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Chemical and elastic effects on isostructural phase diagrams: The c,-G approach
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Numerous theoretical models of temperature-composition phase diagrams of isostructural binary
alloys are based on the configurational Ising Hamiltonian in which the many-body configurational
interaction energies c,'"' are taken as (volume-independent) constants (the "c,-only" approach). Oth-
er approaches postulate phenomenologically composition-dependent but configuration- (o-) in-

dependent elastic energies. We show that under the commonly encountered situation where molar
volumes at fixed composition (x) do not depend on the state of order, a new approach is pertinent:
We prove that the physically relevant Hamiltonian (the "c,-G appr'oach") includes the
configuration-dependent (but concentration-independent) "chemical" interaction energies c.'"', plus a
composition-dependent (but configuration-independent) elastic energy 6 (x). We compute the elastic
term 6 (x) from the structural and elastic properties of ordered intermetallic systems. We show that
inclusion of G(x) into the conventional configurational (c-only) Hamiltonian cures many of the
shortcomings of such Ising models in describing actual alloy phase diagrams. In particular, addi-
tion of the elastic energy 6 (x) leads to the following features: (i) narrower single-phase regions and
broader mixed-phase regions, (ii) shift of the triple point to substantially higher temperatures, (iii)
the mixing enthalpies of the disordered phases become much closer to the experimental data, and
(iv) the possibility of the occurrence of metastable long-range-ordered compounds inside the misci-
bility gap. Cluster-variation and Monte Carlo calculations on model Hamiltonians and on the Cu-
Au system are used to illustrate these points.

I. INTRODUCTION

The formation of an ordered compound AM B
(M = constant) from its isostructural constituent elemen-
tal solids A and B can be conceptualized to consist of an
"elastic" step, where the pure constituent solids

AM A and BM B are compressed and dilated, re-

spectively, to the cell volume of AM B through an in-

vestment of an elastic energy hF, followed by a "Hip" of
the necessary number of A and B atoms on these
prepared lattices BM B and AM A, respectively
(creating thereby AM B ), involving a "chemical" (or
"substitutional" ) energy s' '. The formation enthalpy
hH' ' of AM B from its constituent solids A and B
is then AF+ c.' '. Many classical models, ' constituting
the working paradigms of structural chemistry and
metallurgy, ' have rationalized the stability against dis-
sociation (EF+s' '~0) of ordered intermetallic phases
by representing. the balance between elastic and chemical
energies through phenomenologica1 constructs. These in-
clude the mismatch between the atomic radii ' of A and
B (used to model the elastic energy), and various scales of
electronegativity mismatch (modeling the chemical
energy). Such are, for example, the model of Darken and
Gurry for solid solubilities (F represented by atomic ra-
dii and s by electronegativities), the Miedema model for
heat of formation (F represented by density mismatch at
the Wigner-Seitz cell boundary, c represented by charge
transfer), the Mooser-Pearson approach to phase stabili-

ty (F represented by the mismatch in valence quantum
number, E by the electronegativity), and the orbital radii

method (F represented by the pseudopotential orbital ra-
dius, s by its inverse). In fact, a large body of constructs
in metallurgy and structural chemistry' ' ' ' has
developed around these competing scales, where "elastic
factors" are represented by constructs such as "steric
hinderance" and the mismatch between various atomic
radii, whereas the "chemical effect" is represented by the
"electrochemical factor" and various charge-transfer
and electronegativity scales. ' Numerous examples il-
lustrate the fact that both effects are needed, e.g. , Laves
phases are stabilized both by size mismatch and elec-
tronegativity differences;" the existence or nonexistence
of certain intermetallic phases has been rationalized by
the balance between repulsive elastic and attractive
chemical forces. ' ' '

It is therefore rather surprising that a whole class of
models of alloy phase stability —those' ' that represent
the problem of various types of Ising Hamiltonian —have
in fact used constant interaction energies c, omitting
thereby the volume-dependent elastic energy AF. These
models have a wider scope than the classical models of
phase stability: They attempt to predict not only the
stable phases but also the transitions between various
phases and their coexistence. Indeed, while the
temperature-composition phase diagrams of even binary
isostructural solids' manifest far more diverse phenorne-
na than merely the existence or nonexistence of ordered
phases (disordering, miscibility gaps, spinodals, etc.), the
complexity associated with the configurational degrees of
freedom underlying such phenomena has generally limit-
ed their modeling to the description of phase interconver-
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sion events on a fixed lattice, common to A, 8, and

AM 8, i.e., retaining only the volume-independent
substitution energies' ' {e' 'j. Inspired by the analo-
gous spin- —, three-dimensional generalized Ising prob-

lem, ' ' such efforts have generally focused on studies of
the properties of this Hamiltonian and on the determina-
tion of a set of fixed "chemical energies" e' ' (analogous
to the Ising many-spin interaction parameters} which best
describe actual phase phenomena through various ap-
proximate solutions of the configurational Hamiltonian,
neglecting, however, hF.

Whereas the introduction of an ever increasing set of
("multiatom") interaction parameters' ' ' (e' 'J, ex-
tension of the range of interaction to second and even
further neighbors, ' and improvements in the methods of
solution (Monte-Carlo simulations, ' ' high-temperature
expansions ') have generally resulted in a greater degree
of realism, such models often produce but a "caricature
of real alloys, " ' even for the simplest and best studied
isostructural face-centered-cubic (fcc) systems. This state
of affairs is manifested, among others, by the inability of
constant-volume lattice models (see Sec. IV B}to predict
from the same Hamiltonian both order-disorder transi-
tion temperatures (decided solely by e' ') and excess
thermodynamic energies (e.g., mixing enthalpies, decided
primarily by ' b,F), the occurrence in pure Ising mod-
els for fcc lattices' ' of a triple point at a consistently
lower temperature than experiment, ' the systematic
failure to obtain at low temperatures a narrowing of the
single-phase regions for ordered structures (instead, the
composition domains where ordered compounds exist be-
come broader as the temperature is lowered, see Fig. 4(b)
below and Sec. IV B), or to predict ' the appearance of
miscibility gaps and ordering in the same phase diagram
(observed recently in semiconductors ). Attempts to in-

clude elastic energies in Ising-type Hamiltonians
have emerged recently, but no rigorous formulation of
the problem exists.

We will show that these shortcomings reflect primarily
the omission of elastic effects —the single most important
mechanism of atomic packing in phenomenological mod-
els of structural chemistry' and in semiconductor alloy
phase diagrams. 2 ' 3 We will demonstrate how chemical
and elastic effects can be simply introduced on the same
footing in an otherwise purely configurational Hamiltoni-
an under the (most commonly encountered) situation
where molar volumes depend only weakly on the state of
order. We will then show how most of the qualitative
(and in some cases even quantitative) shortcomings of the
models which use fixed interaction energies are removed
by inclusion of both chemical and elastic energies. This
provides a simple method for realistic description of
phase phenomena (illustrated here for Cu-Au and semi-
conductor alloys) within the spirit of generalized Ising
models.

II. FORMULATION OF THE PROBLEM:
REINTERPRETATION OF COUPLING ENERGIES

IN CONFIGURATIONAL HAMILTONIANS

Previous configurational models' ' (either retaining
or neglecting elastic eS'ects) assume, at some stage of the

theory, that the lattice parameter of the alloy (or its mo-
lar volume) at a given composition does not depend on
the state of order (we neglect throughout this paper pho-
non eff'ects). Often, an even stronger assumption is
made —not only is the volume V(x ) assumed constant
for all phases at a fixed composition x, but the x depen-
dence is also taken to be linear (Vegard's rule ). In what
follows we will show that Vegard's rule is much too
strong an assumption to be made, in that the deviations
from linearity have important energetic consequences on
phase stability. On the other hand, we explore the full
consequences of the assumption that the lattice parame-
ter (and hence molar volumes} is approximately state-of-
order independent for fixed composition. We will show
that this results in a simple and clear separation of the al-

loy free energy into chemical (e) and elastic (bF ) contri-
butions, and that the inclusion of such a new term (b,F)
in the Ising Hamiltonian cures many of its shortcomings
in describing alloy phase diagrams. A preliminary brief
report on this work has recently appeared.

We restrict ourselves to isostructural phase diagrams,
i.e., to those binary alloys whose lattice points maintain a
one-to-one correspondence to those of the constituent ele-

mental solids at all compositions and structures. %'e

hence bar from consideration those systems that during
the alloying process undergo phase transitions to topolog-

ica!ly inequiualent lattices [e.g., face-centered cubic (fcc)
to body-centered cubic (bcc)]. Phase boundaries and
phase transformations in such isostructural A~ B
binary systems have traditionally been described through
lattice models. ' ' ' There, one considers the 2
possible arrangements of atoms A and 8 on a lattice of N
points. Each of these will be referred to here as a "state
of order" o (sometimes, also referred to in the literature
as a "configuration, " or "microstate"). Each arrange-
ment can be characterized by its excess internal energy
with respect to equivalent amounts of the pure solids A

and B, at their equilibrium molar volumes V„and V~,
respectively:

&E(~, V) =E(o', V) — E„(V„)— E~( V~ ),Ng N~

~here N„and N& are the number of A and B atoms, re-
spectively, in the structure A~ B whose state of or-
der is o, V is the volume, and E~ and E~ are the
volume-dependent total-energy functions of the solids A

and B, respectively. On each lattice site i one can have
either a 8 atom (in which case we denote the spin vari-
able as S"=1 and the occupation variables as g& =1
and rio' ——0}or a A atom (in which case the spin variable
is S"= —1 and the occupation variables are g", =0 and
bio" = 1). This general Ising problem is then often
simplified' *' by limiting the interaction to a tractable
short range and to a finite number of multisite couplings
within this range. For instance, 1imiting the interaction
range to first neighbors and truncating the many-atom
couplings to include up to four-body terms, the Hamil-
tonian can be written as'
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E=J()N+ J( g S"+J2 g S"S' '

points pairs

g(i)g(j )g(k)+J ~ g(i)g( j)g(k)g(~)+ 4
triangles tetrahedra

(2.2}

and

'9& —'90 =S '(i) (i) (i) (2.3a)

where the interaction parameters I J] can in general be
volume dependent. Equivalently, one can use the rela-

tions between the spin and the occupation variables

clusters at the domain boundaries are negligible if the
domains are macroscopic. ) Thus, although the g„are
functions of a. , the state of order o. itself is not a function
of the finite set of g„.

