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Probability distributions for the resistance of two- and three-dimensional disordered conductors
are studied using a Migdal-Kadanoff —type scaling transformation together with the author's previ-

ously derived distributions in one dimension. The present treatment difters from earlier work in two

respects: On one hand, it includes the effect of an average potential barrier V experienced by an
electron originating from the perfect leads which connect the conductor to a constant-voltage
source; on the other hand, the input distribution for one-dimensional systems is based on an exact
solution for the effect of the random potential on the complex reflection amplitude of an electron at
a certain energy. The scaling equation for probabihty distributions and for their successive mo-

ments are parametrized in terms of the mean resistance, p, and of a fixed parameter y related to V.

Hence they correspond to a special form of two-parameter scaling. A mobility edge, p:—p„exists
only for d & 2 and, for d =3, detailed results for p„ for the conductivity exponent v, and for the
fixed resistance distribution at p, as a function of y are presented. The asymptotic distribution of
resistance away from the mobility edge for d =3, and in both small- and large-resistance regimes for
d =2 are also studied. In the metallic regime for d & 2 our treatment yields two distinct distribu-

tions, one of which is characterized by Ohm's law for the mean resistance and the other one by
Ohm's law for the mean conductance. In the latter case the fluctuations of conductivity are in-

dependent of sample size for large samples. The calculated distributions are generally broad and in

the localized regime, for d =3 and d =2, the rms values of resistance dominate the mean values in

the infinite-sample limit.

I. INTRODUCTION

The scaling theory of Abrahams et al. ' has consider-
ably changed our understanding of electronic localization
and of metal-insulator transitions induced by disorder. It
suffices to mention two of its fundamental predictions,
namely the absence of a metallic transition in one and
two dimensions and the absence of a minimum metallic
conductivity in both two- and three-dimensional systems
(for recent reviews see Refs. 2-4 and the references quot-
ed therein). The theory of Abrahams et al. is based on
the study of the transformation of the dimensionless con-
ductance, g(L), under increase of the edge size L of a d-
dimensional hypercubic sample. However, this theory
does not make direct reference in its formulation to the
actual randomness of the potential but regards g (L) as a
suitable typical conductance instead.

This has recently led Shapiros to develop a scaling
theory at a more basic level where one studies the proba-
bility distribution of conductance (or resistance) in the
actual random conductor. Shapiro's treatment parallels
an earlier analysis by Kumar and Jayannavar who stud-
ied the scaling behavior of the first two resistance mo-
ments rather than that of the full distribution. The au-
thors of Refs. 5 and 6 imagine the hypercubic sample to
be divided up into independent linear chains of identical
cubes of smaller size in the direction of current flow.
They argue that quantum interference effects are essen-
tially one-dimensional, determining only the law of series
combination of conductances (resistances) within a chain.
If this is the case, the conductance of the hypercubic

sample is given by the parallel combination of the above
individual chain conductances, which is governed by the
classical Ohm's law. This procedure for obtaining the
conductance (resistance) leads to a Migdal-Kadanoff-type
scaling transformation for the probability distribution un-
der an infinitesimal increase of linear dimensions. Clear-
ly, the success of this approach depends on the availabili-
ty of a reliable description of the quantum resistance
(conductance) of a disordered one-dimensional conduc-
tor.

The dimensionless resistance of a one-dimensional con-
ductor is defined by the Landauer formula,

p=, r= ~R(L) (

for any realization of the random potential. Here
R (L)=v r e'@~' is the complex amplitude of reflection of
an electron of energy E by the conductor of length L. We
recall that in Eq. (l) the disordered conductor is regarded
as a macroscopic scatterer described by a tunneling bar-
rier, which is connected to a constant voltage source via
perfect conductors at both ends. ' Now, in actual treat-
ments of resistance (conductance) based on Eq. (l), one
usually assumes the phase angle 8(L) to be randomized
and uniformly distributed at sufficiently large length
scales ' ' (random phase model) as a result of the disor-
der. Furthermore these treatments do not include the
effect of an average tunneling barrier, thus reducing to an
ideal conductor when the disorder is "switched off." We
recall that phase randomization due to the random po-
tential has not been generally demonstrated and is not

37 10 571 1988 The American Physical Society



10 572 J. HEINRICHS 37

V(L}=V+u(L), (v(L)) =0, (2)

where the conducting chain extends from x =0 to x =L
and v (L) denotes the random potential at the edge x =L
with a Gaussian white-noise correlation:

(u(L)u(L'))= —5(L —L') . (3)

For such a symmetrically distributed potential the treat-
ment of I is valid at the energy E = V/2. This is because
a term of the form [2E —V (L }]R(L) has been ignored in
the equation for R (L). We note that the residual value
of this term [ —v (L)R (L)] is expected to have relatively
minor effects only. ' The scaling theory discussed below
departs in important respects from previous scaling
theories. ' ' The average tunneling barrier, in particular,
introduces an additional parameter in the scaling equa-
tion, which leads to nonuniversal values for, e.g., the mo-
bility edge and the critical exponent for the conductivity.

