure that r'o'T(z)exp(iqllx) and I'o'L (z)exp(iqllx) are the
divergence-free (T) and the rotational-free (L) parts
of the field, respectively. For the vector field
I s"'(z')exp( iqllx') in t—he source coordinates, the
division into a divergence-free part, I &"T(z')exp( iqllx'), —
and a rotational-free part, I s'"I'(z')exp( iqllx'), is—pro-
vided by the requirements

tat rs'"z'(z', qll, co)

Iqll(x —x')
Xe

(2.19)

GTL(x —x', z, z';co)= ~~', "' 'I ~oiL (z;qll, co)2'
e r,'",'(z', qll, ~)

iq
ll
(x —x')

)& e dqll

(2.20)

e +e rs"r(z 'qll'' az' (2.12} G (x —x', z, z';co)= $, "' 'r'o' (z;qll, co)
277 —ao

and I s, l (z', qll, )

+e, XI ~"1.(z 'qll'~
Bz

(2.13) iqll(x
—x')

Xe dqll

assuming the source and observation coordinate systems (2.21)
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and

GLL(x x' z z 'co)= f ' ~ ' I ~o'L(z'ql co)
2 TT

SI'"'( ',
qadi, )

—iq &(z+z')

I ~ (z+z')=
2lp i

and

(r'e Se„+r~e„Se;),

(2.26}

Iq (x —x')

(2.22)

2
c

g L(1((z —z') = 5(z —z'}e,Se, .
CO

(2.27)

C. The fourteen terms of the propagator

In the preceding subsection it was suggested that re-
strictions [R (z, z )] exist which limit the allowed values
of z and z in the individual tensor products. The restric-
tions can be grouped into two main categories. Thus, the
membership of the one category stems from the division
of space into metal and vacuum half-spaces. The restric-
tions of the other category, which are those associated
with the so-called direct propagator contributions in ei-
ther vacuum or metal, are necessary to distinguish be-
tween source points to the left (z'&z) and the right
(z' & z) of a given point of observation. In the context of
selvedge-field calculations it is the members of this last
category which make the field-theoretical problem of the
jellium selvedge so difficult to tackle. '

To distinguish between the parts of the propagator
which belong to different combinations of vacuum and
metal domains, we introduce the following superscripts
on the Green's function G(z, z',

qadi,
co):

(z'&O, z &0), & & (z'&0, z&0), & & (z'&O, z &0), and» (z'&O, z &0). Thus, keeping the dependence of the
propagator on qll and co implicit in the notation one has

In Eqs. (2.25) and (2.26) we have introduced

qi = [(co/co ) —

qadi

]', and the unit vectors

Cpe;= (qj, O, —
qadi),

CO

(2.28)

Cpe„= ( —qi, O, —
qadi)

.
CO

(2.29)

E(qadi qi ~)—E"'(qadi ql

0 (e Se~+e;Se;) J,'„,""(ql,q, ,~),
2g i

The quantities r' and r~ in Eq. (2.26) denote the relevant
amplitude reAection coefficients for s- and p-polarized
light, respectively. The explicit expressions for r' and rJ'

are given in Appendix C.
The result in Eqs. (2.24) —(2.27) can be interpreted in a

physically appealing way. Thus, by inserting Eq. (2.24),
with (2.25) and (2.26), into Eq. (B8) and this equation in
turn into Eq. (B2), one obtains after performing the in-
tegrations over x' and z', for z&z', the following rela-
tions between the Fourier amplitudes of the appropriate
electric fields and different parts of the external current
density:

G(z, z') =8( —z')8( —z)G (z,z')

+e( —z }e(z}G"(z,z )

+e(z')e( z)G (z, z—')

+8(z')8(z)G (z,z'), (2.23)

E(qadi,
—qi, co) —E'

'(qadi,
—qj, co)

0 [(e„Se~+e„Se„)J';„,i '(qadi,
—qio, co)

2gg

(2.30)

e being the Heaviside unit step function.
Let us investigate now the explicit tensor-product

structure of the propagator in the different domains. In
the domain z' & O, z &0, one obtains on the basis of the re-
sult in Ref. 5 after a slight rewriting, and use of Eq. (A5)

where

iqi I
z —z'1

eD TT (z —z') = [e Se +8(z —z')e, Se,.
2lg i

G (z,z')=D rT (z —z')+I TT (z+z'}+gIL (z —z'),
(2.24)

+(r'e e +r~e„Se;).J', t" '(qadi, qi, co)],

(2.31)

where

J',„,
"

''(qadi, qi, ) = f 8(z —z')

XJ,„,(x', z', co)

ll ' dx'dz', z &0

(2.32)

J,"„J"(qadi, —q'„)=f" e(z —z)e( z )

XJ,„,(x', z', co)

+8(z' —z)e„Se„], (2.25)
(

~ 0 i)
II d~ 'dz (2.33)
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J,„, '(q~~, qi, co)= f" e( —z }J,„,(x', z';co)

—i(q~~x'+quiz )
g gXe (2.34)

The relations in Eqs. (2.30) and (2.31) demonstrate that
the tensor-product structure in Eqs. (2.25} and (2.26) is
associated with the propagation of different plane-wave
excitations between the source point (x', z') and the ob-
servation point (x,z). Thus, Eq. (2.30), which stems from
the first two terms on the right-hand side of Eq. (2.25), is
related to the direct (D) propagation of the plane-wave
excitation (q~~, 0,qi } between the two points, assuming
z' &z. The source strength is given by the Fourier trans-
form of the part of the external current-density distribu-
tion lying to the left of the plane of observation, i.e., z' & z
[cf. Eq. (2.32)]. The dyadic notation shows that only the
transverse part of J,'„,"~' is responsible for the transverse
field propagation in vacuum. The first and third term on
the right-hand side of Eq. (2.25) is associated with direct
field propagation from (x',z') to (x,z) in the case where
z' & z. Since

q~~
is a fixed quantity, the relevant wave vec-

tor is of course (q~~, O, —qi) in this case. The associated
Fourier-transformed relation is part of Eq. (2.31). As one
would expect, this part of the equation relates the trans-
verse part of the Fourier transform of the external
current-density distribution lying in vacuum and to the
right of the plane of observation, i.e., z'&z [cf. Eq.
(2.34)], to the Fourier amplitude of the transverse vacu-
um field. The terms of the propagator in Eq. (2.26} de-
scribe indirect (I) field propagation, i.e., propagation in-
volving a reflection of the field at the surface. It is real-
ized from the Fourier-space description [Eq. (2.31)] that
these terms relate the transverse parts of the field of the
wave vector (ql, O, —qi) and the external current density
of the "refiected" wave vector (q~~, O, qi). The entire dis-
tribution of external current-density sources in vacuum
(z' &0} contributes in this case, as one would expect [cf.
Eq. (2.34)]. We have added the subscripts TT to the
direct and indirect propagator terms to indicate that
these are divergence free in the source and observation
coordinates. The absence of rotational-free propagator
components in the domain z' &O,z &0, stems from the
fact that vacuum can support only transversely polarized
wave propagation. A schematic illustration of the propa-
gation characteristics associated with the different tensor
products in D TT and I TT is shown in Fig. 1.