The reduction of the Hamiltonian Eq. (2.2) to the
form' of Eq. (2.6), can be simply illustrated in the case of
fcc alloys. If N is the number of lattice points, there are
6N first-neighbor pairs, 8N triangles, and 2N tetrahedra.
Thus, the energy paraineters E(p, q, r,s) of Eq. (2.4)
(where the indices denote the number of A atoms —1 or
0—on the respective tetrahedron sites) are

E(0,0,0,0)=J()N —JiN+6J2N —8J3N+2J4N,

~(i)+~(i) (2.3b) J,N
E(1,0,0,0)=J()N — +0+4JiN

to express each of the terms in Eq. (2.2) as a sum of prod-
ucts of four occupation variables. For example, the third
term in Eq. (2.2) can be written as

y (
(i) ~(t))(~(j) ~(j))(~(k)+~(k))( (i)+ (i))

E(1,1,0, 0)=J()N+0 2JiN+—0+2J4N,
JlN

E(1,1, 1,0)=J()N+ +0 4JiN —2J4N—,

(2.7)

The Hamiltonian of Eq. (2.2) can hence also be written in

the form

E= y E(p, q, r, s) y ~"»(j'~(,k)~(() (2.4)
p, q, r, s =0, 1 N4 f

(where t denotes tetrahedra and N~ is their number). Ap-

plying the transformation implied by Eq. (2.1}, defining
the multiple index n =(p, q, r, s) which identifies the ar-
rangement of A and B on a tetrahedron, and expressing
the state-of-order-dependent multisite correlation func-
tions as

(~ ) y ~(i)~(J)~(k)~(()
4

Q.5)

Eqs. (2.1) and (2.4) become

bE(o, V)= g bE(n, V)g„(o} . (2.6)

The multisite correlation functions g„((r) can be
thought of as occurrence frequencies, in the sense that by
Eq. (2.5) they are positive and normalized

g g„(o)=1.

In a systein with a given distribution cr of atoms, g„(ir) is
the frequency with which the basic cluster (tetrahedron,
in the present case) appears with occupation
n =(p, q, r, s ), i.e., the frequency of tetrahedra having oc-
cupation p in the vertex belonging to the first sublattice, q
in the vertex of the second, etc. Therefore, given the
state of order o, I g„I are determined by counting
tetrahedra, as implied by the definition of Eq. (2.5).
Clearly, („(o) are functions of the state of order. On the
other hand, given a set of positive and normalized fre-
quencies t g„((r) I, there are infinitely many states of or-
der belonging to this set. For instance, one can break the
crystal into macroscopic domains of pure ordered com-
pounds, (i.e., regions whose clusters have just one type of
occupation n ), and choose the size and number of the
domains to match the given set of frequencies I(„I. (The

e' '—=bE(0, 0,0,0)=0,
s"'=BE(1,0,0,0)= 6J2N+8J—iN 4J~N, —
e( '—:bE(1, 1,0,0)= SJ2N, —
s( '—=b E(1,1, 1,0)= 6J2N 8—JiN 4—J4N, —
e("=bE(1, 1, 1, 1)=0,

(2.8)

where N is the total number of lattice points. Indeed,
many lattice models of alloys have adopted this
viewpoint, ' ' solving approximately the thermodynam-
ics for a Hamiltonian of Eq. (2.6) with the constant in
teraction parameters e(") of Eq (2.8). .

In general, however, the lattice paraineter (hence
volume) changes with composition. (s Hence, each of the
interaction "parameters" bE(n, V) of Eqs. (2.6)—(2.8) is,
in fact, Uolume dependent (i.e., an "equation of state" at
T=O). The physical content of these volume-dependent
parameters b,E(n, V) can be conceptualized in the fol-
lowing way. If all the N4 tetrahedra have the same occu-
pation numbers n (in which case one has an ordered crys-
tal with a configuration of the basic cluster and a state of
order denoted as cr =n) then Eq. (2.5) implies that the
multisite correlations are

(n ) =5„ (2.9)

Conceptualizing such a state of order as a periodic crystal
whose configuration is the basic cluster (a tetrahedron),
Eq. (2.6) lets us interpret the volume-dependent parame-
ters bE(n, V) as the excess energy of the ordered struc-
ture n. An alloy could then be described as a collection
of all local atomic environments exhibited by all such or-

E(1,1, 1,1)=J N+J, N+6J N+SJ N+2J N,
[recall that for an A-only atomic arrangement, all S
values of Eq. (2.2) are —1]. In the unlikely case where at
all compositions x the alloy has the same equilibrium lat-
tice paraineter and molar volume, the excess energy rela-
tive to equivalent amounts of pure A and B at their equi-
librium can be written as
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d bE(o, V)= g g„(o) bE(n, V)=0,
n

whereas the bulk modulus of the system would be

(2.10)

dered crystals, where each local arrangement occurs in
the alloy with the frequency g„(o.). Thus, at any state of
order o of the system (ordered or not), the equilibrium
volume V,q(x ) is given by the minimum condition

pure crystal A~ A from its equilibrium structure
with molar volume V~ to the molar volume V appropri-
ate to the final structure of A~ 8 . Do the same for
the pure crystal B~ B, changing it from the volume

Vz to V. Since a deformation of the equilibrium struc-
tures of A and 8 is involved in this step, it requires an in-
vestment of elastic energy. For a compound AM 8 at
a volume V, this energy investment is simply

d d2
B(o, V) = V bE(o, V) = g g„(o) V bE(n, V)

dV
„

dV

= g g„(cr)B(n,V), (2.11)

bF[N„,Ntt', V]= (E[A; V] E[A—; V„])
N

(E[B;V] E[B—, Vtt ] ) .
N~

(3.1)

i.e., a combination of the bulk moduli B(n, V) of the cor-
responding ordered structures.

Considering a (canonical) ensemble of samples of given
concentration x, the probability of finding a given or-
dered structure becomes a thermal average

P„(x,T)=(g„(o) ), (2.12)

and the excess enthalpy of mixing' at the equilibrium
volume V,q becomes

bH(x, T)= g bE(n, V, )P„(x,T) . (2.13)

The thermal average Eq. (2.12) is also used in Eqs. (2.10)
and (2.11) to determine the equilibrium volume and bulk
modulus. In general, these will be both concentration
and temperature dependent.

Numerous authors' have replaced b,E(n, V) by the
volume independe-nt excess energies bE(n). This would
suggest by Eq. (2.11) that the alloy has a vanishing bulk
modulus. In fact, numerous measurements support the
notion that the bulk modulus of many alloys is of the
same order of magnitude (with minor nonlinearities) as
that of its constituents. We will show below (Sec. IV)
that the replacement of the conventional volume-
independent interaction energies bE(n ) by bE(n, V) is
also required to obtain the correct order of magnitude of
the excess enthalpy of mixing bH(x, T) of Eq. (2.13).

III. SEPARATION OF ELASTIC
AND CHEMICAL EFFECTS IN AE(o, V).

Given the fact that the interaction energies bE(n, V)
of Eq. (2.6) are generally functions of volume rather than
constants, we now isolate the two physical factors con-
tributing to it: the "elastic" (n-independent but V-

dependent) and the "chemical" (constant-volume but n-
dependent) contributions.

A. Simple conceptual model

The content of b.E(n, V) of Eq. (2.6) can be first appre-
ciated qualitatively by considering the formation of a per-
fectly ordered crystal A~ B (generated by repeating
the M-atom cluster A~ B, hence cr=m) with N„
atoms A and Nz atoms 8 from the constituent solids A

and B, in two formal steps (a mathematical derivation fol-
lows in the next section). First, compress or dilate the

s' '=E[AM B;V ]— E[A;V ]M —m m& m

E[B;V ] . (3.2)

As in Eq. (2.8), E™is the excess energy of the structure
AM 8, at its equilibrium volume V, with respect to
the energies of equivalent amounts of its constituents,
also at V . Note again that if a common sublattice C ex-
ists, the first term on the right-hand side of Eq. (3.2) cor-
responds to the total energy after sublattice C is relaxed
to the energy-minimizing configuration, hence, c™in-
corporates automatically such cell-internal relaxation.
Clearly the sum of Eqs. (3.1) and (3.2)

bE(m, V) =bF[N„,Ns,' V]+E' (3.3)

gives the total excess energy of the perfectly ordered
structure consisting of A~ 8 units as a function of
its volume. We will assume that this corresponds to the
energies bE( m, V) summed over in Eq. (2.6). The
enthalpy of formation of this ordered phase from the ele-
mental solids A and 8 is given by the equilibrium value
[dbE(m, V)ld V=O, where V= V ] of bE(m, V), i.e.,

b H' '= b F[N„,Ns; V ]+E' (3.4)