A point of considerable interest in this study is to find
out whether the strong fluctuations of the quantum resis-
tance in one dimension get appreciably reduced by the
multiple connectivity of higher space dimensions. In this
respect our work corroborates the earlier conclusion
based on analytical ' as well as numerical' work that
the distribution of resistance at the mobility edge in
three-dimensional systems is rather broad. Moreover, we
find that the variance dominates the mean resistance
squared on the insulating side of the mobility edge in
three dimensions, as well as in both the low- and large-
resistance regimes in two dimensions. In particular, we
obtain for the first time the explicit form of the leading
L-dependent dimensionality effect in the asymptotic ex-
pression of the distribution in the insulating regime.

supported by numerical work on one-dimensional sys-
tems. " This somewhat unsatisfactory situation has
prompted us recently to present a detailed study of the
Landauer resistance for an alternative model which treats
directly the effect of the random potential and includes
the effect of an average barrier V (see Ref. 12, hereafter
referred to as I). Such an average barrier is commonly in-
troduced in related contexts ' and is, of course, present
in various physical systems such as, e.g., a disordered me-
tallic alloy conductor connected to (perfect) leads made
of one of the alloy constituants. In addition, the barrier
V plays a crucial role in our model since it ensures the
property of "additive mean" of lnp, ' whose importance
has been stressed by Anderson et al. While the results
agree qualitatively with earlier work' ' ' in revealing
strong fiuctuations of the quantum resistance (leading to
non-self-averaging behavior at large length scales) they
differ significantly in detail, in particular because of the
role of V.

The purpose of the present paper is to use the results of
I to study resistance fluctuations and the metal-insulator
transition for two- and three-dimensional systems using a
Migdal-Kadanoff scaling transformation, as discussed
above. The potential in the differential equation for
R (L) obtained from an "invariant imbedding" procedure
in the one-dimensional case has the form'

In Sec. II we use the results of I for the distribution
P'"(p, L) of the quantum resistance of a one-dimensional
chain to set up the scaling equation for the distribution

Pz '(p, L)=P (p, L) (and of its lowest-order moments) in

a d-dimensional specimen, using a Migdal-Kadanoff
transformation. The detailed analysis of these equations
is presented in Secs. III and IV. In Sec. III we study suc-
cessively the mobility edge, the conductivity exponent v
and the fixed distribution P (p) at the mobility edge for
d & 2. In Sec. IV we then discuss the asymptotic behav-
ior of P (p, L) in the insulating regime for arbitrary
dimensionality and in the (quasi-) metallic regime for
d & 2, respectively. We also discuss the asymptotic distri-
bution of resistance in the low-resistance, quasimetallic
regime in two dimensions. Finally, some concluding re-
marks are presented in Sec. V.

II. SCALING EQUATION
FOR THE PROBABILITY DISTRIBUTION

OF RESISTANCE

=er'J dz +y (yP~)

x& p'' — ——+1 z 1

4z 4 2
(4)

where P (y, I) is the distribution of the variable y,
T

P (y, l) =(2&2~ly) exp (lny )z

y 81

y =exp ——f u(L')dL'
V o

and

l =L/L„y =~L, ,

are dimensionless quantities with

L, =kog, v=2V/ko, ko ——/2E (8)

Thus I is a reduced length defining L in units of the local-
ization length L, for the one-dimensional conductor. y is
the ratio between L, and the decay length (or penetration

Following Shapiro we concentrate on the scaling
properties of the probability distribution of the resistance

p of a disordered d-dimensional cubic sample. We shall
find the change in the probability distribution of resis-
tance when the side of the hypercubic block is increased
by an infinitesimal amount, hL ~0+, from L to L +hL
(the corresponding scaling factor is b = 1+b,L /L), using
a Migdal-Kadanoff-type scaling transformation. ' This
transformation involves the following two steps. We
start from a d-dimensional cube of size L and first com-
bine b such cubes (cells) in series to form a linear chain of
length bL =L +EL whose resistance p'" is described by
the quantum probability distribution P"'(p'",L+bL)
for a finite one-dimensional conductor, derived in I.'
Thus by expanding in powers of hL we obtain from the
first of Eqs. (34}of I
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depth), ko/2V, of eigenstates inside the barrier V, and we
have F. = V/2, as discussed above.

In the second step we then combine b ' independent
chains (chosen to lie in the direction of current fiow) with
distributions P"'(p, L +bL) into a d-dimensional cube of
edge L+hL. In other words, the hypercubic block of
side L +hL is assumed to be decomposed into b elemen-
tary cells (of side L), and "bonds" (current leads) between
cells in the d —1 directions perpendicular to the current
flow direction are assumed to be cut, leaving a collection
of b ' independent chain resistances as the constituents
of the block. The resistance of the block, p'"'(L + b,L), is
thus given by the Ohm s-law combination of chain resis-
tances in parallel. For simplicity we assume further-
more ' that the b" ' chains have the same resistance,
p" '(L +hL ), chosen from the distribution
P"'(p, L+bL), thus obtaining

p' '(L+BL)=p"'(L+EL)b'

Our neglect of statistical fluctuations of resistance be-
tween chains (limit of extreme anisotropy ) has been
justified by Shapiro for dimensionalities close to 2. On
the other hand, the neglect of quantum interference in
directions perpendicular to the current fiow (via the bond
cutting procedure} has been discussed in Sec. I. Shapiro
has pointed out furthermore that the classical parallel
combination of chain resistances yields the correct
asymptotic behavior of a typical resistance in the metallic
(weak scattering) regime. He has also noted the close
similarity between the transformation described above
and Anderson's so-called "fan" transformation. '

From Eq. (9) it follows now that the probability distri-
bution of the resistance p' '(L +b L)=p(L +IL ) of a d-
dimensional block, P'"'(p, L +EL)=P (p, L +bL), is
given by

P (p, L+bL)=b 'P'"(b 'p"'(L+bL), L+hL) .