The singular behavior of the propagator at z =z' is
determined by the Green's function gII of Eq. (2.27)
which is rotational free in both z' and z. Using the same
procedure as that leading to Eqs. (2.30) and (2.31) one ob-
tains the relation

r.
e„

eely I
r

I
IZ

0
i I q.

=re
Yj

I
Z

Z

)
1

1I&ep[-~ p

I

z 0

Z' O

l
E(z;q[[,co) —E' '(z;q[[, co) = — e,e, J,„,(z;qII, ~)

E'pN

(2.35)

between the Fourier amplitudes in
q~~

and co of the elec-
tric field and the external current density. The propaga-
tor g LL, which relates E and J,„,at the same plane z'=z,
is the so-called self-field part of the Green's tensor. For
conciseness, subscript I.I. is given to the self-field propa-
gator.

The tensor-product structure of the Green's function in
the domain z' ~ 0, z & 0 takes the following form:

G ~ ~(z,z') =G z~z~(z, z'}+0 z~z~(z, z'), (2.36}

with

FIG. 1. Schematic diagrams illustrating the propagator
characteristics associated with the propagation of transversely
polarized plane waves between the source (z') and observation
(z) plane in the case where both planes lie in vacuum. In the
upper and center panels are shown the direct propagator contri-
butions, D z~r', for z' &z and z'&z, respectively. In the lower
panels figure the indirect propagator, I T'T', characteristics are
illustrated. The hatched areas to the right of the individual
figures indicate from which domains in space the external
current-density source distribution contributes in the different
cases.

—iq z~ 0
eG z~z~ (z,z' ) = 2'

iq&z' iq&z'

co(1+r~)
(1—r')e e dqi+ e„ el(qI, qi) dqi

NT q c q',
" — '

q&r q)
(2.37)
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and

-, ,(,)
( +«)

LT Z, p r
27TC pq g

qlZ
QO qIIee er(qII q } dq, .

—00 qNr q
(2.38) 1

(qII, q )=—( —q, O, —qII)
q

(2.41)

verse' and longitudinal' conductivity response func-
tions, respectively, and q =(q~~+qr }'r . The notation of
the added subscripts TT and LT follows the convention
made in Eqs. (2.15) and (2.17). For conceptual clarity
also the unit vectors

Nr(q co)=
Cp

1+ o r(q, co) —q
l 2

E'pCO
(2.39)

and

Nr (q, co) =
Cp

E1+ 0 r (q, co)
EGO

(2.40)

where OT and O.
L are the Fourier-transformed trans-

In Eqs. (2.37) and (2.38), we have introduced the well-

known quantities
'2

and

l
er(qII ql}=—

(qII o —q )
q

(2.42)

have been introduced, cf. the discussion below. As one
would have anticipated, the amplitude transmission
coefficients l —r' and 1+ r~ for s- and p-polarized light
occur in Eqs. (2.37) and (2.38).

Following the same procedure as that which lead to
Eqs. (2.30) and (2.31), one obtains via Eqs. (2.36)—(2.38)
the formal Fourier-transformed equation

0

EPpCO oo

E(qll' qr, c0)=E qll qj c0 )e e ~ J I" (q q or)dqN()
l poco 1+r )e f N r(qII qg)'J „t (qII, —qg, co)dqr

2ncoq, —"qNr q

r poco
+ o 1+r'}e. f N

'

er(qII qi} J.".t' "'(qII, q&, ~}dq-,
2n.coq, — qN, q

(2.43)

or equivalently

'IJoco 1 r' co(1—+rr }

2n — N(q) cq " qN()

L . &p~~&
~ er(qII qr} 'J

t (qII qj. ~} ql
qNr q)

(2.44)

where

J,„,l (qII, —q~, co)= f e(z')J,„,(x', z';co)

Xe ~t ' dx'dz' .

(2.45)

Equations (2.43) [or (2.44)] show, as expected, that the
propagator parts in Eqs. (2.38) and (2.39) are associated
with the propagation of plane waves between the source
and observation points. The last part of the field propa-
gation from the surface to the point of observation lying
in vacuum is described by a single plane wave vector
(qII, D, —q~), whereas the first part of the propagation,
i.e., from the point of observation inside the metal to the
surface, is e6ected by a coherent superposition of plane
waves. This superposition of plane waves is character-
ized by the fact that all the waves have the same wave-
vector component (q~~) along the surface. The actual

spectrum of wave-vector components ( —qr ) perpendicu-

lar to the surface depends on the structure of the conduc-
tivity response functions. The wave vector of a given

mode in the spectrum is (qII, O, —q~}. It readily appears
from Eqs. (2.44) and (2.45} that the entire external
current-density distribution in the metal domain contrib-
utes as source for the field propagation described by the
propagator G ~ ~(z,z'). Furthermore, it is realized from
the dyadic notation of Eq. (2.43) [or (2.44)], and from the
fact that er(q~I, q~) and er (q~I, q j ), are unit vectors perpen-
dicular ( T) and parallel (L) to the wave vector

(q~I, O, —qr) of the, towards the surface from the

metal side, incident (I) mode in consideration that
it is the transverse, via e .J',„I "'(qI~, —q~, co) and

er(qII, qr) J,'„I"'(q~I, —qr, co), and the longitudinal, via

er(q~~ qj) J (q~~,
—q~, c0), parts of each of the plane-

wave components of the Fourier-transformed external
current density which act as sources for the field propa-
gation described by G ~~~(z,z'} and Gr~z~(z, z'), respec-
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tively. The transverse nature of the field received at the
observation point, here placed in vacuum, is of course
also accounted for in the structure of Eq. (2.44). A
schematic illustration of the characteristics of the propa-
gators 6 TT and 6 L T is shown in Fig. 2.

Now, we analyze the tensor-product structure of the

G ~ ~(z,z')=G ~~~(z, z')+G &L~(z,z'), (2.46)

where

propagator associated with the domain z' ~ O, z ~ 0.
From the results of Ref. 5 we obtain after some rewriting

1;q&z ~ 1+L (q((, cp)qt iq~(z p+)
G TT (z,z')= e ' (1—r')e e e dqy

4m ~ ~ — Er(q)

qt+M(q(~, ro)q iq ( p+(
(1+re) ez(qt, qt)e '

dqt e;
c,q', —- q&T(q

(2.47)

and

CO( 1 + r~) —iq &z' ~ q(( L iq&(z —p+ )

G TL (zz')=
p

e ' eit(q((qt)e
'

dqt ge;,
4n-c, q', qNL q

(2.48)

with the usual convention for the subscripts TT and TL.
The explicit expressions for L (q(~, co) and M(q((, rp) are given in Eqs. (C8) and (C10). For brevity, use has been made

of the notation lim, + fF(qt, z —z')dq~—:fFi(qt, z —0+)dqt, also. For a p-polarized plane wave of wave vector

(q((, 0, —qi ) incident (I) on the surface from the metal side the appropriate unit vectors for the description of the trans-
verse and longitudinal parts of the electric field are ez and er, respectively [see Eq. (2.41) and (2.42)]. The correspond-
ing transverse and longitudinal unit field vectors for the reflected (R) field [wave vector (q((, O, qi )] are

1
eR(qi ql) =—(ql o —

q(()
q

(2.49)
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mT
l~ eR
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I
I
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0 z

FIG. 2. Schematic diagrams illustrating the propagator
characteristics associated with plane-wave propagation between
a source plane (z') inside the metal and a plane of observation
(z) in vacuum. In the upper panel is shown the contribution
G TT stemming from divergence-free waves in both metal and
vacuum, and in the lower panel, the contribution G LT associat-
ed with rotational-free and divergence-free wave propagation in
metal and vacuum, respectively. The external current density in
the hatched domains of space, shown to the right, contributes as
source for the field radiation.