Second, convert (i.e., "fiip") the necessary number of A

atoms in AM A into B (and vice versa for B~ B )

on these "prepared" fixed lattices with volume V. If
there exists in addition, a common sublattice C (e.g., as in
AC+BC zinc-blende alloys), relax this sublattice (keep-
ing A and B fixed) to achieve minimum energy. This
second step in our procedure involves the "spin-Hip" or
"chemical" energy c.' ' associated with interactions be-
tween A and B (e.g. , charge transfer, polarization, hy-
bridization, spin-spin coupling) on a fixed A-B lattice.
(We use throughout this paper the term "elastic energy"
to denote energy changes associated with volume changes
of the A -8 sublattice. "Chemical energy" will denote en-

ergy change at constant volume of the primary A-8 sub-
lattice, including, however, volume-preserving geometry
changes in the common sublattice, if it exists. ) The
fixed-volume chemical energy c is the only contribution
included in conventional lattice models of phase dia-
grams. ' c' ' could be either positive or negative. We
define its value at the equilibrium volume V of the or-
dered crystal consisting only of AM 8 tetrahedra as
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Such an ordered phase is said to be "stable against
disproportionation into its constituents" (bH' '&0) if
its negative chemical energy c.' ' overwhelms the positive
elastic energy at equilibrium bF[N„,N~; V ] invested in
deforming its constituents; otherwise this phase is "unsta-
ble towards disproportionation. "

Using Eqs. (2.13) and {3.3), we can now describe the
mixing enthalpy of a disordered (D) alloy which exhibits
all local atomic environment characteristics of all ordered
arrangements [n ) as

bH'D'(x, T ) = g P„(x,T )e'"'+ 6(x, T), (3.5)

where, from Eq. (3.3) and (2.13) the average elastic energy
of the alloy is

G(x, T)= g P„(x,T)bF[N„,Ntt', V(x)]
n

(3.6)

B. Conditions and exact form of h,E(cr, V).

It is possible to derive a general expression for the elas-
tic energy G(x ) of an alloy in terms of simple measurable
quantities if one assumes that the equilibrium molar
volume depends on composition but not on the state of or
der (the trivial effect of thermal expansion of the volume
is not included here, but can be easily incorporated in the
results below). This assumption is the traditional corner-
stone of structural chemistry, ' where an even stronger
statement is made: Each atom can be characterized by a
radius (atomic, metallic, covalent, van der Waals, etc. ),
approximately independent of its chemical environment.
This assumption seems to be supported by numerous ex-
perimental observations; some examples are compiled in
Table I. In practice we can accept small volume changes
from Vo to V& attendant upon a phase transition, as long
as the change in elastic energy —,'BVO[(V, —Vo)/Vo)]
needed to bring V& back to Vo is small compared with
the energy terms determining the phase diagram. For ex-
ample, in an order-disorder transition at room tempera-
ture (To) the entropy contribution to the free energy
changes by approximately R Toln2 =0.42 kcal/mol.
Thus, if —,'BVO[( V, —Vo)/Vo] is smaller than about 0.1

kcal/mol, the molar volume change V& —Vo can be
neglected. In Table I we list the malar volumes for some
noble-metal-containing aHoys with diC'erent structures.

and V(x } is the alloy equilibrium volume satisfying
d6 (x ) /d V =0. The general decomposition of Eqs.
(3.3)—(3.6) illustrates the interplay between positive-
definite elastic energies G(x, T) and the chemical ener-
gies e'"', and the possibility that bE(n, V) [or
equivalently, J„ofEq. (2.7)] can change sign as a function
of volume.

In what follows we will prove that when molar
volumes are state-of-order independent for fixed composi-
tions, the form of Eq. (3.5) can be derived rigorously, and
that under these conditions G(x, T} is reduced to a
temperature-independent and readily calculable function
G(x ). Its effect on the phase diagrams will be discussed
in Sec. IV, and the consequences of this interplay will be
discussed in Secs. V —VII.

(The case of the noble metals was chosen because they
have high values of the product BV, and therefore
significant elastic effects. ) For example, for metallic gold
one has

V& —Vo

Vo
&2.2%%uo .

This is indeed satisfied by the data (Table I). Note that if
the molar volume had changed considerably with the
state of order 0., then in the disordered phase it would
vary from one sample to another even at a fixed composi-
tion. This, however, is generally not observed. Note fur-
ther that, in general, our requirement of state-of-order in-
dependence of volumes applies only to those "sample"
states that are used to represent the system in an "in-
teresting" temperature interval. For example, a Monte
Carlo calculation on a 1000-spin system involves in prin-
ciple 2' =10 ' states, but only a far smaller number of
"representative" spin configurations' ' (say, 10 —10'),
are typically computed. Only this subset of states is
needed to fulfill our requirement of state-of-
order-independent volumes.

Assuming state-of-order independence of molar
volumes at fixed compositions, we prove in Appendix I
that b E(o, V) of Eq. (2.6) assumes the simple form

bE(cr, V)= g g„(cT)e'"'+g(x,V), (3.7)

where c'"' are the volume-independent chemical or "or-
dering" energies of Eq. (3.2), and g(x, V) is given for the
composition x and at any volume, (even outside equilibri-
um) by

~ B(V') dV'

~s V' dX

f X(V') dV'
V' dX

(3.8)

Here, X(V) is the equilibrium concentration when the
volume is V, B( V) is the bulk modulus at equilibrium
when the volume is V, and as used before, V~ and V~ are
the equilibrium molar volumes for the pure solids A and
8, respectively. One readily verifies that at equilibrium,
[namely, when x =X( V)], Eq. (2.10) holds.

To obtain an expression for g{x,V} at equilibrium, we
integrate on X in Eq. (3.8) instead of on V and choose
V= V(x } to be the equilibrium volume for a given com-
position x. Then, Eq. (2.6}becomes

b E(cr ):bE(cr, V) = g g„(—o )e'"'+ G(x ), (3.9)

where V = V(x ) and where for
2

Z(X) B (X) d V

V(X) dX

,'BV—=0.211 kcal/mol .

Thus, in Table I it is sufhcient to verify that the volume
changes following the changes in structure are such that



10 552 L. G. FERREIRA, A. A. MBAYE, AND ALEX ZUNGER 37

TABLE I. Data (Ref. 34) on molar volumes of intermetallic phases at room temperature showing that for fixed stoichiometry the
volume depends only weakly on the type of order.

Formula

AgCd

Ag3Pt

Space group
(type or phase)

Pm 3m
P63/mme
Im 3m

Fm 3m
Pm 3m

Molecular
volume
(A')

36.97
37.28
36.76

59.37
59.09

Formula

AuLi

Au3Mn

Space group
(type or phase)

Pm 3m
tetragonal
orthorombic

orthorombic
tetragonal

Molecular
volume
(A')

29.73
29.53
29.66

66.73
66.41

AgPt3 Pm 3m(y)
cubic (y')

59.32
60.24

AuMn I4/mmm
orthorombic

32.44
32.95

Ag2S P2(/n
Im 3m

56.71
57.57

AuNb3 Pm 3m
Im 3m

70.30
70.58

Ag2Se P222)
tetragonal

59.91
59.27

AuTe2 C2/m
Pma

80.54
81.33

AgTe P4/mmm(AuCu)
P4/mmm(TiCu)

34.33
34.23

AuTi Pmma
P4/nmm

33.26
33.52

AgZn Im 3m
Pm 3m

31.44
31.43

AuV, Pm 3n
Im 3m

57.96
57.87

AsCu3 I43d
tetragonal

55.49
56.09

Au3Zn Abam

I4~ /acd
65.02
65.14

Au3Be

Au3Cd

orthorombic
tetragonal

tetragonal
P63/mmc

58.73
57.75

70.05
70.09

Au&Zn3

CuBe

Ibam
Pmc2 i

Pm 3m
tetragonal

255.2
255.1

19.75
19.77

AUCd Pm 3m
Pmma

36.82
36.62

Cu4Cd3 P42/ncm
F43m

15.56
15.41

AUCU Fm 3m
P4/mmm

58.23
57.78

Cu3Ge P2i
Pmnm

50.48
50.58

Au&Ga Fm3m
P63/mmc

67.52
67.43

Cu3T12 I4/mmm
P4/nmm

48.83
68.33

Au8In Fm 3m
P63/mme

69.50
69.62

CuZn Im 3m
Pm 3m

25.70
25.65

Au3Li Pm 3m
tetragonal

62.61
63.04

one has

G(x ) = (1—x )f XZ(X)dX+x f (1—X )Z(X)dX .
0 X

(3.10)

In many practical applications, G(x ) could be simplified
(if needed) by noting that it is always non-negative, van-
ishes, by definition, at the end-point compositions x =0
and x = 1, and has a negative second derivative

d G(x)
8x2

(3.11)

Hence, if one wishes, G(x ) could be approximated by a
simple function with the same properties

G(x ) =Ox(1 —x ), (3.12)

and define the "effective elastic interaction parameter" 0
by equating the areas under the curves
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or

Q f x(1—x }dx = f G(x )dx,
0 0

Q=3f x(1—x)Z(x)dx .
0

(3.13)

(3.14)

e'"'=bH'"' —G(X„). (3.15)

This simple result reveals the tacit relation between ther-
modynamic energies (e.g., hH'"') and critical tempera-
tures: Since order-disorder transformations occuring at a