(10)

By expanding Eq. (10) to linear order for b,L ~0+, using
Eq. (4), one readily finds

dP (p, L)
=(d —1) [pP (p, L)]

Bp

where we have ignored, as usual, the difference between
chain and block resistances on the right-hand side (rhs} in
the sense of iteration. ' As in Refs. 5 and 6 we choose
the mean resistance PL of the d-dimensional block as our
scaling variable to parametrize the distribution. We note,
however, that the latter will depend, in addition, on the
fixed parameter y. In order to parametrize the inhomo-
geneous term of (11) in terms of pL (Ref. 5) we first ex-
press the reduced length I on the rhs as a function of the
mean resistance p z

' of a segment of length L given by'

p'I" ———,'[e 'cosh(yl) —1], (12)

+I (pL )e

XJ dz
1 z 1

o 4z 4 2

BP
+y~ (p y) „-

I

y =ze~

provided P (p, L) is sufficiently well-behaved that the
boundary terms appearing on integration by parts vanish.
An important example of a distribution which does not
satisfy this condition will be encountered in Sec. IV. By
performing the integrals over z, using Eqs. (5) and (12),
we obtain the exact equation

PL.

al~ == —(d —1)pL, + I (pL, )(1+2pL )

i.e., I —= I (pI") is the inverse function of p I". Next, when
substituting this expression in Eq. (11),we replace p ~

' by

pi [i.e., we put 1:—l(pL }]in the spirit of the renormaliza-
tions following a small change of length scale, as de-
scribed by the finite difFerence forms of Eqs. (4) and (11).
A closed equation for pL is obtained by multiplying Eq.
(11)by p and integrating over p, which yields

~PI.

lnL
= —(d —1)pI

1+ tanh[yl (pL, )] (14)

+ler'f dz +y (yP )

1 z 1
X& p — ——+

4z 4 2

where the scaling function on the rhs also depends on y,
unlike in Refs. 5 and 6 where it is a universal function of
pL alone. Finally, a similar exact calculation for the
second moment, pL, of P (p, L) leads to the equation

2J(pL )= —2(d —1)pl 1(pL )e cosh[y—l (pI )] 1+ tanh[yl(pL )]
2

8I(pl )
+l(p~}e ~ cosh[2yl(pL )] 1+ tanh[2y (p~)] (15}
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III. MOBILITY EDGE AND PROPERTIES
NEAR THE MOBILII'Y EDGE

The spatial localization of electronic states in a disor-
dered system is described by the localization length
which diverges at the mobility edge. Thus in a scaling
theory the mobility edge may be defined as a critical
point where physical quantities remain fixed with respect
to changes of length scale. Since our scaling parameter is
the mean resistance, the mobility edge corresponds to the
fixed-point resistance p, given by

PL.

lnL
(16)

Equations (11), (14) and (15) describe the evolution of
the distribution and of its two lowest moments under a
change of length scale. Note that Eqs. (11) and (15} in-
volve pL as a parameter [via the inverse function
l (pL ) =l (Pz'") ofPL'" in (12)] which must be obtained ex-
plicitly from (14) before their solution can be studied.
Thus once P (p, L) has been found in explicit form it may
be parametrized in terms of PL and y using the inverse
function of the solution of (14). This property of the dis-
tribution, as well as Eq. (14), show that we are dealing
with a special type of two-parameter scaling where one of
the parameters (y) is scale-invariant, being fixed by the
model. Finally, we note that for length scales where the
values of pL are such that yl(pL }«1, Eq. (14} together
with (12) reduces to the scaling equation for the mean
resistance of Refs. 5 and 6. However, the distribution
Pz(p, L) and its higher moments remain different from
those of Ref. 5 due to the difference between the models
used, as discussed in Sec. I.

P(g, )=0, (20)

and one easily verifies that real positive solutions exist
only for d & 2, which shows that all states are localized in
one- and two-dimensional systems for any disorder. The
above results show that the behavior of the function (18b)
is qualitatively siinilar to that of the p function discussed
by Abrahams et al. ' and displayed in their Fig. 1. Final-
ly we recall that' the mobility edge p, (for d &2}
separates the insulating regime where the resistance
scales from an initial value p, towards exponentially large
values, from the metallic regime where the scaling is, to-
wards arbitrarily small values when L is increased
indefinitely. This is because BpL /i) lnL (8 1ng/8 lnL)
changes sign at the mobility edge, being positive for
pL & p, and negative for PL &p, .