FIG. 3. Schematic diagrams illustrating the plane-wave prop-
agation associated with the Green's functions G rr' (upper) and

G TL (lower). The source plane (z') is located in vacuum and
the observation plane (z) inside the metal. In vacuum the field

is divergence free and in the metal it is either divergence free
(upper) or rotational free (lower). The distribution in space of
the external current density sources contributing to the field ra-
diation in this case is indicated by the hatched areas to the right
of the figures.
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and
1

eR(qll, q )=—
(qll, O, q ),

q
(2.50)

respectively. It is obvious that just these unit vectors must occur in Eqs. (2.47) and (2.48). As one would expect, the

propagator terms in Eqs. (2.47) and (2.48) are proportional to either the amplitude transmission coefficient 1 r—or the
transmission coefficient 1+ ri' F.urther insight into the structure of G ()(z,z'} is obtained by Fourier analyzing Eq.
(82), utilizing for the propagator Eq. (88) with the appropriate expressions in Eqs. (2.46)—(2.48) inserted. Thus, one
finds

E(qll, qi, co)=E (qll, qi, co)(0)

po 'q Q 1 +L (qll, co)q&
e ' (1 r') — e~e

2qi+ M ( q ll, co)q
( ~la) 0+ R(qll qi)+ N R(qll qi)cqo qNTq qNI q

(2.51)

The equation above gives the relation between the Fourier amplitudes of the electric field [E(q~~, qi, co)] and the external
current density [J,'„," '(qll, qi, co)] belonging to the entire vacuum half space, cf. Eq. (2.34). Due to the transverse na-
ture of electromagnetic fields in uacuo, only the transverse part of J,'„," ' '(q~~, qi, co) contributes to the electric field at
the point of observation, as is obvious from the dyadic notation. The dyadic notation of Eq. (2.51) also demonstrates
that the plane-wave component (q~l, O, qi) of the field [E(q~~, qi, co)] has a transverse [via e~ and eR(q~l, qi)] as well as a
longitudinal [via e„(q~~,qi)] component. One should be aware of the fact that a single plane-wave component of the
external current density, say J,'„," ' '(q~~, qi, co), in general generates a spectrum of plane-wave components, E(qi, qi, co),
in the field inside the metal. All the waves in the spectrum have the same component of the wave vector along the sur-
face, namely, q~~e . The z dependence of the electric field stemming from the "background" field E' '(z;q~~, co) and from
the external current density J,'„," '(q~~, qi, co) thus is given by

(0) ( —oo ~P) 0E(z 'qll'cd) E (z;qll' )+ l (qll'qi, ci3 q2 7T
(2.52)

where y(q~~, qi, co) is defined as the factor to J,'„," ' '(q~~, q i, co) in Eq. (2.51). A schematic illustration of the propagation
characteristics of G TT and G TL is shown in Fig. 3.

We close this section by a discussion of the tensor-product structure of the Green s tensor associated with the domain
z )0, z )0. Utilizing the divisions in Eqs. (2.15)—(2.18) and the result obtained in Ref. 5, one obtains after somewhat
tedious but straightforward calculations

G (z, ')=D TT (z —z')+DII (z —z')+I TT (,z')+I rL (,z')+ILT (, ')+III (, ')+gII ( —z'), (2.53)

where

iq&(z —z')
T e

D TT (z —z')= [eI,e +eR(qll, qi)eR(qll, qi)]—00 NT q

iq~(z' —z)
r e

[e e +eI(qll, qi)SeI(qll, qi)]
77 —00 NT q

(2.54)

and

iq (z —z')
QO e

DLI (z —z')= J eR(qll, qi)eeR(qll, qi) dql
27T NL(q)

iq~(z' —z)
a) L e

I('qll ql I(qll q. )
N ( )

dqi
77 —00 NI (q)

(2.55)

The two contributions to the propagator given above can be rewritten in an appealing way as follows:

iq~(z —z') iq&(z —z')
e(z —z')

D Tz. (z —z ) = eyey dqi+2~ » N, (q) 277 —oo
eR (qll ~ql )eR (qll ~qi ) «l

NT(q)
iq&(z' —z)e(z' —z) T T e+ eI(qll, qi }eI(qll, qi) dq J

2m —oo NT q
(2.56)
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and

iq&(z —z') iq&(z' —z)
e(z —z') e(z —z) L e

DLL (z —z')= eR(q[(, q1)eR(q((, q1) dq1+ er(q(( q) )et(q(( q1) N
dq

2& NL(q) 2' NL(q

(2.57)

making use of the fact that NT(q) and NL(q) are even functions of q1 and that the substitution q1~ —q) implies

et ~eR and et ~eR. The explicit expressions for the remaining terms of the propagator G ~ ~ (z,z') are

iq&(z —0+ )

I TT (z,z') =
1 e~(3(er (q) —q1) dq)

(2~)'t ' ' -- N, q

iq&z'

I—~ Nr(q)

2&cp

'2 i2 2 01+r T q1 —( 0~) 'q ql iq~(z —0+) iq, z

eR(q[~, q1) e '
dq) (8) et(q(('q& e '

dq1
Sqp, qNT(q) —00 qNT q

(2.58)

I T~L~(z, z') =—
27Tcp

iq, (z —0+) iq&z'
+r~ ~ L q((e q)e

eR(q)~ qi) dqi
iq~ qNL q —00 qNr q

(2.59)

2&cp

i2 2 P1+r~ T qi —(Co~~j q ql iq (z —0+) q/J cq&z'
. 0 'R'q)( q1) N

e ' dqi e dqg
lqj qNT q qNL(q)

(2.60)

I g~~ (z,z') =
27Tcp

l+r
eR (q((, q) }

iq~

iq~(z —0+ ) iq&z'
e 00

dq) et(q((, q) ) dqJ
qN, q —00 qNL q

(2.61)

and

gLL (Z —Z )=
2

Cp
e '(to)5(z —z')e, e, . (2.62)