Equations (3.9) and (3.10) are our central results and
determine the thermodynamic behavior of the alloy.
They have the following simple interpretation: The first
term on the right-hand side of Eq. (3.9) represents the en-

ergy of an alloy whose volume V equals that of its constit-
uents (V„and Vs}, i.e., for the uncommon case of a
lattice-matched alloy or one that has a vanishing bulk
modulus. The configuration-dependent (but volume- and
composition-independent) chemical energies e,

'"' are sim-

ply related to the familiar Ising-type spin-flip substitution
energies on this fixed lattice [e.g., Eq. (2.8)]. They mea-
sure the strength of the many-body interactions between
atoms (or spins) within the interaction range considered.
The only reason that the first term of Eq. (3.9) changes
with composition is statistical: Different alloy composi-
tions have different distributions of species n, [given by
g„(o)], but e'"' itself is fundamentally composition in-

dependent.
The second, new term of Eq. (3.9} represents correc-

tions to the constant-volume assumption. It vanishes by
Eq. (3.10) [or (3.14)] when the alloy has the same volume
as its constituents, i.e., when d V/dx =0, or, equivalently,
when the alloy is infinitely compressible [B(V) =0]. The
two terms in Eq. (3.9) reflect the dual coordinates used in
phenomenological models of solid solubility, compound
stability, and mixing enthalpies: The second term can be
thought to describe the destabilizing effect of strain in-
duced by the mismatch between the molar volumes of the
constituents, and parallels the classical "size factor" in al-

loy models, ' whereas the first term can be thought to
qualitatively describe the "electronegativity factor" of
Darken and Gurry, Miedema, and Pauling, and reflects
the effect of chemically specific interactions.

The existence of the new G(x ) term in the otherwise
purely configurational alloy Hamiltonian has a few obvi-
ous consequences.

(i) Et%nation (3.4) demonstrates that the constant ener-
gies e appearing in Ising Hamiltonians [e.g. , Eq. (2.8]
are not the enthalpies of formation of the ordered phases
n. Hence, the nonexistence of an ordered compound
(hH'"'&0) does not testify to the fact that the funda-
mental atom-atom interactions e.'"' are positive. This is
evident if one considers the pure solids A (x =0) and B
(x =1) and observes that G(0)=G(1)=0 by Eq. (3.10).
Setting the reference energies as before [Eq. (2.8)] to

'=0, the enthalpy of formation 4H'"' of a
perfectly ordered structure [Eq. (3.4)] is simply the ener-

gy EE(o ) specialized to this state of (perfect) order o =n.
In this case (x =X„) we have g (n )=5„,or
AE(n )=AH'"'. From Eq. (3.9) one hence obtains

fixed composition X„arenot affected by G(X„)[a term
which is common in Eq. (3.9) to both the ordered and the
disordered phases at x=X„],the specification of s'"'
suffices to determine such order-disorder transition tem-
peratures. ' However, thermodynamic excess ener-
gies are determined [by Eqs. (2.13) and (3.9)] both by
chemical (e'"') and elastic [G(x)] energies. ' Hence,
failing to incorporate G(x ) in the Hamiltonian would re-
sult in erroneous thermodynamic energies in lattice-
mismatched systems. Conversely, erroneous transition
temperatures would result if the energy parameters e.'"'
are identified with the (measured or calculated) formation
enthalpies AH'"' of the corresponding ordered phases.
This will be illustrated in Sec. IV.

(ii) since G(x) depends on an integral of (dV/dX)z
[Eq. (3.10}], the often-neglected small deviations from
Vegard's rule (which states that dV/dx =const) may
significantly affect G(x ). This is illustrated in Sec. IV.

(iii) As stated above, if one is interested in fixed-
composition phase transformations (e.g., antiferromag-
netic to disordered), G(x) is unimportant. In contrast,
phase separation, spinodal decomposition or any other
many phase c-oexistence phenomena are affected by G(x ).
This is obvious if one considers an example where x, and

x2 are the compositions of two phases in equilibrium. By
assumption, x, &x2. Now switch on G(x} in Eq. (3.9}.
Since in general G(x, )&G(xz ), the two phases cannot be
in equilibrium any longer. Their equilibrium composi-
tions would have to be shifted to x

&
and x z, thus altering

the shape of the phase diagram. This is illustrated in Sec.
IV (and Fig. 4 below).

C. Comparison with previous approaches

Equations (3.9)—(3.15) can serve to illustrate many of
the various approaches adopted in the past to the alloy
phase diagram problem.

First, contemporary models of semiconductor phase di-
agrams have generally ignored the n-dependent
chemical energies, retaining various approximations to
the elastic energy G(x ) alone. This "G-only" approach
precludes the existence of any ordered intermediate
phases or order-disorder transformations, in agreement
with the then-available data, but in apparent conflict with
recent observations. These approaches include the
"ideal solution model" ' [2"'=0; G(x }=0],the "reg-
ular solution model" [e'"' pairwise additive, and
G(x ) =0], and the elastic model of Fedders and Muller. '

These approaches correctly predict the order of magni-
tudes and trends in the observed interaction parameter
0—:b,H' '(x }/x(1—x ) in semiconductors [where b,H'
is given by Eq. (3.5)], but fail to exhibit its (x, T) depen-
dence, or the strong departure of the probabilities
P„(x,T ) of Eq. (3.5) from a random distribution (an effect
often termed as "clustering"}. Furthermore, these ap-
proaches characterize elastic interactions [proportional
to the square of the lattice parameter or atomic radii
mismatch ba =(az —az) ] as always destabilizing, in
conflict with numerous classical counterexamples (e.g.,
Laves phases can be stabilized" by large ha's).

Second, a large class of models addressing coherent
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phase diagrams on a fixed lattice' ' ' (that common
to A, 8, and A, ,B„)have naturally ignored the elastic
energy G(x ). While these models have provided a wealth
of information on the generic structure of the phase dia-
gram in terms of the signs and magnitudes of the c.'"'s, a
number of shortcomings in representing actual phase
phenomena have been noted. ' ' ' Specifically, the
application of this pure Ising ("E-only" ) approach to ac-
tual phase diagrams has three significant consequences.
(i) Since the choice of the sign of the interaction energies
c.'"' in simp/e Ising models uniquely determines whether
the system is of the ferromagnetic, separating type
(E & 0), or of the antiferromagnetic, ordering type
(e'"'&0), the two behaviors are generally mutually ex-
clusive (unless an unmotivated mix of positive and nega-
tive e's is postulated). This confficts with the often ob-
served coexistence of miscibility gaps and order-disorder
transformations in the same phase diagrain. (ii) In ta-
citly identifying c'"' with the enthalpy of formation AH'"'
of the ordered phase [which is the case in the absence of
any other interaction; see Eq. (3.15)], it became impossi-
ble to reconcile the observed transition temperatures with
thermodynamic data. For example, adjusting' c' ' of the
Cu-Au system to the observed order-disorder critical
temperature at x = —,

' one obtains c.' '= —5.3 kcal, in sub-

stantial disagreement with e' '=—AH' '= —2. 1 kcal mea-
sured directly. ' Furthermore, in an attempt to explain
the near immiscibility' "of Cu and Ag, posE'tiUe values of
c'"' were taken, ' whereas first-principles total-energy cal-
culations show s'"' & 0 [but G(x ) & 0, so bH'"' & 0]. (iii)
These approaches require that if b,H' ' & 0 (as is the case
for all semiconductor alloys '

) no ordering can exist,
and conversely, if ordering exists, one must have
~H' ' ~0, both in conAict with the data. ' ' "'

In what follows we build on the experience gained in
previous work on the c.-only Ising model, and show how
its predictions can be improved both qualitatively and
quantitatively by adding a simple, physically motivated,
and readily derivable term G(x ), to the Hamiltonian.

Equations (3.9) and (3.10) can be used as input to a
phase-diagram calculation [i.e., solving for g„(cr)in Eq.
(3.9) for all phases, as a function of x and T] if {

s'"'j and
8(x ), V(x ) are known. In the absence of continuous data
for 8 and V as a function of x, these might be approxi-
mated by interpolating the data from a few ordered
structures n. For example, one could perform first-
principles total energy calculations on a set of ordered
structures A„B [with stoichiometric compositions
X„=m /( n +m ) and 1 —X„=m /( n +m )] that are likely
to become the ground states of the A, B„system.
From such calculations ' one routinely obtains for or-
dered crystals the equation of state bE(n, V) of Eq. (2.1),
the equilibrium volumes V„,the bulk rnoduli 8„,and the
equilibrium values of bE(n, V„)—=bH'"'. One can then
compute G(x ) of Eq. (3.10) by the following process: (i)
Interpolate {8„}to obtain 8(x); (ii) interpolate I V„}to
obtain V(x ); (iii) using 8(x ) and V(x ), integrate Eq.
(3.10) to obtain G(x); and (iv) given this G(x), evaluate
its magnitude G(X„)at the stoichiometric compositions
X„.(v) Use Eq. (3.15) and the calculated {bH'"'j (for
fully relaxed ordered structures) to find {s'"'j. These

G(x ) and e'"' can then be used to solve for g„(o) in Eq.
(3.9) by any of the statistical mechanics methods available
(Monte Carlo, ' the cluster variation method '), to obtain
both the full phase diagram and the thermodynamic
functions [e.g. , bH(x, T) in Eq. (2.13)]. The extent of
agreement or disagreement obtained with the observed
phase diagram can be used to judge the underlying as-
sumption of transferability of ordered phase data to the
alloy environment. This program has been carried out
for the Cu-Au system, and the results were reported else-
where. 42

Alternatively, one can reverse the procedure and find
G(x) and {e'"'j underlying the experimental data itself.
This is possible if sufficient data exists for {8„,V„,bH'"'j
of the ordered phases. From this structural and thermo-
dynamic data one could then repeat steps (i)—(v) above
and predict the phase diagram. In what follows we adopt
this approach and illustrate the method for the Cu-Au
system, for which reasonably sufficient experimental data
exist.