Near the mobility edge g, one may write'

d lng g=s ln =s (21)

where

ap
S =gc (22)

The parameter s characterizes the critical behavior of the
conductivity and of the localization length as a function

gc~

(23)

p(g)=(1+g/2) lng+(d —1 —ln4)+, g~0 . (19b)

Equation (16) defining the mobility edge p, =g, ' now
takes the form

The fixed values P' and p2 of the distribution and of its
second moment are then determined in terms ofp, by

BPp BpL

8 lnL 8 InL
(17)

The original scaling theory of Abrahams et al. 'z was for-
mulated in terms of the conductance and so it is useful to
define the conductance g=pL' corresponding to pL.
Equation (14) may then be rewritten in the form

d lng
d lnL

(18a)

p(g}=d —1 —(2+g)l (g ') 1+ tanh[yl (g ')]
2

p(g)=d —2 —(1+y2/4)g '+ .
, g~ oo,

and

(19a)

(18b)

where 1(x) denotes the inverse function of x =Pz"' given
by Eq. (12). For y =0 this p function reduces to the cor-
responding function for the variable g =pI ' obtained
from Eq. (5) of Shapiro. The limiting forms of p(g) for
small and large g obtained by inverting Eq. (12) are

From Eqs. (18b) and (22) it follows that in our two-
parameter scaling theory the critical conductance g, as
well as the critical exponent v depend on the fixed param-
eter y, while having universal values, g, =(1.96) ' and
v= 1.68 (Ref. 17) in the earlier one-parameter theories.

The scaling theory of localization is valid for length
scales larger than the mean free path, Lo, for scattering
of an electron of energy EF by the r'andom potential.
Above this lower length cutoff the motion is diffusive'
and the Thouless scaling argument' applies. The conduc-
tance go(L p EF ) at the scale Lo is a microscopic measure
of disorder and provides the boundary condition for the
first-order equation (18a). In particular, it fixes the value
of the arbitrary constant in the solution, ln(g/g, )=CL'
of Eq. (21) close to g„namely C =La'Ingo/g„which
must change sign as g changes from values g &g, to
values g &g„while being zero for g =g, (since L cannot
become smaller than Lo). The condition C =0 for g =g,
is satisfied as a result of the connection between g, and
the energy of the mobility edge E,: E, corresponds to
the special value of the Fermi energy (where conduc-
tances are measured) for which go takes the value g, for
d =3~ 1.C.,

(24)
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On the other hand, for small deviations of Ez from E,
one has

ln g
ge

go —gc

gc

L
Lo

S

= (E E—)
gc Lo

(25)

which displays the required sign change as EF moves
across the mobility edge. Finally, we note that the solu-
tion of (21}written in the form

I

t
I

I

I

I

I

I
I
I
I

I..68 S

g =g, (1+CL '» g g, (26)

implies that there exists a small region on the insulating
side of the mobility edge where the eigenstates are no
longer exponentially localized.

As in Sec. II and in earlier work ' we now proceed
with our discussion using again the mean resistance as
the basic scaling variable. While we could have formulat-
ed the treatment of Sec. II directly in terms of the (ran-
dom) conductance, g =p ', the Landauer formula leads
to a singular distribution for g with infinite moments' at
any scale for a linear chain. For this reason the mean
conductance gL

——p ', in particular, does not seem to be
a meaningful scaling variable, at least in one dimension.
As observed by Shapiro, the singular form of the distri-
bution of g might be the origin of difficulties encountered
in scaling theories based on the calculation of conduc-
tance moments.

In Fig. 1 we have plotted the mobility edge Pz =p, as
given by Eqs. (14) and (16), as a function of y. Our re-
sults show that p, decreases monotonically from the
value p, =1.96 to the value p, =0.602 as y increases
from y =0 to a limiting value y =

y&
——4.678. No mobili-

ty edge transition is found when y exceeds y&. The ab-
sence of a transition for y&y& is a consequence of the
fact that when L, is sufficiently large (weak disorder}
compared to the barrier penetration distance, the eigen-
states remain exponentially localized near the edge of the
barrier, at energies E= V/2. Also, the fact that the criti-
cal resistance decreases with increasing y corresponds to

I
I

I
I

I

I

~.ee 5

FIG. 1. Resistance at the mobility edge versus parameter y
defined in the text, for d =3.

FIG. 2. Conductivity exponent near the mobility edge versus
parameter y defined in the text, for d =3.

the fact that, at fixed penetration length, the conductance
is expected to be larger, the larger the localization length.
Further information about the mobility edge may be ob-
tained, in principle, from Eq. (24) with g, =p, . Since in
the present case EF E, = V/——2, and g, depends on the
disorder through y=2L, &V, Eq. (24) determines the
value of the disorder parameter 1., for which the mobility
edge lies at E, = V/2. Note, incidentally, that, unlike in
one-parameter scaling theories, the disorder no longer
enters exclusively (and indirectly) through the parameter
go in the properties near the mobility edge. Finally, we
note that Eqs. (14) and (16) also have a trivial fixed point,
pL

——0, for any y. This fixed-point characterizes the per-
fect metal phase towards which the system scales on the
metallic side of the mobility edge.

A parameter of much experimental interest is the criti-
cal conductivity exponent v given by Eqs. (18b), (22) and
(23). The latter is plotted numerically in Fig. 2. The
values of v decrease from v= 1.68 for y =0 to a minimum
v=1.58 for @=1 while for larger values of y they in-
crease monotonically to a limiting value v=2. 15 for
y=y, . These values are generally larger than previous
estimates based on scaling theories: 1.25&v&1.75, '

v=1.5, 2 and v=1. Note, however, that the value
v=1 is usually obtained by extrapolating results for
d =2+a dimensions, e &&1, to d =3. As shown below,
this procedure also yields v= 1 when used in connection
with the present treatment and with Shapiro's. Various
experimental results reviewed by Thomas are consistent
with either v=0. 5 or v=1. As will be shown in Sec. IV
the fluctuations of resistance are large on both sides of
the metal-insulator transition for d =3, making the resis-
tance a non-self-averaging quantity. This may affect the
accuracy of the analysis of experimental results for the
resistance and, in particular, the determination of the ex-
ponent v.