In EN (2 62) 'E(CO ) —1 + / llmq 0 (7 T(q, Q) )I(~Qto) is the rel-
ative dielectric constant in the long-wavelength limit.
Note that lim Qa T(q, ci))= limq QcrL(q, to}. The sub-

scripts, TT, LL, TL, and LT added to the terms in Eq.
(2.53) follow the convention of Eqs. (2.15)—(2.18). The
propagators D TT (z —z') and D LL (z —z') of Eqs. (2.56)
and (2.57) describe the direct (D) propagation of the elec-
tromagnetic field between the source and observation
points, and D TT (z —z') and D LL (z —z') take care of
the transfer of the divergence-free ( TT) and the
rotational-free (LL) parts of the field, respectively. For
the p-polarized part of the field one conveniently distin-
guishes between the cases z' & z and z' & z. Thus, for
z' &z the appropriate dyadics are those associated with
the "reflected (R)" field, i.e., e„e aRnd eRe„. For
z'~z the relevant dyadics, elel and ele~, are those
belonging to the "incident (I)" field. The direct terms
are illustrated in Fig. 4 in a way that supports the con-
siderations above. The Green's functions I TT (z,z' },
I z~L~(z, z'), and I z~L~(z, z') represent the indirect contribu-

tions to the field propagation between the source and ob-
servation points. Various combinations of transfer via
the divergence-free and the rotational-free parts of the
field occur in these propagator terms which all incorpo-
rate a field reflection at the metal-vacuum surface. Thus,
I TT (z,z') and I LL (z,z') describe indirect processes
where either the divergence-free ( TT) or the rotational-
free (LL) part of the electromagnetic field is responsible
for the transfer process both before and after the
reflection at the surface. The tensor I z~L~(z, z') describes
a situation where a divergence-free ( T) field traveling to-
wards the surface is combined with a rotational-free (L)
field traveling away from the surface after reflection. In
the propagation characteristics associated with the
Green's tensor I z~z~(z, z') the incident field is rotational
free (L) and the reflected field divergence free (T). A
schematic illustration of the characteristics of the four in-
direct propagator terms are shown in Fig. 5. With the
foregoing analyses of this section in mind we need not a
lengthy discussion of the physics displayed in the struc-
ture of Eqs. (2.58)—(2.61). Hence, let us just make two
comments. First, it is obvious from the appearance of the
integrals that both the incident (I) and the reflected (R )

field consists of coherent superpositions of plane-wave
components. Secondly, it appears from the unit field vec-
tors drawn in Fig. 5 that the unit vectors occurring in the
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FIG. 4. Schematic diagrams illustrating the divergence-free
(two upper diagrams) and the rotational-free (two lower dia-
grams) plane-wave propagation associated with the propagators

DTT and DLL'. The propagation between the source (z') and
observation (z) planes both located inside the metal is direct.
Both of the cases z' &z and z' & z are shown. The distributions
of external current-density sources contributing to the radiation
in the individual cases are indicated by the hatched domains to
the right of the actual diagrams.

different tensor products of Eqs. (2.58)—(2.61) are the nat-
ural ones.

It is instructive to investigate the relation between a
given Fourier amplitude of the field at the observation
point and the weighted Fourier spectrum of the external
current density contributing to it. Thus, for a plane-wave

z'

FIG. 5. Schematic diagrams illustrating (from top to bottom)
the plane-wave propagation associated with the four indirect
propagators I T'T', I TL', I L T, and I LL . The field propagation is
a combination of divergence-free (T) and rotational-free (L)
propagation before and after reflection from the surface, as indi-
cated by the subscripts TT, TL, LT, and LL. Both the source
(z') and the observation (z) plane are located inside the metal.
As indicated by the hatched areas to the right of the individual
diagrams the external current-density sources in the entire met-
al domain contribute to the radiation in each of the four cases.

component of the field propagating towards the surface
one obtains

Te Se +el(qI, q~)sel(qI, q~) el(q~~, qj )el(q~~, q~)
T L L

E(qI, —q~, co) =E' '(q~~, q, , co) i poco- — + ~J,'„,' "'(q I, —q~, co),
NT q) Nl q)

with
I

J,'„,' "'(q~~, —q~, co) = J e(z' —z)J,„,(x', z', co)e " ' dx'dz', z & O . (2.64)
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To derive the result in Eq. (2.63) we have split the s-polarized contribution to D T~z~ (z —z') in two by means of the rela-

tion 1 =e(z —z')+e(z' —z), and utilized that NT(q) is an even function of qj. It follows from Eq. (2.64) that only the
external current density lying to the right of the observation point (i.e., z & z) contributes in the present case, cf. Fig. 4.
Also, it appears from Eq. (2.63) that E(q~~ qj, ro} is related to a single (and the same) Fourier component in the current
density, namely, J';„, "'(ql, —q~, co). That this must necessarily be so is a direct consequence of the fact that only the
direct term [Eqs. (2.56) and (2.57)] can contribute to the field propagation towards surface. For a plane-wave com-
ponent of the field propagating away from the surface the relation to the external current density is a bit more compli-
cated. Thus, the result is the following:

E(ql, q~, )=E (q~~, qj, co)+E (ql, qj, ro)+E (q~~, qj clP)
(0) D I (2.65}

where ED(q~~, q~, co} and E (q~~, qj, co) are the fields stemming from direct (D}and indirect (I) processes. The direct con-

tribution

e e„+e„(ql, q, )jeea(q~~, q, ) e„(ql,q, )e„(q~~, qJ )
T T L L

E (q~~, qj, ro)=

i@~+-

+ J ~l (qll'q~'ro)
NT q NI q

(2.66)

relates the field to a single Fourier component of the external current density lying to the left of the observation point
(z' & z) and inside the metal (z' & 0), i.e.,

J,'„I'(ql, qj, ro)= f e(z')e(z —z')J,„,(x',z', ro)e ' ' dx'dz' . (2.67)

The indirect contribution given by

I —it)] 0
E ( q (~, q y, co ) = poN

—e
(1 r')(q~ ——q~) " J I qll q

N, (q) ~ ' . N, (q')
'2 2 2 01+ri' qj —(co~~) q qi

+ & (q ~['q& )+
co q' qNT q qNL q

II8I, , ez(ql, qj )—, , el(q~~, q~) J,„, (ql, q, co)dq—(2 68)
q'NL q' q'NT q'

e '(cu)e, e, J,„,(z;q~~, ro) .
@CO

(2.69)

We conclude by pointing out that Eqs. (2.23)—(2.27),
(2.36)—(2.38), (2.46) —(2.48), and (2.53) and (2.56)—(2.62)
constitute the main result of this section.

relates, as expected, the field to a weighted Fourier spec-
trurn of the external current density in the entire metal
domain. For brevity, we have introduced q'= [q

~~

+ (q~) ]'~ in Eq. (2.68).
The singular behavior of the propagator G ~ (z, z') at

z =z' leads to the following (in z) local relation between
field and external current density:

E(z;qadi, co) =E' '(z;qadi, co)

by studying the analytical properties of the dielectric
functions in the complex q~ plane, as is well known. ' In
a number of investigations in nonlocal optics, qualitative
correct answers can be obtained retaining only the collec-
tive excitations in the description. Mathematically, the
polariton and plasmon excitations appear via the pole
structure of the dielectric functions. Being interested in
the collective excitations only it is often advantageous to
use simpler response functions which do not contain the
electron-hole pair excitations, e.g. , the hydrodynamic
response functions. In the present section we shall study
the electromagnetic propagator in the collective-mode
approximation, and make contact with the tensor-
product Green's-function formalism developed quite re-
cently by Sipe within the framework of local optics.