We will illustrate the method in two ways. First (Sec.
IVA) we will use the experimental data {8„,V„,bH'"'j
for the ordered structures Cu4 „Au„andcalculate from
these G(x) and {E'"'j. Solving (approximately) for the
g„(o) of Eq. (3.9) will then give the predicted order-
disorder transition temperatures, to be compared with ex-
periment. This will establish the extent to which elastic
and thermodynamic data on five (0&n &4) ordered
structures alone can be used in our formalism to predict
critical data throughout the temperature and coinposition
ranges. Second (Sec. IV B), we will adjust our
{e'"',G(x ) j to fit precisely the known critical data, and
contrast the phase diagram obtained with c. only to that
obtained with both c. and G. This will establish the role
of elastic energies on the form of the phase diagram.

IV. RESULTS

A. Predicting critical temperatures of the Cu-Au system
from thermodynamic data alone

%e now apply the c,-G formalism to calculate the phase
diagram of the Cu-Au system in the tetrahedron approxi-
mation, where 0(n & 4 denotes the five possible
Cu4 „Au„tetrahedra, as well as the unit cells of the five

corresponding ordered crystals.
Table II summarizes the observed data on

{8„,V„,b,H'"'
j for the ordered Cu~ „Au„phases.' '

Since our method works best when the volume at a given
composition has but a small dependence on the state of
order, we need to select V„that best satisfies this condi-
tion. No problem exists for ordered CuAu-I whose molar
volumes (or lattice parameter) change little on the order-
disorder transformation (see Sec. III). However, Cu3Au
does exhibit a non-negligible change of volume as the
temperature is raised above the order-disorder transition
teinperature (663 K) for x =0.25. For an optimal
description of the order-disorder transformation we
hence choose the room-temperature molar volume of
disordered samples prepared just above the transition
temperature. The case of CuAu3 is even less clear.
There, the state of order corresponding to the molar
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volume quoted Table II is uncertain, and even the
enthalpy of formation 50' ' is not known. We hence
disregard B3 and V3, and interpolate thy remaining B„'s
and V„'s,for n =0, 1,2,4 with third-order polynomials, to
obtain B(x } and V(x ) (other functional forms for the in-
terpolation could change the results somewhat). In-
tegrating Eq. (3.14) with these B(x ) and V(x ) to obtain
the approximation (3.12), one then finds the function
G(x ) depicted in Fig. 1 by solid circles. The correspond-
ing dV(x)/dx function is shown by the solid circles in
Fig. 2, and exhibits substantial deviations from Vegard s
rule (dashed line in Fig. 2}. Correspondingly large devia-
tions are noted in G(x ) if Vegard's rule is used (dashed
line in Fig. 1). The calculated chemical energies a'"' ob-
tained from Eq. (3.15}using the b,H'"' values of Table II
and G(X„)of the dotted curve in Fig. 1 (defining again
s"'=a"'=0) are

e"'= —4.607 kcal/mol,

e' '= —5.963 kcal/mol,

e' '= —4.267 kcal/mol,

(4.1)

b,H" '= —l. 71 kcal/mol,

hH'2'= —2. 10 kcal/mol,
(4.3)

as given in Table II. Clearly, the elastic energies at equi-
librium [Eq. (4.2}]are significant relative to the chemical
energies [Eq. (4.1)].

The transition temperatures T& and T2 for order-
disorder transformation for Cu3Au~~Cup 75Auo 25 and
CuAu~~Cu05Au05, respectively, depend, as discussed
above, on the e'"'s but not on G(x). Monte Carlo or
cluster-variation method (CVM) calculations could be
performed with the a'"' of Eq. (4.1) to predict these tem-
peratures, (see Secs. IVB and V). However, we found
that a simple approximation, accurate to within 6% (see
Appendix II) suffices for our purpose in this section,
where this precision is adequate. For the simple fcc sys-

and the elastic energies at equilibrium (from Fig. 1) are

G(X, )=2.897 kcal/mol,

G(Xz) =3.863 kcal/mol . (4.2)

The formation enthalpies of the ordered phases are given
by Eq. (3.15) as the sum of Eqs. (4.1) and (4.2), i.e.,

From Vegard's
0 50 J rule

4.0-
~ ~ ~ ~ ~t

3.0—

2.0 - i ~ interpolation
x 10-/ of Vn, Bn
(y

'
gO

0.0 1.0
I

0.5
Composition x

FIG. 1. The elastic energy G(x)=Ox(1 —x) for the Cu-Au

system obtained by interpolating I V„,B„I of the ordered com-

pounds (Table II) with (a) a third-order polynomial (dots), and

(b) linearly (i.e., using Vegard's rule, dashed line). Note that the

use of Vegard's rule gives a much larger elastic energy.

tern A, „B,with ground states of the type AB (space
group L lo) and AsB and Bs A (space group L lz), CVM
calculations can be performed for a large range of c.'"'
values; the resulting transition temperatures T„ for
order-disorder transformations can then be 6tted to c'"',
providing the matrix A„ in

(4.4)

where T is a vector of transition temperatures and a'"'
is the vector of the substitution energies. Appendix II
gives this useful matrix [and discusses the precision of
Eq. (4.4}] as well as corresponding fits for the critical
compositions X„and latent heats of transformation I.„.
The matrix A „hence provides a quick way to estimate
transition temperatures from a set of chemical energies.
Since, for this system, accurate Monte Carlo calculations
predict a Tz which is lower by a factor rl =0.967/1. 026
=0.9425 than CVM results, if one wishes to compare the
calculated Tz with experiment, this factor has to be in-
cluded in Eq. (4.4). Using our sI"' values [Eq. (4.1)] de-
duced from structural and thermodynamic data (Table
II), Eq. (4.4) and the factor r), we predict for the CuAu
system

gT( ——747 K,
gT2 ——683 K,

TABLE II. Experimental molar volumes V„,bulk moduli B„,and formation enthalpies AH("' of the
Ordered Structures for the Cu, „-Au„System.

Formula
for definition
of the mole

CU

CUp p5AUO 2g

CUO 50AUO 50

CUp pgAUO

Au

X„
concent.

0
0.25
0.50
0.75
1

V„'
(cm /mol

7.112
8.294
8.767
9.506

10.218

0

(GPa)

138
148

163

171

aH("'
(kcal/mol)

0
—1.71
—2.10
—1.37'

0

'See Ref. 34.
bSee Ref. 16.
Obtained by interpolating enthalpies at T =800 K and adding the ordering enthalpy —see Ref. 16.'
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From
interpolation

/ot
I
V„I

4 ~

From
Vegard's rule ~

V
3
2-

0
0
0.0

0 ~ ~ ~

0.5 1.0

Gomposition x

FIG. 2. dV/dx for the Cu-Au system obtained by taking the
derivative of V(x) (a) when V(x) is a third-order polynomial in-

terpolating [ V„((dots) and (b) when V(x) follows Vegard's rule
(dashed line).

s( '= —5.592 kcal/mol,

s' '= —3.858 kcal/mol,

(4.5)

in excellent agreement with our results of Eq. (4.1) in
which no fit to phase diagrams is involved. Note, howev-
er, that in the model of Kikuchi et al. ' the c.'"' values
take up the role of enthalpies of formation b,H(") (since
all elastic interactions are neglected). Comparing, how-
ever, their e(") of Eq. (4.5) to hH(") of Eq. (4.3) shows
clearly that this premise of their model is invalid: Their
model cannot At transition temperatures and enthalpies
with any given set of c.'", c' ', and c, ' '. We return to this
point in the next section.

B. Phase diagrams of Cu-Au
in the c-6 and c-only approaches

To demonstrate the consequences of the interplay be-
tween chemical and elastic energies, we compare the cal-
culated phase diagram and thermodynamic functions of
the Cu-Au system in two ways: (i) retaining in Eq. (3.9)
both chemical and elastic terms (the "E-G approach"), or
(ii) retaining just the chemical term (the "s-only" or
"pure-Ising" approach).

We use again the thermodynamic and structural data
of Table II, but this time we also At the observed' transi-

in good agreement with the experimental data' of
T, =663 K and T2 ——683 K. This demonstrates that our
theory can obtain I

s(")], and through CVM calculations
predict order-disorder transition temperatures using as
input elastic and thermodynamic data of ordered phases
alone.

One can further compare the ordering energies de-
duced from the thermodynamic data [Eq. (4.1)], with
those obtained by Kikuchi et al. ' who Ptted the observed
CuAu phase diagram by adjusting s(") [with G(x )—:0].
Their s(",e(~), s( ' values (after dividing by the factor 71 to
account for the error in a CVM calculation relative to
Monte Carlo) are

s")=—4.236 kcal/mol,

tion temperature T, =663 K, T2 ——683 K, and T3-500
K for order-disorder transformations of Cu3Au, CuAu,
and CuAu3, respectively, to obtain a more accurate fit to
the observed phase diagram. This is done as follows: for
the bulk modulus we use the At

s("= —4.024 jri = —4.269 kcal/mol,

s( '= —5.264 jri= —5.585 kcal/mol,

s( '= —3.628/ri= —3.849 kcal/mol,

(4.6)

where g=0.9425 is again the Monte Carlo-to-CVM ra-
tio. These values are similar to those given in Eq. (4.1) in
which no adjustments to fit critical data is involved.
From Eq. (3.15) and using the bH'") values of Table II,
this gives

G(X, )=2.412/g=2. 559 kcal/mol,

G(X2)=3.285/ri=3. 485 kcal/mol,

G(X& ) =2.336/ri=2. 479 kcal/mol .