Finally, we discuss the form of the invariant probabili-
ty distribution of resistance, P (p), at the mobility edge

p =p, . This fixed distribution may be obtained in closed
form from Eq. (17},using the Laplace transform of the
rhs of Eq. (11) and inserting Eq. (5}. After performing
the necessary integrals we obtain the final expression
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Pp(p) = 1 —yl(p )
[ln(e ' z+ )] exp

4(d —1)[2m I (p, )]'~ p

—yl(p )—[ln(e ' z )] exp

[ln(e ' z+ )]
8l(p, )

[ln(e ' z )]2

81(p, )
(27)

where we have defined

z + ——1+2p+2&p(p+ 1 ) . (28)

The distribution (27) depends parametrically on y and on

p, via the inverse function l(p, ) of p=p, given by (12).
It is instructive to analyze the expression of P'(p) in the
asymptotic limits p&&1 and p &&1. Noting that in the
range of interest (y &yi} the quantities p, and l(p, ) are
of order unity and yl & 1, we obtain successively

explicitly for dimensionalities d =2+ e, E « 1, where
solutions in the form of expansions in powers of e exist.
By expanding the rhs of Eqs. (14) and (15) we obtain the
finite values p, =e(1+y l4) ', pz-3e (1+y l4)
which lead to pz/p, =3. Similarly, from Eqs. (22), (18b)
(g, =p, ') and the above value of p, we get
v=e '+O(1}. This shows that to leading order the con-
ductivity exponent is independent of y and coincides with
the universal value of Shapiro's one-parameter scaling
theory.

and

P'(p) cc Ilp, p « 1 (29)
IV. ASYMPTOTIC DISTRIBUTIONS OF RESISTANCE

FOR DIMENSIONAI. ITIKS d & 1

P~(p) = [2(d —1)[2ml (p, )' ] 'p ' ln(4p)

Xexp —,p »1[ln(4p)]
81 p,

which may be rewritten in the form

2l(p, ) [a(p) —1]
(4p)a(P)

Pp(p)=

a(p) =1+ ln(4p)
81 p,

(30)

(31)

This expression is formally similar to the limit p&&1 of
the distribution at the critical point obtained by Shapiro
in terms of an exponent a [analogous to our a(p)] which
is, however, constant and of order 2.5 for d =3.

An important consequence of the limiting form (30) is
that the finite-order moments of the distribution Pz(p),
p'„= J o"dp p"P'(p), are finite and, for example, the first-
and second-order moments given by Eqs. (14)—(17) are

p', =p'=[2(d —1)] 'le '[y sinh(yl)+2 cosh(yl)], (32)

and

pz ——[2(d —1)] 'le '

If the initial value of pL at some arbitrary scale Lo is
less than p, (for d & 2}, the system scales towards metal-
lic behavior with PL varying as PL ——AL "for L~ oo.

If, on the other hand, PL &p„ then the system scales to-
0

wards insulating behavior with an exponentially increas-
ing pz reflecting localization of eigenstates on scales less
than L. These results based on Eq. (14) assume that
P (p, L) is sufficiently well-behaved, as discussed in Sec.
II. An important singular distribution for the metallic
regime will, however, be obtained below by using the
mean conductance as scaling variable instead of PL. In
this section we study in detail the distribution of resis-
tance on both the metallic and the insulating side of the
mobility edge, in the infinite sample limit. Since the one-
dimensional case has been discussed elsewhere, ' we
confine ourselves to dimensionalities d &2 and to the
study of the insulating state for d =2.

A. Metallic regime, p &p,

In this case Eq. (14) shows that PL decreases with in-

creasing L. More precisely, for L ~ ~ we have PL &&1
and Eqs. (12) and (14) successively reduce to

X [e 'sinh(2y1) —2 sinh(yl)]
4 and

l (PL, ) =PL, (34)

+e cosh(2yl) —cosh(yl) (33)
PL. 2

8 1nl
= —EpL, +O(p L, ), E=d —2, (35)

where 1=I (p, ) is the function defined by Eq. (12). Since

p, (Fig. 1) and 1(p, ) are of order unity and yl(p, ) & 1

these equations yield pzlp, —1, which shows that P'(p)
is quite broad. We note that Shapiro's distribution at the
inobility edge differs qualitatively from Eqs. (27} and (31)
in that all its moments beyond p, are infinite. Our con-
clusion concerning the width of P'(p) may be checked

whose solution,

pz = AL2 (36)

displays typical metallic behavior for d & 2. On the other
hand, the scaling transformation leading from a linear
chain distribution P"'(p, L) to the distribution P (p, L)
for a d-dimensional block is expressed by the equation
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op, q ap,'"=(d —1) (ppp)+1(pL)
(}lnL (}p P (}1(p )

(37)
Ps(g, L)=f dpP (p, L)5(g —p '),

0

=g 'P (g ',L) .