III. THE PROPAGATOR IN THE POLARITON
PLUS PLASMON-POLE APPROXIMATION

The screened propagator described in the preceding
section incorporates optical phenomena associated with
collective polariton and plasmon excitations and with
noncollective electron-hole pair excitations. On the basis
of the Lindhard-Mermin dielectric functions, ' ' the col-
lective and the single-particle excitations can be identified

A. Residues and reflection coefBcients

To determine the electromagnetic propagator in the
polariton plus plasmon-pole approximation, the integrals
along the real q~ axis appearing in Eqs. (2.37), (2.38),
(2.47), (2.48), and (2.56)—(2.61) are performed by contour
integration in the complex q~ plane. The locations Ky

and vz of the polariton (T) and plasmon (L) poles are
determined by the dispersion relations
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and

N, (q~~~, ~„~)=0T

N L( q ((,K, co ) =0,L

(3.1)

(3.2)

)~ Imq~

respectively. The residue (%r+) associated with the po-
lariton pole is given by [see Eqs. (C4) and (C6)]

+ 1
T

2K
(3.3)

if single-particle excitations are neglected. To obtain the
residue

Fiick

0 Req~

L
qy —Kg

%~+ = lim
q, ~~ NI (q~~(, qi, co)

(3 4)

for the plasrnon pole, we take as a starting point the exact
result

sinq~z'
dqi =2 . ~ 1

lim
o+ o NL (q) qi

Cp
2

(3 5)

The relation in Eq. (3.5) is readily obtained by noting that
Nl(q)~(co/co) for qi~~ and by comparison to Eq.
(C4). Since NL (q) is an even function of qi, Eq. (3.5) can
be rewritten as follows:

2
co 1

2

D(~) 2m~
(3.9)

The amplitude reflection coefficients are determined by
noting that L (qi, co) and M(qi, co) in Eqs. (C8) and (C10)
can be written as

FIG. 6. Contour in the complex q~ plane used to calculate
the plasmon residue Rz+ in terms of the plasmon wave-vector

component Ky and the longitudinal response function eL (q~~, co).

Poles are located at q&
——0 and ~& and branch cuts are neglected.

Cp
2

lpga
Z

J' ' '
dq, .i, o+ .—~ qiNL(q)

(3.6)
ligj Z

1L (qll'co}= —lim dqi~ ~ -o+ -"Nr q
(3.10)

Now, the right-hand side of Eq. (3.6) can be evaluated by
contour integration (neglecting eventual branch cuts) not-
ing that the poles are located at q~ =0 and q~ =+K~ in
the complex qj plane. Choosing the contour as shown in

Fig. 6 one obtains

and

2 2
i . qj. q)t

() ()
lg~Z

e
2

(3.11)

Cp 2%1+ 1+
NL (q(( qi ——O, co)

(3.7)
Contour integration, and use of Eqs. (3.3) and (3.9) in
turn give

(3.8)

Since NL (q~~~qi ~)=(~/co) el. (q} qi, co), where EL

+irrL /(coco) is the longitudinal dielectric response func-
tion, one finds for the plasmon residue (assuming no
particle-hole excitations)

'2

[1—eL (q((, )],1 0

2 N

1L (qll'a))
K

and
'2T

Kl Cpq
i)M(q1, co) = + ai [eL (q ~~,

co) —1],
KT COKL

(3.12)

(3.13}

where eL(qi co):e'L(qi qua=0, co). For the hydrodynam-
ic model, in which particle-hole excitations are absent a
priori, and where

NL (ql, qi, co}

noting that the integrand in Eq. (3.11) has no poles at
qi=+iqi (q=O). For brevity, we have introduced

qi+ ~i)' and i~L, =q'„+(s-, )', in Eq. (3.13). By in-

serting Eqs. (3.12) and (3.13) into (C7) and (C9), respec-
tively, one obtains the following expression for the ampli-
tude reflection coefficients for s- and p-polarized light:

=(~/ o) [qi (I~i) ]/[qi (I~i) ~ /D(~)]

D(co) being the diffusion coefficient and co the plasma
frequency, one gets via Eq. (3.8) the exact and well-
known result and

0 T
qg —Ky

r'(q~~~, co) =
qg+K~

(3.14)

q J E7 (a &, cu ) x'& (q~~ /xl ) ai—'E&(v—&,co}[el''(q ~~,
co) 1]—

q i Er( Kr, co ) +Ki + ( q
~~

/x L )

Iran

er ( x r, co )[el ( q ~~,
co )—1 ]

(3.15)
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where the transverse dielectric response function

ET( KT, OI) = 1+Io T(KT, OI)/(epOI) has been introduced via

the dispersion relation

field in linear theory, cf. Ref. 8.

B. Damped-~ave picture of the propagator

1/2
KT=eT (KT&~)

N
(3.16}

Note that the form of r' is as in local optics. If one
neglects the plasmon mode which contributes only to r~

also the form of rP is as in the local approach O. ne
should also notice the r~= —1, i.e., total reflection, if
only the rotational-free part of the field in the metal was
considered. This is obvious since no radiati Ue elec-
tromagnetic energy can be carried by a pure plasmon

I

We now determine the explicit expressions for the
difFerent propagator terms in the pole approxima-
tion. For the terms D z~p(z —z') and I z~T~(z+z') the
correct expressions are given by Eqs. (2.25) and (2.26)
provided we insert the results in Eqs. (3.14) and (3.15) for
the reflection coefficients.

After contour integration along an expanding semicir-
cle in the upper half (since z'&0) of the complex qi
plane, use of Eqs. (3.3), (3.14)—(3.16), and a certain
amount of algebraic manipulations, one obtains

i (K&z' —q&z)G ~~~(z, z')= e ' ' (1—r')e e +
2lK

eT (KT, co )(1—r )e„ ei (q ~~, Ki }
2

Ky qll1+ eT(KT, OI)[er. (ql, OI }—1]
KL

(3.17)

Note that a complex unit vector er(q~~, Ki ) =( —Ki, 0 —
ql )/[q l +(Ki ) ]' occurs in the dyadic product of Eq. (3.17).

It is possible of course to write the expression for G ~~~(z, z') in a variety of equivalent ways. Here, we have chosen
the form in Eq. (3.17) because of its close relation to the adequate form in local optics, cf. the discussion in Sec. III C.
The propagator Gz~z~(z, z') describing the subsequent plaslnon and polariton propagation becomes after contour in-

tegration, use of Eqs. (3.8) and (3.15), and a little algebra

i (K&z' —q&z)
GrT (z,z')=e e„er(q~~, Ki)

l COKr q ieT( KT, Co ) +Ki + qll
Kier( KNT)[er '(q~(, co) —1]

Cpq l Ki eT ( KT, C&I )[ 1 —er (q l, CO ) ]
2 (3.18)

with a complex u»t ve«o«r
qadi

Ki —
qadi» Ki } [qadi+

Using the same procedure as outlined above one obtains for the propagators referring to the domain z' ~0, z ~ 0
[Eqs. (2.47) and (2.48)] the following result in the collective-mode approximation:

L
i(K z —q z') 1+r& 1

G ~~~(zz')= pe
' ' (1+r')e~e~+, r2

1+—
2lqi eT (KT&co) Ki KL

eT(KT, CO)[er '(ql, OI) 1] erl(ql—,Ki)e;

(3.19)

and

i (H&z —q &z')
G Tr (z,z')=e erl(q~~ Ki)e. CpqlKJ eT(KT, H)[eL (ql, &)—1]