(4.7)

The full G(x ) curve (solid line in Fig. 3) is obtained again
by integrating Eq. (3.10) with our V(x), B(x), and
d V/dx described above. For purposes of illustration [see
Eqs. (3.12)—(3.14)] it suffices to represent this G(x ) curve
by the simpler form Qx(1 —x) [solid dots in Fig. 3
and Eqs. (3.12)—(3.14)] with 0= 13.408/ri = 14.226
kcal/mol, with virtually no loss in precision. The four
values (s and 0) completely specify the Hamiltonian we
use. (Note that in Ref. 33 the values of e, G, and Q were
quoted before the division by g. ) Note further that the
common assumption of Vegard's rule (dV/dx =const)
substantially overestimates G (dashed line in Fig. 3). We
have calculated the phase diagrams [Figs. 4(a) and 4(b)],
and the enthalpy [Eq. (2.13)], at T=800 K [Fig. 5(a)] us-
ing the cluster variation method, retaining up to four-
body (tetrahedron) interactions within the first nearest
neighbors. . We show the results for the c.-only and the
c-G approaches in Figs. 4 and 5.

Since isostructural order-disorder transformations
occurring at a fixed composition (hence volume) involve
solely spin-flip chemical energies, both the c-G and the
c.-only approaches yield the same transition temperatures

B(x ) =43.251[V(x )]

(where B is given in GPa and V is in cm /mol). This
form gives the correct values at the extremes n =0 (Cu)
and n =4 (Au), and produces errors less than 5% for
n =1,2. It is hence used to obtain the unmeasured 83.
We obtain V(x ) by a polynomial interpolation of I V„]of
Table II, as before. However, this time we also adjust the
three derivatives d V/dx [see Eq. (3.10)] at the
stoichiometric compositions I„=4, —,', and 4. These
derivatives are adjusted such that upon integration of
G(x ) of Eq. (3.10), one obtains certain desired values of
G(X„)at the stoichiometric compositions X„.These
values are Axed by the condition that s'"'= hH'"'
—G(X„)[using b,H'") values of Table II, and the correc-
tion factor ri] produces the correct transition tempera-
tures T„.This yields
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Comparison with the experimental results' (available for
Cu3Au and CuAu only down to -550 K and for CuAu3
only down to -470 K) reveals an overall good agreement
(through our fit) for the top part of the phase diagrams in
both approaches. A closer look at the slopes of the phase
diagram lines away from the order-disorder transforma-
tion points reveals some subtle differences: whereas in the
e-6 approach the triple point (where CuAu-I, CuAu3,
and the disordered phase coexist) occurs at a composition
of -67% Au, close to the experimental value'+' of
66-67%, in the e-only approach this point is too low

(just below 60% Au). Another difference occurs in the
CuAu3 phase boundary line extending from 68% Au to
the CuAu3 order-disorder transition point at 72.7% Au:
Whereas this line occurs in the c-only approach at a near-
ly constant temperature, while in the e-G approach this
line shows a slight temperature increase in this composi-
tion range (by —10 K), experimentally, ' ~' a decrease of
-22 K is observed. These differences are indeed subtle,

FIG. 3. The elastic energy G(x) for the Cu-Au system ob-
tained by fitting critical temperatures. (a) The best fit (full
curve); (b) the Ax(1 —x) approximation with constant 0 (dots);
(c) assuming Vegard's rule (dashed line).

[compare Figs. 4(a) and 4(b), where we obtain the transi-
tion temperatures 681.6, 676.1, and 497.4 K at the criti-
cal compositions 0.265, 0.497, and 0.727, for n = 1, 2, and
3, respectively]. Thus, the higher-temperature parts of
the phase diagrams of Figs. 4(a) and 4(b) are identical.
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FIG. 4. CVM phase diagram for Cu-Au in the nearest-
neighbor tetrahedron approximation: (a) in the c-6 approach,
i.e., including both elastic and chemical interactions, using c'"'
of Eq. (4.6) and G(x) of Fig. 3 (constant 0); (b) in the c,-only ap-
proach, i.e., neglecting the elastic interaction. Note that the sin-
gle phase (two-phase) regions are much narrower (broader) in
(a) relative to (b) ~

FIG. 5. (a) Enthalpy, (b) entropy, and (c) deviations from the
random probabilities of the Cu-Au system at 800 K. Experi-
mental data (Ref. 16) are shown as solid circles. The diamond-
shaped symbols in (a) depict the observed formation enthalpies
of the ordered phases (Table II). Note that the e,-only approach
cannot account for the enthalpy. Note also that the entropy has
a non-negligible contribution due to phonons, unaccounted for
in our CVM calculation.
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so we did not attempt to fit them any better (a fit is clear-
ly easier in the e-G approach having more parameters).
On the other hand, the phase diagrams of c.-G and c.-only
approaches are radically different in their lower tempera-
ture parts: In Fig. 5(a), the two-phase regions are very
extended and the single-phase regions are very narrow,
while in Fig. 5(b) the opposite is true.

Unfortunately, the phase diagram of Cu-Au was not
measured at the temperatures where the difference is so
striking (below 400 K). However, inspection of measured
phase diagrams for other compound-forming metal
alloys' "' leaves little doubt that, in general, the single-
phase (ordered compound) regions (shaded areas in Fig.
4) tend to become narrower as the temperature is de-
creased [as in the e-G case of Fig. 4(a)], rather than
broader [as in the s-only approach of Fig. 4(b)]. This
seems to suggest a qualitative breakdown of the c,-only,
pure-Ising approach. Further low-temperature experi-
ments would be required to examine this point in detail.

In Fig. 5(a) we compare the calculated and measured
mixing enthalpy of the disordered CuAu alloy at 800 K.
Again we observe that the e-only approach [dashed line
in Fig. 5(a)] can in no way account for the observed mix-
ing enthalpy when the chemical energies c'"' are adjust-
ed' ' to give the correct transition temperatures. On
the other hand, with the c-G approach we can fit both
transition temperatures and enthalpy. Note also in Fig.
5(a) that due to strain energy the formation enthalpies of
the ordered phases [diamond-shape symbols in Fig. 5(a)
giving b,H'"' of Table II] are far sinaller than the mixing
enthalpy of the disordered phase, as argued previously by
Srivastava et al.

It is important to realize that our decomposition of the
formation enthalpy AH'"' of ordered phases into a chem-
ical (s'"'} and elastic [G(X„)]terms holds the key to dis-
tinguishing phenomena that depend on [ e'"'] alone from
those that depend also on G(x). As indicated above,
phenomena that connect phases at the same composition
are affected by c'"' alone. These include not only the
order-disorder transitions at fixed-compositions, but also
all measurables that reflect the relative probabilities
P„(x,T ) of Eq. (2.12). Since the relative energies
bE(n, V) of different clusters n at a given V= V(x) do
not depend on V(x ), the cluster probabilities P„(x,T ) de-
pend on e'"'] alone. Hence, the knowledge of the stabil-
ity AH'" of an ordered compound does not suffice to
determine whether an alloy would show "clustering" of
its constituents [e'"'&0, making P„(x,T) for n=1, 2,
and 3 larger than the random (R ) probability P„'"'(x) at
x =X„) or "anticlustering" [E'"' ~ 0, making
P„(x,T) &P„'"'(X„)].This explains why in previous cal-
culations In Ga, As alloys "were predicted to ex-
hibit anticlustering but calculations ' ' on Cd& „Zn Te
predicted "clustering, " despite the fact that AH'"' g 0 for
both systems and all values of n: the former system
has "c.'"' ~ 0, whereas the latter has c.'"'

& 0.
Figure 5(c) shows our calculated deviation from ran-

domness AP„(x,T)=P„(x,T) P„' '(x ) for Cu-A—u at
T=800 K and exhibits clustering (excess of Cu3Au,
CuAu, and CuAu3 at x = —,', —,', and —', respectively} since
the c'"'s are negative. The configurational entropy ob-

tained from our P„(x,T ) is compared in Fig. 5(b) with ex-
periment. ' The good agreement with experiment
(which, however, contains also small electronic and vibra-
tional entropies) demonstrates again the utility of our ap-
proach in predicting thermodynamic data (hH, AS) from
critical data (fitting transition temperatures).

C. Mixing enthalpies of semiconductor alloys

Q—=5.03&&10'(b,a }'/a" . (4.8)

Here, the mixing enthalpy bH' ' is given in kcal/mol, a
0

is the average lattice parameter of the constituents (in A),
and ha is the absolute value of the lattice parameter
difference between the pure constituent semiconductors.
Equation (4.8) was shown to hold well for a whole series
of IV-IV and III-V ("isovalent") semiconductors. We
will show that this phenomenological equation, derived
for the high-temperature limit by assuming Vegard's
rule, can be simply obtained as a particular case of our
general expression in Eqs. (3.9) and (3.10) under similar
conditions, i.e., by assuming (i) random probabilities at
high temperatures and (ii) Vegard's rule.