(43a)

(43b)

p «1, 1 «1, (38)

with 1:—1(pL ). The leading term of this expression yields

(}lnl (}p

whose substitution into Eq. (37), with the replacement of
P"' by P in the sense of iteration, gives

BP =6(p'P ), (39)
(}InL Bp

which is independent of the disorder and of the average
barrier. The important point to observe is that this linear
equation admits tao distinct solutions of interest for large
L, namely a regular one,

P (p L):P (p L) =(2~AL —
ep)

—1/2e P/2AL—

which leads to Eq. (36), and a singular one given by

p (p L ) p(2)
(p L ) (2~BL Ep3 ) 1/2e —1/2BL p

(40)

(41)

Here A and 8 are arbitrary constants. We note that
Shapiro's distribution for the metallic case differs from
(40) by the form of the preexponential factor. We also
note that while Eq. (40) reduces to the leading term of
Eq. (38}for d =1, this is not a necessary requirement for
the solution of (39) since in one dimension the general
equation (37) is just an identity. While Eq. (40) describes
a system where the mean resistance obeys Ohm's law, we
show below that (41} implies Ohm's law for the mean
conductance, which thus becomes the natural scaling
variable, instead of pL, in this case.

The moments of Eq. (40) in the infinite sample limit are
finite and are given by

p„=f dpp"P (p, L)=(2AL '}"1r 'l I (n+ —,'),
0

which follows from Eq. (10) for EL ~0, with the usual
parametrization of the rhs in terms of the mean resis-
tance via Eq. (12). In the present case l(pL ) is given by
(34) and we require the linear chain distribution for p « 1

[where both pL «1 and l(pL ) «1] given by the expan-
sion of Eq. (34) of I for p~O, I —+0:

p(l)(p 1) (2~1p)
—1/2e —p/21

P

y2 l 2

1 — + (p —1)+—
2 8 6 1

By performing the change of variable g =p ' in Eq. (39),
using (43b), we obtain

ap,
(}lnL Bg

= —e gP (44)

where gL —=
g& is seen to obey Ohm's law for conductance:

gL gLd —2 (48)

Of course, due to statistical fluctuations we have
(g) =(p ')+(p) ' so that for a given system Ohm's
law cannot be obeyed simultaneously by (p ) and by (g ) .
Our treatment, based on the Migdal-Kadanoff transfor-
mation, gives rise to two solutions (for d &2), Eqs. (40)
and (46), which distinguish between physical situations
where pL and gL, respectively, are given by Ohm's law.
Equations (40) and (46) thus correspond to distinct
boundary conditions for the general solution of the first-
order partial differential equation (44) (which is expressed
in terms of an arbitrary function): finite resistance mo-
ments in the case of (40) and finite conductance moments
in the case of (46). We note that recent first-principles
perturbation theory analyses have led to Ohm's law for
the mean conductance. The latter is also a basic in-
gredient of the scaling theory of Abrahams et al. ' These
results would suggest that the metallic conductance is de-
scribed by the regular distribution (46), rather than by
the distribution (45) corresponding to the regular resis-
tance distribution (40). Finally, it is of interest to exam-
ine the distributions of the resistivity A, =pL' and of the
conductivity o =gL ' obtained from Eqs. (40) and (46),
respectively. These are

The formal similarity between Eqs. (44) and (39) then
leads to solutions analogous to Eqs. (40) and (41):

p (g L) p (g L) (2~AL g3) 1/2e —1/2AL 'g

(45)

P (g,L):P' '(g—L)=(27rBL'g) ' e g 2 (46)

One readily verifies that Pe("(g,L) and Ps( '(g, L) are relat-
ed to Eqs. (40) and (41), respectively, by the transforma-
tion (43a), as required. While the moments of P'"(g,L)
are unbounded, those of Pg '(g, L) are given by

g„=(g")=(2BL')"1r ' I'(n+2(), n =1,2, . . . (47)

n =1,2, . . . (42) Pz(A, ,L)=(2n AA, )
' e (49}

where pi, reduces to Ohm's law (36). We note that the
distribution (40) is relatively broad with an rms to mean-
value ratio of VZ, which shows that p is non-self-
averaging. On the other hand, all moments of Eq. (41)
are unbounded. In order to discuss this distribution fur-
ther we consider the properties of the random conduc-
tance g =p . The distribution of g is defined in terms of
Pp(p, L) by

and

P (o L)=(2~oo)—1/2e o/2a— (50)

(o') —(o )'=2B', (51)

where K —= (}(,) = A and o—:(o ) =B are the mean resis-
tivity and the mean conductivity. Thus we find that the
variance of o is constant,
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instead of going to zero for L~~ (for d =3}, as re-
quired if metallic behavior is to be characterized by a
well-defined conductivity. The fact that conductance
(conductivity) fluctuations are not properly described
within our improved treatment of the metallic domain
may be due to the neglect of statistical fluctuations be-
tween the independent Migdal-Kadanoff chains, as dis-
cussed above.

I(pL ) = In(4pL ) .
1

+p
(52)

After replacing, as usual, P"' by P in the expression for
()P")/BI the equation for P (p, I) takes the final form

aP, =(d —1) (pP~)8 lnl Bp

B. Insulating regime, p g p,

In this case, the rhs of Eq. (14) is positive to that PL in-
creases with L and becomes exponentially large, thus
reflecting exponential localization of eigenstates. This
limit corresponds to realizations of the random potential
with p&g1. In this case the distribution of resistance
obeys Eq. (37) with BP'"/()I given by the Fokker-Planck
equation (60) of Ref. 12, as corrected in the Erratum. In
the asymptotic range of interest, p &&1,

where, e.g. , p, displays the expected exponential growth
of the mean resistance. Equations (58) show, in particu-
lar, that the exponential form of the relative rms devia-
tion obtained earlier in the one-dimensional case' ' ' is
retained to leading order at higher dimensionalities,

p&

2 )1/2
2(d —()/(z+y) )=I e (59)