2l Ci)Kr q i E'T( KT, Cd ) +Ki + Ki e T(KT, CO )[er ( q ~~,
OI ) —1 ]0 T ll L —1

KL

(3.20)

with the complex unit vectors erl(q~~, Ki)=(Ki, 0, —
ql )/[q~~ +(Ki ) ]»d erl(g[~ Ki )=(q~~ o Ki)/[ql +( i }']

In passing, one should notice the close relation between the expressions for 0 LT and 0 TL .
To derive the equations for the direct contributions DTz~(z —z') and D L~L~(z —z') in the pole approximation, the

contour integration must be done in the upper half plane for z ~ z' and in the lower half-plane for z &z'. Hence, as a
result of the residue calculation one obtains

l
z —z i(z —z')

DTT (z —z')= [e e e ' +e(z —z')erl(q~~, Ki)erl(q~~, Ki)e
2l Ki

]K~ (z —z)+e(z' z)er(q~~ ) Kir(qel Ki }e '
l » (3.21)

and
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2

DLL (z —z')= —
KJ.[1 —&L (q((, co)]

2 co

L L L L iKl(z —z') L L L L EKl(z' —z)
X[e(z —z ) R(q)(, K )ez(q((, K, )e ' +B(z' z—)et(q(( Kz) (3.22)

Referring to Fig. 4, the physical interpretation of the results in Eqs. (3.21) and (3.22) is obvious.
For the indirect terms in Eqs. (2.58}—(2.61}we find the formulas

I ~~~ (z,z') =— iKi (z +z')
Te

' r'eyey+
2l Kj

C T ( KT, CO )[E«
'
( q (i, co ) —1 ]

q J ET(K'T, CO) —KJ
0 T

'2
0 T L &II

q J ET(KT, CO)+Ki +KJ
KL

ett(q((, K, )(|t et (q((, K, )
T T T T

(3.23}

and

I r)L) (z,z') =

I«z~(z z )=

I«)«)(z, z')=

JqiiKF(1+ "}[1—~« '(qadi ~)1 «« . , (.,"+.,")

CJ(( (q((, KJ )e t( qi,(KJ)e
4qiKL KT

tql[qJ~T(Kr, to) KJ ]K—J(1+r')[1—c«'(qadi to)] T T «« l(K,'I+KJ'I)
CJ( (qadi KJ )(3)et(qadi, KJ )e

4' jKLKTKy

L —1
i coqii"J[ c« (qadi

t—o)] « « ,'(.+')
o ( I+r~) CJ((qi( KJ )Set(q((, KJ )e

2NKL

(3.24)

(3.25)

(3.26)

In the following subsection, we shall consider the elec-
tromagnetic propagator in the regime of local optics, and
make contact to a recent work of Sipe. In the local limit
the plasmon contribution vanishes and only the propa-
gator terms D TT I TT + TT 6 TT D TT and I TT
survive.

T'= 1 —r',
Tr=c' '(oJ)(1 r~) . —

(3.31)

(3.32}

Utilizing Eqs. (3.29)—(3.32), the propagators G T'T( and
G ~~~ in Eqs. (3.17) and (3.19) take the following form:

C. Propagator structure in the local regime

To write the electromagnetic propagator in a physical-
ly appealing way in the local regime we consider the ele-
mentary Fresnel coefficient identities derived in local op-
tics, i.e.,

(3.27)

and

i (K z' — z)

2l Kg

X[T' reey+T&e„set'(q)(, KP]

i(K z — z')

2lf g

(3.33)

tT —rR =1, (3.28)

where r and t are the amplitude reflection and transmis-
sion coefficients, respectively, for light incident on the
boundary from, say, the vacuum side, and R and T are
the amplitude reflection and transmission coefficients for
light incident from the metal side. We have omitted the
superscript s or p on the coefficients since the Fresnel
coefficient identities hold for both state of polarization.
In terms of the reflection coefFicients r' and r~, the
transmission coefficients from the vacuum side are

X [t'e~ e + t~ett (q((, KJ )(3C; ], (3.34)

utilizing the appropriate local-limit value of Ky The
forms of D tY, I ~~, and D T)T) in the local limit are as in
Eqs. (2.25), (2.26), and (3.21), and the explicit expressions
need not be rewritten. Finally, the local-limit expression
for I ~~) is readily obtained via Eqs. (3.15), (3.23), and
(3.27}. Thus,

t'=1+r',

t~=e ' (oJ)(1+r~) .

(3.29)

(3.30)

2l Ki

X[R'e Se +R ez(q(( KJ )et(q(( KJ. }].
The transmission coefficient from the reverse side, ob-
tained by combining Eqs. (3.27}—(3.30), can be written as (3.35)
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The expressions for the dyadic propagators obtained in
Eqs. (3.33)—(3.35), and in the local-limit version of Eqs.
(2.25), (2.26), and (3.21), are in agreement with those
determined by Sipe, recently. For a detailed account of
the local Green's-function formalism, and examples of its
application in linear, local optics, the reader is referred to
the work of Sipe.

IV. SOME APPLICATIONS OF THE FORMALISM

In this terminating section, I shall outline how the
present propagator theory can be useful for investigations
within the domain of nonlocal optics. I shall limit myself

to a description of three characteristic applications. Fur-
ther examples are given in Ref. 6. In the work on surface
linear-response functions by Cottam and Maradudin'
the need for an electromagnetic Green's tensor for some
particular choice of the nonlocal response tensor is
stressed, and some types of studies are mentioned where
the nonlocal propagator would be especially useful.

First of all, let us simplify the general expression for
the Green's tensor given in Eq. (2.2). Thus, by introduc-
ing polar coordinates, i.e., (qll „,qll ~ ) (qll, a), and plac-
ing the polar axis along the direction given by R=r~~ —

r~'~,

one can easily carry out the angular integration over a.
Doing this, one obtains

G(r, r', co) =G(R,z, z', co)

[Jo(p) J2(p)]G, (z,z',
qll ~)

[ o P)+ 2 P')]G z 'qll'co

—[Jo(p)+J2(p)]G (z z 'qll co)

+—'[Jo(p) —J2(p)]G (»z 'qll co)

dq

iJ, (p)G,„(z,z', qll, co) J,(p)G (z, z', q, l, ~)

(4.1)

where p=qllR. The function J„(p,) is the Bessel function
of the first kind (J) and integer order n (n=O, 1, or 2
here).