With the approximation (3.12), Eq. (3.9) becomes

EE(o)=Qx(1—x)+ gg„(o)e'"', (4.9)

where by Eq. (3.15)

""'=Sa'"' —QX„(1—X„) (4.10)

and X„=n/4 is the composition of the ordered structure
/I „84„C4 (e.g., In„Ga, „As alloys can order in

In„Ga4 „As4phase ). Combining Eq. (4.9) and (4.10)
gives

bE(o ) =Q x(1—x ) —g X„(1—X„)g„(0)
n

(4.11)

In Eq. (4.11), the first term represents the "average medi-
um" with concentration x, the last term represents the
contribution of clusters n, whereas the second term can
be thought of as a "medium-cluster" interaction term.
When the cluster has an infinite size (making up the en-

Another system where we can compare our theoretical
formulation with experiment is the case of compound
semiconductors. Contrary to the situation in many
metallurgical systems, detailed thermodynamic data are
not available for semiconductor alloys, except at high
temperatures. For instance, we do not know the enthal-
pies of formation of the ordered intermediate compounds,
even if they are stable. The observed high-temperature
mixing enthalpy of disordered semiconductor all'oys has
been successfully approximated by Stringfellow with a
universal equation

hH' '(x):—Qx(1 —x),
where the effective interaction parameter Q [not to be
confused with the elastic interaction parameter 0 of Eqs.
(3.13) and (3.14)] is
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tire system), only the last term exists. The practical ques-
tion is how to select clusters of manageable sizes which
represent well the physics at hand. We find that M=4
(tetrahedron) is the smallest cluster size for which the su-
perposition model of Eq. (2.6), interpreted as a statistical
mixture of periodic structures, is valid (i.e., there are
states of order 0. which can be described by rotations of
the point groups of the ordered structures n ). The choice
of M =4 is also particularly suited for semiconductors, as
the strongest (covalent) interactions are included within a
C-atom-centered nearest-neighbor tetrahedra.

Equations (4.9) and (4.11)have a formal resemblance to
those used by Bublik et al., in that the chemical and
elastic effects are separated. Note that the first two terms
in the large parentheses of Eq. (4.11) exhibit a partial can-
celation, which would result (see below) in a substantial
reduction in the elastic energy of the alloy. [This reduc-
tion is, however, unrelated to the reduction by the Pois-
son ration involved by Krivoglaz or to the use of un-
physically soft energies bE(n, V} by Chen and Sher
(their Fig 2)].. Using our bE(o) of Eq. (4.11) with the
definition of the mixing enthalpy AH' ' of the disordered
alloy [Eq. (3.5)] we obtain

=0 x (1—x ) —Q P„( xT )X„(1—X„)

+ g P„(x,T)hH'"' .
n

(4.12)

At the high-temperature limit, [where hH' '(x, T) for
semiconductors are normally obtained experimental-
ly ' ] one can replace P„(x,T) by the random (Bernoul-
li} probability for four-atom clusters

4
P„(x,~ )=(g„(tr))= x "(1—x )n

(4.13)

Note that (g„(o) ) can be replaced here, by only the
four-atom probabilities P„(x,T ) (0 & n & 4) since we have
retained the energies c'"' up to four-body terms. Higher
multiatom interactions (e.g. , tetrahedron-tetrahedron)
have smaller n-atom interaction energies J„,hence, their
contribution to Eqs. (4.9) and (4.10) is expected to renor-
malize the values of the tetrahedron c'"'s. The property
of Eq. (4.13) is that for X„=n /4 one has

g P„(x,ao )X„(1—X„)=—,'x(1 —x ), (4.14)

hence Eq. (4.12}gives

hH' '(x, ao )=—x(1—x )+ g P„(x,~ )b,H'"' .
n

(4.15)

The important feature of Eq. (4.15) is that the elastic en

ergy is reduced by a factor of four due to the statistical
cancellation between the alloy elastic energy G(x) [first
term in large parentheses in the right-hand side of Eq.
(4.12)] and the elastic energy at stoichiometric composi
tions [second term in large parentheses in Eq. (4.12)].

The elastic interaction parameter 0 can be simply es-
timated from Eq. (3.14) by using Vegard's rule, which is
followed rather closely by most semiconductor alloys.
Denoting by V=Xoa /4 the molar volume, where a is
the cubic lattice parameter and 1Vo is Avogadro's num-

ber, Vegard's rule implies

dV =—'Xoa Aa,
dx 4 (4.16)

where ha is the lattice mismatch. Using a constant ratio
B /V, Eq. (3.14) can be integrated to give

9gV
0

(4.17)

Eq. (4.17) is exactly the "unrelaxed" interaction parame-
ter of Fedders and Muller. ' Those authors found that
they had to divide their 0 by a factor of about four to ac-
count for the observed mixing enthalpy. No such ad hoc
factor is needed here. Using Eq. (4.15) and (4.17), we find
that when Vegard's rule is satisfied, the high-temperature
mixing enthalpy is

hH' '(x, ~ ) =—BV x(1—x )
9 (b,a)'

a'

+ g P„(x,00 )hH'"' .
n

(4.18)

This is our general expression for the high-temperature
mixing enthalpy of semiconductor alloys; it demon-
strates, as shown earlier, that (since the first term on the

(X„)
right-hand side is non-negative) hH "

& b,H'"I
This equation can be further simplified for i'soualent

semiconductor alloys by noting that they have very
small ' (positive or negative) formation enthalpies
b H'"', of the order of +0.2 kcal/mol whereas
b,HI '(0.5) is about 10 times larger. This results pri-
marily from the fact that both constituents are
closed shell octet -compounds (hence, nearly inert).
Indeed, calculations on AlAs-GaAs, GaP-InP, CdTe-
MnTe, and HgTe-CdTe, show

~

b,H'"'
~

= 10—20
meV/atom-pair. We will hence neglect this term in Eq.
(4.18). It is important to note, however, that bH'"'=0
holds only if one properly relaxes the cell-internal degrees
of freedom ' ' (in the present case, the position of the
common atom C inside its A„B4 „C& tetrahedron).
Neglecting bH'"' gives for Eq. (4.18) the high-temper-
ature mixing enthalpy

2

hH (x, ~ }=—x(1—x }= BV—(~) n 9 ma

4 8 a
x(1—x),

A=AH' '(x, ao )/x(1 —x)= ', BV(ha/a)—
(4.19)

(4.20)

One sees that the empirical factor of about four used by
Fedders and Muller is wholly statistical in nature. As we
will see below, Eq. (4.20) forms an excellent estimate of
the high-temperature mixing enthalpy of many semicon-
ductor alloys.
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It is worth noting at this point that whereas hH'"'—=0
is appropriate for isovalent semiconductor alloys, c.'"'—=0
is not. As described in Sec. III A [text surrounding Eq.
(3.2)], the chemical energy c'"' includes, in the case where
a common sublattice C exists, also the energy lowering
due to the relaxation of this common sublattice [in
the terminology of Ref. 22, our c'"' equals their
b EcF +be]. Hence, when a large lattice mismatch ex-
ists between the constituents AC and 8C, the C sublattice
relaxes substantially, leading generally to a large reduc-
tion in c.'"', hence c.'"'—=0 is inappropriate. In fact, using
in Eq. (4.18) the condition e'"'=0 gives by Eq. (4.10)

we consider a fcc binary alloy in the simple cubic super-
lattice retaining just the "pair interaction. " This means
that, for the ordered fcc structures A„B4 „(seeTable
II), we set

aa("=aa"'=0.75 aa") .

According to Eq. (3.15), one also has

&(1) &(3) 0 75&(2)

(5.1)

(5.2)

The minimum energy of Eq. (4.9) occurs when all proba-
bilities g„(cr} are zero, except for two, say gz and gM, for
which

bH'"'=AX„(1—X„)for e'"'=0 .

for c.'"'=0 .

Using Eq. (4.18) and (4.14) then yields
'2

bH' '(x, ~)= 'BV—
a

(4.21)

(4.22)

4, +(M ——1,
and

XN kN +XM kM

Thus

(5.3)

(5.4)

an unphysical result, 4 times larger than the correct re-
sult [Eq. (4.19)]. The reason that bH'"'=0 is a reason-
able approximation is precisely that a large negative c,

'"'
which exists when substantial common-sublattice relaxa-
tion occurs is oft'set by the elastic term G(x). The reason
that s'"'=0 is not satisfied in general (except for ba =0)
is that c includes the non-negligible energy lowering due
to relaxation of the C sublattice for a jixed A, B lattice

Equation (4.19) could be used to calculate the enthalpy
of mixing from the knowledge of 8, V, and ha of the al-
loy. One could, however, further simplify it to eliminate
8 and V by using the scaling relation between the bulk
modulus and the lattice parameter

x —XN x —XM
kM ~ kN

XM XN XN XM
(5.5)

At the compositions x =XN of the ordered structure, the
equilibrium energy is the enthalpy of formation of this
phase, i.e.,

The ground state energy bE(x) of the alloy then becomes
by Eq. (4.9)

bE(x)=Ox(1 —x)+e +e
x —XM x —XN

N M M N

(5.6)

3.30@104
a 3.5 (4.23) bE(XN)=OX~(1 —X~)+e' ':—b,H' (5.7)

0
(where B is in GPa, and a in A). Inserting this in Eq.
(4.20) gives

Between these compositions, the second derivative is a
negative constant:

Q=1 34&(10 a ' (ba) (4.24}
d b,E
dx

(5.8)

(0 in kcal jmol, a in A). Comparing this result with that
of Stringfellow, [termed the "Delta lattice parameter" or
DLP model and given by Eq. (4.8)] we find the ratio

p«sen =0.0266 (4.25)0' '(DLP)

The ratio given by Eq. (4.25) varies between 0.79 (Si) to
1.13 (InSb). Thus, within the experimental uncertainty in
bH' ' (unfortunately, for semiconductor alloys this un-
certainty is as large as +50%), Eqs. (4.25) and (4.8) are
indistinguishable. However, unlike Stringfellows DLP
model, no empirical scaling of the enthalpy is needed.