P (p, L)= f dk e '")'P(k),
27T

(60)

is now obtained by applying an earlier procedure' of ex-
act linearization of the exponential exponent in (58) with
respect to n. This enables us to express the characteristic
function in the form

P(k}= g, p„n~

=(877'r) —)/2e —/2

~ ex/2 —x /8r

although the rate of exponential growth determined by
(2A, )

' may depend on d. The power-law prefactor
alone even implies an enhancement of the dispersion at
higher dimensionalities. The probability distribution of
resistance,

ln(4' )
+ 2+r e ('ke

—&&+&+ ~
) Xl (d —1 —B )l y ) (61)

a2P
X (2 —y)P +(6—y)p +2p'

P Qp Qp2

p » 1, (53)

where for pL we substitute the explicit solution of Eq.
(14). For pL »1 the latter equation reduces to

r= A, I +B lnl, (62)

and by substituting this expression into (60}and perform-
ing the integrals, we finally obtain

P (p, I)= 1

&8m.rp

8 lnl
—}pL, +pL, n(4pL, }+ (pL,

'
npL, »

which is solved by

(54) Xexp — tlnp —[yr —(d —1)Inl] j
1 2

8w

(63)

Al +d —1
pL

——4e (55)

where A is an arbitrary constant. The coefficient of the
term in large parentheses in (53) is therefore

1 1
ln(4pL ) = ( Al +d —1)—:A)1+B . (56)2+ p 2+&

Like in the one-dimensional case, ' the resistance thus
has a log-normal distribution where, however, the vari-
ance and the mean value include logarithmic corrections
to the characteristic linear variations with length scale in
one dimension. ' This shows that at higher dimensionali-
ties the property of "additive mean" of lnp (Ref. 9) is val-
id only to leading order,

Equation (53} with the definition (56} is conveniently
studied by converting it into an equation for the moments
Pn:

lnp=yA, I —2 lnl .tj —1

2+/ (64)

p„
np„+( A, +B/1)n (2n +y)p„,

In particular, this equation defines a typical (most prob-
able) resistance

n=1,2, . . . (57}
~ —2(d —1)/(2+@) ~

p =I e (65)

whose solution reads

i —n(d —])+gn(2n+@) A
1
n(2n+X)l

p —I e (58)

which is expected to be observed, at least in sufficiently
long chains. Finally, Eq. (63) with I related to pL via
(52) displays explicitly the parametrization of the distri-



37 PROBABILITY DISTRIBUTIONS IN A TWO-PARAMETER. . . 10 579

bution in terms of the two parameters p& and y. In spite
of this difference with respect to the one-parameter scal-
ing theory, we confirrn that lnp, unlike p itself, is a prop-
er self-averaging quantity since its relative rms deviation

)& erf p
2p

'1/2'

p«&, pL, «&,

[ln p —(lnp) )'~ =
lnp y~ (d——1) lnl

' (66) (71)

decreases with increasing length scale at any dimen-
sionality for L~ 00.

We now turn to the special case d =2 where there is no
mobility edge and all eigenstates are localized. As noted
by Abrahams et al. ,

' there is, however, a smooth cross-
over from logarithmic to exponential behavior of the
mean conductance as the length scale is increased from a
sumciently small initial value to values L ~ ao. Of
course, the above discussion for the range L~ao (pt,
p&&1) remains valid for d =2 indicating, in particular,
an exponential growth of p& =—pz for L ~ 00. On the oth-
er hand, in the low-resistance, quasimetallic regime,
pL «1, the expansion of the right-hand sides of Eqs. (12)
and (14) to second order gives for d =2

where

2 ~2erfz= e 'dt .

This shows that, like in the one-dimensional case, ' the
distribution of resistance crosses over from a modified ex-
ponential form for L «L, to the log-normal form (63)
for I &&L,. The length-scale dependence of the distribu-
tion in the range L «L, is, however, quite different in
the cases d =1 and d =2. Finally, it is of interest to
study the relative rms deviation in the present quasime-
tallic regime for d =2. This is done most accurately by
expanding Eq. (15) for pz in the limit pL ~0, using Eq.
(12). This yields

=(1+@'/4)p L, , (67)
-2 -3

8 lnl
2p&+ 6—p L, +0 (p t, ) (72)

which yields a conductance

PL.

=C —(1+y /4) Inl, (68)

p«1, 1 «1, (69)

where we again express 1 on the rhs in terms of p z" using
Eq. (12) and replace p't" by pL . Thus for pt « 1 we have

1(pL, ) =pt, with pL defined by Eq. (68). By performing
these substitutions in Eq. (69) we get

Vy y2 1 ~ 1 e
—pI n

1+@'/4 8 y 2 6 v'2~P 'p — — +

y =pt ' (70)

and finally

p/2p

Pp(p, 1)=
4+ y (2mppL )'i

2

x i+~+ p—
3PL.