A. Excitation of nonlocal surface waves by an oscillating dipole

Let us consider the special case where the external
current density consists of a single, harmonically oscillat-
ing, electric dipole placed at rp, i.e.,

2

q~(qll, co)+ M(qll, co)=0,0 CO

Cp
(4.5)

a relation which, in the pole approximation for M, takes
the form

Now, it can be shown that G„has no poles, and that
the remaining elements in the propagator all have poles
determined by the condition r~(qll, c0)=0, cf. Eqs. (2.47)
and (2.48). The condition rJ'=0 is equivalent to

J,«(r'; co) =Jo5(r' —ro), (4.2)

where Jo copoli, po b——eing the amplitude of the electric
dipole moment. Inserting Eq. (4.2) into (Bl), one finds
that the electric field at r is given by

E(r;co)= poco G(r, ro, co) p—o, (4.3)

q j ET(KT, co)+Ki [1—eL (qll——, co)]
'2

X &T(IcT,co)
qll

KL
(4.6)

assuming no background field. If we are interested in the
field just inside (z ~0+ ) the surface at a distance R from
a dipole just outside (z'~0 ) the surface one has

E(R,z~0+;co)= —poc0 G ~ ~(R,z~0+,z'~0;co)-po,

(4.4)

with G ~ ~ given by Eq. (4.1) with Eqs. (2.46) —(2.48) in-
serted. The field in Eq. (4 4) will be determined by collec-
tive and single-particle excitations as we have realized.
Let us focus our attention on the collective contribution.
Considering a complex qI~ plane the poles of the in-
tegrand in Eq. (4.1) determine these collective excitations. Jo(p )+J2(p) (4.7)

Equation (4.6) is the nonlocal dispersion relation for sur-
face waves in the collective regime. ' ' In the local limit,
the right-hand side of Eq. (4.6) vanishes, and we are left
with the local dispersion relation for electromagnetic sur-
face waves. ' In the nonretarded limit (co~ ao ), Eq. (4.6)
has the well-known "electrostatic" plasmon surface wave
as a solution. ' ' Using the hydrodynamic model it can
be shown that the dispersion relation in the frequency
regime co l/2 & co 5 co has three distinct solutions,
which outside the regime collapse to the two uncoupled
solutions mentioned above.

In the far field, i.e., for p~ (x), the asymptotic behavior
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readily shows, cf. Eq. (4.1), that s-polarized plane surface
waves cannot exist (remembering that G ~ ~ =0 in the
pole approximation), a well-known result also in nonlocal
optics. ' (0)

I

E(0)

E

B. Elastic and inelastic light scattering from static
and moving surface ripples on a nonlocal metal

C. Surface-dressed dipole polarizability

If we are interested in calculating the field acting on
the dipole and arising from the dipole itself, we must, cf.
Eq. (4.3},determine the propagator G(rp, rp,'co). Since the
fundamental question regarding self-field effects, i.e.,
effects associated with the reaction on the dipole stem-
ming from the dipole itself in the absence of any other
particles, is of no concern to us here, the only contribu-
tion to G(rp, rp', co) is the indirect one. Denoting this by
I(rprp co), one has I=I zr (rp, rp;t0) if the dipole is
placed outside the metal, and I =I T~z~ (rp, rp,'to)
+ I TL (rp, rp', co)+I Lr (rp, rp', co)+I LL (rp, rp', tp) if it is

placed inside (cf. Fig. 7). In the presence of a background
field E' ', which is the sum of the incident field and the
field refiected (or transmitted) from (or through) the
boundary in the absence of the dipole, the self-consistent
field which drives the dipole oscillator is

E(rp;to)=E' '(rp', co) —@par 1(rp, rp;to) pp . (4.8)

Assuming that the dipole has the polarizability ap, i.e.,

If the external current density is related to the volumes
in space bounded by the mean surface plane z=0 and the
so-called topography function z =g(x,y), one can on the
basis of Eq. (Bl) and the actual, nonlocal Green's func-
tion study the Rayleigh ' and Brillouin scattering from
surface ripples on a nonlocal metal within the framework
of the SCIB model. In a forthcoming paper we shall, by
means of a model where the surface topography is built
using electric dipoles as elementary building stones, in-
vestigate the rough-surface scattering in the nonlocal re-
gime. Note that a single dipole on the surface represents
a very simple rough-surface topography.

FIG. 7. Schematic illustration of the principle of surface
dressing (E—E' ') of a dipole (po) placed inside a metal and ex-

posed to the background field (E' '). The self-consistent field is

denoted by E.

pp=ap'E(rp tp),

one finds by combining Eqs. (4.8) and (4.9) that

(4.9)

(4.10)

where

a(zp , to) =['U+p opia lp(zp , tp)] '' ap. (4.11}

is the surface-dressed dipole polarizability. If the dipole
is placed inside the metal, the bulk screening of the field

is of course contained in 1(zp,'to). In Eq. (4.11) we have
stressed that the renormalized polarizability (and I) de-
pends on the distance (zp) of the dipole from the surface
only. In Eq. (4.11) U is the unit tensor.

Let us finally demonstrate that Eq. (4.11) contains the
results obtained by others within the framework of the
semiclassical infinite-barrier model or simpler models.
Since J, (0)=J2(0)=0 and Jp(0)=1, one obtains via Eq.
(4.1)

I„„(zp tp)+I'(zp''to)
e)

I(R =O, z =z'=zp;co) = 0
4m o

I „(zp'cp)+Iyr(zp ri))'
2I„(zp, to)

qlld&ll . (4.12)

Now, if the dipole is outside (zp &0) the metal one gets by
combining Eqs. (2.26), (2.28), and (2.29)

and

ITT „„(Zp 6) )+ITT (zp'co)

p 2

&o~i
r'(ql, tp)

0—2lq iZO

rt'(qII, co }
2lq g

(4.13)

I~~~„(zp, tp) =
'2 —2l OZ

„p( )
2lq

(4.14)

The final result for a is obtained by inserting Eq. (4.12)
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iq&z'
i . „ e dq~

L (qll, co) = ——lim
z' 0+ oo

q)~ +q
1

iqI)
(4.15)

in this limit, as one readily shows by contour integration
in the upper half-plane around the pole at q~=iq~~~, one
finds r'=0, and hence I~~~~~(zo', co) =0, an expected result
when only virtual photons are present. In turn,

ITT,

xx(zo~&}=Iform(

ZO ~~}

C0

2 co

'2

r'(qll, co)e 'll", (4.16)

with

with (4.13) and (4.14) into Eq. (4.11). In the nonretarded
(co—+~ ) limit, where only virtual (V)&E=O) photons
contribute, one has Nr(q)~ —q and q~~iqll. Then,
since

iq~o+
e dqg

K—q —~ q eL(q, co}

iq&0+
e

m +qi(
q eL(q, co)

(4.17)

The result obtained above in the nonlocal and nonretard-
ed regime is in complete agreement with that of Fuchs
and Barrera obtained by a di8'erent approach. In the
local regime, the field radiated from the dipole and deter-
mined outside the surface via Eq. (4.3) with Eq. (2.2) and
(2.24)-(2.26) inserted is in agreement with that given by
Hellen and Axelrod, and Morawitz and Philpott. In
turn, the renormalized polarizability agrees with that ob-
tained in a local approach.

The nonlocal propagator formalism we have developed
can also be used with advantage to study the renormal-
ized polarizability of an impurity or a "vacancy" inside
the metal. I shall not discuss that subject here but refer
to a forthcoming paper of mine where the self-
consistent, surface- and bulk-screened interaction be-
tween two such defects is studied within the framework
of the semiclassical, infinite-barrier model.

APPENDIX A: THE RELATION BETWEEN THE OLD (REF. 5) AND NEW (THIS WORK) PROPAGATOR

To establish the connection between the propagator of Ref. 5 and that used in this work we take as a starting point
Eq. (3.31) of Ref. 5, i.e.,

~ IG" (r, r';co)= S ' G" (z,z', q, co) Se ' " ' d q
(2 )z

(Al)

Since S is unitary, i.e., S '=S, where S is the transpose (T) of S, it follows that

I

[G" (r, r', co)] = S ' [G" (z,z', q, co)] Se " ' 'd q(2 )2
(A2)

Next, by making the substitution qll qll qll» qll»'qll Y qlla one obtains

I

[G'& (r, r', co)]T= S ' G"'"(z,z', q, co) Se ~'
(2 )2

(A3)

where

—1

G "'"(z,z', qll, co) = 0
0

0 0 —1

—1 0 .[G" (z,z', qll, co)] ~ 0
0 1 0

0 0
—1 0
0 1

(A4)

Performing the matrix multiplications in Eq. (A4) one finds

g new
XX g new

XZ g old
XX p gold

g new

g new
vv

0

g new
22

0 gold

gold pXZ g old
zz

(A5)
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(A6)

which is just the result cited at the end of Sec. IIA.
Comparing Eqs. (2.2) and (A3) one also realizes that

G"'"(r,r', co}=[G"(r, r', co}]

pure integral equation problem of the form

E(r;co) =E' '(r;co) —ipoco J G(r, r', co) J,„,(r';co)d r'

(Bl)

APPENDIX B: THE EFFECTIVE PROPAGATOR
FOR PROBLEMS EXHIBITING TRANSLATIONAL

INVARIANCE ON THE y-AXIS

The fundamental field-theoretical problem in nonlocal
(linear or parametrically nonlinear) metal optics usually
is described on the basis of a vectorial integro-differential
equation. However, using a generalized Ewald-Oseen ex-
tinction theorem it has recently been demonstrated that
the field-theoretical problem can be reformulated as a

with G(r, r', co) given by Eq. (2.2), and po being the vacu-
um permeability. For definiteness, the problem is formu-
lated here for the field at the fundamental frequency (co}.
In nonlocal optics the "external" current density J,„, is
related to the self-consistent electric field E via a nonlo-
cal, constitutive equation. Now, if we assume that
J,„,(r', co) is independent of y', an assumption which in-

herently necessitates that the background field E' '(r;co}
is invariant on the y axis, the integral equation in (Bl) is
reduced to the form

E(x,z;co) =E' '(x, z;co) ipoc—o J G(x —x', z, z', co) J,„,(x', z', co)dx'dz'

with G(x —x', z, z', co) given by Eq. (2.5). By combining Eqs. (2.2) and (2.5) and utilizing the 5-function expansion

(B2)

(B3)

one obtains

G(x —x', z, z', co) =
2m —"

qll

q)), 0 0

0
q~~ „0 G(z, z',

q~~, co).

0 0 q))

q)), x

0 q

0 0 q))

0 0
iq)) „(x—x')

)I x 0 e '
dq)) x (B4)

with
q~~

——
~ q~~ „~ & 0. Now, by rewriting Eq. (B4) as follows:

—1

0
0

1''.0

{)
G(x —x', z, z';co) = 2'

0 0

0 1

0 0 —1

—1 0 G(z, z', —
qadi „,co) 0

0 1 0

0 0 1 0 0
1 0 G(z, z',

q~~ „,co) 0 1 0 e '"
dql „,

0 1 0 0 1

(B5)

and by using the symmetry relations

G, , (z,z', —ql „,co)=G;;(z,z',
q)( „,co),

i=x, y, orz (B6)

for the diagonal elements of the propagator, and

G;,.(z,z'; —
q~~ „,co) = —G; (z,z', ql „,co),

i,j =x or z (i &j ) (B7)

for the off-diagonal elements, it is a straightforward
rnatter to show that the propagator can be written simply
as

G(x —x', z,z', co) = G(z, z',
qadi „,co)2'

If the external current density and the background field
consist of only a single plane-wave component along the
surface they can be written in the separated form

Z(x', z', co) =Z(z', q ~(, co)e

where qt) is the actual wave number. By inserting this
form and Eq. (B8) into Eq. (B2), and by using the plane-
wave expansion of the Dirac 5 function one obtains after
integration over x' and q~), respectively,

E(;q(), )=E' '(;q)(, )

ipoco J —G(z z', q~~, co) J,„,(z', q~~, co)dz' .

(B10)

X e '
dq)I (Bg)

APPENDIX C: AMPLITUDE REFLECTION
COEFFICIENTS

Hence, by the replacement q~) „q~~ in the integrand we
have obtained the result asserted in Eq. (2.6).

In the regime of nonlocal optics the amplitude
reflection coeScient for s-polarized light, in the notation
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of Ref. 5, is given by

q a(0)—P(0)"(ql»= oqia(0)+P(0)

where

iq&z'

a(0)= lim f dqi,2m, o+ —mNr q

and

iq&z'

P(0) = lim f dqi,~z'~0+ ~ T q

(Cl)

(C2)

(C3)

with Nz(q) taken from Eq. (2.39). According to the
Lindhard formalism' one has in the limit q~ ~ ao,

oT(ql, qi, co) 1 —(co /to), i.e., a constant value. This
result implies that P(0) can be calculated explicitly. Thus,

q j sinqJz'
P(0) =—lim f dqi

o+ o NT(q) q,

qiL (q~~, co}—1
r'(q l, co)=

q&L (qt~~, to)+ 1

where

(C7)

P(0)=1/(2ia) .The use of the near-local model, which
only gives the dispersion relation NT(q) =0 of a fully non-
local model correctly around the transverse plasma edge,
implies that the spatial dispersion in cTT(ql, qi, co) is
small. The deviation of the value of 13(0) obtained by
means of the near-local approximation from the correct
1/(2i) value of course stems from the fact that it is the
asymptotic (qi~ao) value of the integrand in Eq. (C4)
which determines P(0). In the asymptotic region the
near-local expression NT=a[(tti) —qi] deviates from
the correct one by just the factor a. For many studies of
polariton modes this difference between the near-local
and hydrodynamic models is of no significance. For the
investigation of certain plasmon effects the difference be-
tween the two models is of crucial importance.

By inserting Eq. (C4) into Eq. (Cl) one obtains

2
l 7T qj

lim
m. 2 q, m NT(q)

1

2l
(C4)

2l ~ cosqjz
L (ql, to) =—lim dqn, o+ o NT q

It is instructive to compare the exact result in Eq. (C4}
with that obtained on the basis of models where Nr(q)
exhibits no branch-cut structure. With the polariton pole
located at qi =tti in the upper half-plane of the complex

qi plane, P(0) is given by

p(0) =ittiAT+, (C5)

where

T
qg —KgR+ = lim

N (q~~, q, )
(C6)

Now, if one uses the so-called hydrodynamic model, NT
has the local-limit form NT ——(tet) —qi. When inserted
into Eqs. (C5) and (C6), this form leads immediately to
P(0)=1/(2i) in agreement with Eq. (C4). Using instead
the so-called near-local model, NT =a [(tti ) q i ], —
where a =a (co) is a complex number close to 1, one finds

cos(qi0+ )

o
(Cg)

Inserting the result in Eq. (C4} into the equation for the
reflection coefficient for p-polarized light given in Ref. 5,
one obtains immediately

with

qi (~/co)'M— (ql ~)
(q(), ) =

qoi+(to/co) M(qll'co)

2 2

N, ( )+N, ( )

(C9)

cos(q i0+ )
dqi

(C10)

in the notation lim, + J F(qi, z')dqi= fF(q&, 0+)dqi.
The explicit expression for NL is given in Eq. (2.40).
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