1/2
1TpL

2p

p/2p&
e

where C is a positive constant corresponding to the resis-
tance of Eq. (36). This expression is of the form predicted
by Abrahams et al. ' at short scales. Here we are in-
terested, more generally, in the explicit form of the distri-
bution P (p, L) at these short scales for d =2. By follow-
ing the same steps as in Sec. IVA but including the
corrections linear in p and/or 1 of Eq. (38) we obtain from
Eq. (37)

r

dPp 1 p2 e P/2I

(p —1)— +—
8 lnl 8 2 6 1 v2nlp.

where pL is given by Eq. (68). From the solution of (72)
we obtain, to leading order,

P2

, PL,

' 1/2 —lnl l~0,
l

(73)

which diverges for 1~0. This divergency is to be com-
pared with the stronger exponential divergency (59) ob-
tained in the asymptotic large resistance regime.

V. CONCLUDING REMARKS

In this paper we have presented a first-principles
analysis of the scaling properties of probability distribu-
tions of resistance, P (p, L), in terms of two parameters:
the mean resistance pL [whose scaling behavior enters as
an input for the study of P (p, L)] and a fixed parameter

y giving the ratio of the localization length L, and of the
penetration depth inside the average tunneling barrier V.
In this connection we note that some evidence has been
gathered recently against the validity of the simple one-
parameter scaling ansatz of Abraharns et al. ' On the one
hand, Kumar has questioned the internal consistency of
the one-parameter scaling ansatz on general theoretical
grounds. Kumar's work has subsequently developed
into a controversy which has been recently reviewed.
On the other hand, Kaveh and Mott ' have calculated
the critical conductance and found it to be significantly
nonuniversal as a result of various effects. These authors
have also summarized experimental results supporting
this nonuniversality. Furthermore, from their numerical
results on the conductivity and the participation ratio in
three-dimensional systems, Ioffe et al. ' have concluded
that it is unlikely that scaling is governed by a single pa-
rameter.

In the two-parameter scaling theory discussed above
both the critical resistance and the conductivity exponent
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are nonuniversal in that they depend on y. This theory
predicts, however, a universal value, y' =y i, beyond
which a mobility-edge transition at an energy E, = V/2
ceases to exist. We note that the parameter y may also
have important efFects away from the critical point: for
example, it controls the leading linear variation of lnp
with length scale in the asymptotic infinite sample limit
in the insulating regime. In fact, the relation yl-lnp
provides a useful interpretation of the parameter y
describing the average barrier V. As mentioned in Sec.
III a basic feature of the scaling theory of Abrahams
et al. ' is the description of the microscopic disorder by
the conductance go (or resistance go') at the cutoff
length scale Lo. Likewise we may identify y with 1/I
times the average of the logarithm of the resistance mea-
sured at a sufficiently long scale, l »1. This shows that
now the microscopic aspects of the system are measured
by the two resistance parameters go

' and lnp at scales Lo
and L »L„respectively.

For completeness we mention that a simple two-
parameter scaling theory has been proposed previously
by McMillan for the case where electron-electron in-
teractions are included in the description of a disordered
system. In the McMillan theory the new scaling parame-
ter in addition to the conductance is the dimensionless in-
teraction constant which, however, depends on length
scale, unlike our parameter y. Another example of a
scaling theory with two scale-dependent parameters is the
localization model with added percolation disorder dis-
cussed by Shapiro. ' In fact, an alternative way of view-
ing the scaling equation (14) of Sec. II is to regard the rhs
as a one-parameter scaling function depending on an ad-
ditional constant parameter y. From this point of view
our treatment might be referred to as a "nonuniversal
one-parameter scaling theory" to distinguish it from
more general two-parameter scaling theories such as
those of Refs. 27 and 17. Another reason for distinguish-
ing the two types of two-parameter models would be the
fact that in a scaling theory with two scale-dependent pa-

rameters one expects the exponents of the Anderson tran-
sition to be universal, ' in contrast to the results of Sec.
II. However, the use of the term "two-parameter scaling
theory" in Sec. II has the advantage of not anticipating
on the detailed form of the results concerning the mobili-
ty edge. On the other hand, we believe that one should
be cautious in using the term universality (nonuniversali-
ty) borrowed from phase-transition theory, in the context
of the mobility-edge transition. While universality in
phase transitions refers indeed to the universality of criti-
cal exponents, this concept draws part of its importance,
of course, from the concomitant intrinsic nonuniversality
of the critical temperature. In contrast to this, both the
critical exponent v and the critical resistance are found to
be universal in the one-parameter scaling theory of locali-
zation, while being nonuniversal in the two-parameter
theory of Sec. II.

Tote added. Our treatment of the metallic regime in
Sec. IVA may be rationalized in terms of a modified
description of the Migdal-Kadanoff chains (Sec. II), tak-
ing into account the fact that they are made up of d-
dimensional blocks rather than of true one-dimensional
units. The d-dimensional (d & 1) aspect of the chains is
included by assuming them to be described by a distribu-
tion of conductance with finite moments. On the other
hand, their one-dimensional character is described by as-
suming their distribution of resistance to obey the
differential scaling relation for a linear chain [Eq. (39) for
d =1]. The internal consistency of the above picture fol-
lows from the existence of a solution of the scaling equa-
tion with finite conductance moments, as shown in Sec.
IVA [Eq. (46) for d =1]. Our treatment of the metallic
regime based on the Migdal-Kadano6'approach has been
recently generalized to include the transverse fluctuations
between independent chains (J. Heinrichs, A. M. Jayan-
navar, and N. Kumar, unpublished). In contrast to the
analysis of Sec. IV A, this leads to a constant variance for
the metallic conductance in 3D, as expected on the basis
of first-principles studies.
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