V. REMOVAL OF T =0 DEGENERACY
BY ELASTIC EFFECTS:

MODEL HAMILTONIAN CALCULATIONS

To understand how the elastic energy influences the
phase diagram, we now study the free energy defined at
T =0 by Eq. (4.9), considering b,E(o ) as the Hamiltonian
for the state of order variables o.. To simplify matters,

In Figs. 6(a) and 6(b} we plot bE(x) of Eq. (5.6). Figure
6(a) refers to the case when the enthalpies of formation of
Eq. (5.7) are negative (stable compounds), while in Fig.
6(b) the formation enthalpies are positive. In both
figures, the dashed lines denote the energy b E(x) for the
pure Ising model, i.e., when we set 0=0 in Eq. (4.9). The
pure ("s-only" ) Ising Hamiltonian produces an infinite
degeneracy in the ground state. This is observed as fol-
lows. Consider the point denoted as x in Fig. 6(a). This
state has the same energy as a mixture of states y with z,
if these are mixed in the proportions

z —x x —yfory and for z .
z —y z —y

No such degeneracy exists when we include the elastic
energy 0 (solid curves in Fig. 6).

Returning to the phase diagrams of Fig. 4, one sees
that the narrowness of the single-phase regions in the c.-G
approach [Fig. 4(a)] refiects the ground state of Fig. 6(a)
with its very sharp minima. In contrast, the broadness of
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FIG. 6. Ground-state energy as function of composition for
the simple model of Eq. (5.6). (a) Negative formation enthalpies
hH("} for the intermediate ordered compounds. (b) Positive
b,H'"'s. Observe that the elastic energy stabilizes the corn-

pounds by making the nonstoichiometric compositions energeti-

cally unfavorable.

VI. ELASTIC EFFECTS
ON THE TRIPLE POINT: MODEL HAMILTONIAN

AND ITS SOLUTIONS

There has been considerable controversy regarding the
location of the triple point in CVM and Monte-Carlo
solutions to the pure, c,-only Ising model. ' ' ' We show
here that the CVM and Monte Carlo solutions to the

the single-phase regions in the e-only approach [Fig. 4(b)]
reflects the infinite degenerate ground state represented
by the dashed lines in Fig. 6(a}. Real phase diagrams' ("
of compound forming systems show ordered compounds
at narrowly defined near-stoichiometric compositions, in
sharp contrast with the predictions of the c.-only model,
which yields at low temperatures broad composition
ranges for ordered phases (using any combination of e"',
z' ', and d '). For this reason we find the approach
which includes elastic energies [Fig. 4(a}] to be a better
description of actual phase diagrams than the pure Ising
e-only approach [Fig. 4(b}].

and

4T 8RT
( 1[

1.39

H 4p p

The first phase transition, at p=5 kca1/mol, is clearly
first-order, while that at p = 10 kcal/mol seems to present
a very negligible discontinuity (but very clear discontinui-
ty in the slope). (Binder et al. claim that this second
transition is also first-order, a feature that can be found
only by increasing the number of spin flips, or by calcu-
lating at a more favorable temperature. ] In Fig. 7(a} we
also show the CVM result, which exhibits just a single
phase transition. Except in the disordered phase region,

more realistic c-6 Hamiltonian yield essentially the same
results, and that the triple point is raised by introducing
in the Hamiltonian an elastic, G(x) term. A mechanism
for such an increase in the triple-point temperature has
been sought in the past, since nearly exact solutions to
the c-only Ising Hamiltonian produced a triple point
which is decisively lower than what was observed' ' ""
for the Cu-Au (and other) systems. The position of the
triple point (when equilibrium exists between the disor-
dered, the AB and the AB3 phases) is related to the
infinitely degeneiate ground state of the pure Ising model
(dashed curves in Fig. 6). Since G(x) removes much of
this degeneracy (solid curves in Fig. 6), it seems
worthwhile to investigate if elastic e6'ects might also raise
the triple point significantly above T =0.

We demonstrate this point by applying the Monte Car-
lo (MC) method to a simple model Hamiltonian. st In
Figs. 7(a), for G (x)=0 (or Q =0), and 7(b) for G(x)&0 or
(Q&0), we show the results of MC calculations at fixed
temperature. We chose a model Hamiltonian with pair
interaction e"'=e' '=0.75e' '= —6.0 kcal/mol, and the
simplest form for G(x)=Qx(1 —x), with Q chosen so
that the enthalpies of formation bH("'=QX„(1—X„)
+z'"I were very small negative numbers (Fig. 7). In the
Monte Carlo calculations we use a periodic crystal with
8 conventional unit cells (thus with 4X8 =2048 atomic
sites). Spin flips are made sequentially at the atomic sites
along the lattice. The spin-flip energy is calculated by
counting the tetrahedra. We verified that, in most cases,
after starting from any state of order, the spin-flip process
reached a stationary state in 200 flip attempts per site. In
Figs. 7(a) and 7(b) the solid circles have sizes larger than
the actual errors in the calculated averages of 100 flip at-
tempts per site, after reaching the stationary condition.
In no instance did we need to go beyond the total of 500
flip attempts/site.

In Fig. 7(a) [for G(x) =0] one finds two phase transi-
tions obtained in the MC calculation at T =700 K: AB-
to-disorder at p=—5 kcal/mol and disorder-to-AB3 at
p, =10 kcal/mol. The values of the chemical potential p
at the phase transitions are in agreement with those cal-
culated by Binder et al. In order to compare their re-
sults with ours, we transform their variables [see their Eq.
(2.8)]
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the CVM results follow the MC result very closely.
Clearly, CVM and MC solutions to the same, pure-Ising
Hamiltonian give qualitatively different answers.

In Fig. 7(b) we present the results for G (x)&0. In this
case, the MC and CVM results almost coincide, and there
is just one phase transition ( AB to AB3 ), at p =0.8

kcal/mol, clearly of first-order. Below and above the
critical chemical potential JM, phases AB and 383 seem

to be perfectly ordered (Pz ——1 and P3 ——1, respectively).
The fact that the transition now occurs at a much smaller
value of p results from the important negative contribu-

tion dG/dx to the chemical potential. ' The Monte Car-
lo results in the case of G(x)&0 [Fig. 7(b)] are actually
more complicated than what is represented in the figure.
Starting from different states of order, and with different
spin-flip histories, we did get either a phase with P2 ——1

and P3 =0, or a phase with P2 ——0 and P3 = 1, but never a
disordered phase with intermediate probabilities. Once a
given phase is reached, it will not move towards the oth-
er, even if it has larger free energy (metastability), be-
cause the acceptance ratio of spin flips per attempt be-
comes much too small ( —1%). Thus, it was possible to

MC
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FIG. 7. (a) Difference of tetrahedron probabilities P2 —P3 as function of the chemical potential p in a model Hamiltonian (param-

eters given in insert) for the c-only approach. The solid curve is from the cluster variation method (CVM) calculation. The dots and
bars are Monte Carlo (MC) results. Observe that there are two phase transitions in the MC calculation, but just one in the CVM ap-
proximation. (b) Results for the (E, G) approach. Note that only a single phase transition is observed.
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obtain the AB phase even for p as high as +1.1

kcal/mol, and to obtain the AB3 phase at p lower than
0.8. Thus, to decide which phase is more stable at a
given p, we compared the values of U —px, where U is
the internal energy. Since both phases have negligible en-

tropy, this expression is approximately the value of the
free energy, the lower value indicating the more stable
phase. Our Monte Carlo calculations completely exclude
the existence of an intermediate disordered phase at
T=700 K. Therefore, the triple point must be above this
temperature if elastic energy is included.

During the MC work it was easy to verify that G (x }
does not remove completely the ground-state degeneracy
of the Ising model. Although the phases had the
tetrahedron probabilities Pz ——l and P3 ——0 (or P2 ——0 and

P3 = I ), the concentrations of atoms B in the four fcc sub-
lattices did not assume the integer values, 0 or 1, but
could assume different noninteger values depending on
the spin-Hip history. The degeneracy not removed by
G(x) results from the possibility of arranging tetrahedra
AzBz (and AB3) in different ways. In Fig. 8 we show the

possibilities. First consider Fig. 8(a), where we present
the case of AB3. The circles are atoms in the plane of the
figure and the triangles are in the neighboring plane. A
solid figure ( ~ or A ) is a B atom, while an empty figure
(0 or 4) is A. The tetrahedra, which are formed by four
adjacent atoms, two in each plane, are all of the type
AB3. One sees that there are planes of just B atoms, and
planes where A and B alternate (planes a, P, y). Lacking
a next-nearest-neighbor interaction, the Hamiltonian is
incapable of correlating the arrangement of atoms in con-
secutive AB planes. Thus one sees from Fig. 8 that there
are two possible arrangements for each AB plane. Let-
ting P be the number of such planes in the whole crystal,
the degeneracy is then 3 X2, where 3 is the number of
crystallographic directions perpendicular to the ordered
planes. The case of AzBz [Fig. 8(b)] is similar, the only
difference being that the number of ordered planes
(a,P, . . . , p} is twice as large.

VII. METASTABLE LONG-RANGE
ORDERED COMPOUNDS FOR h,H'"' & 0

A. The basic idea

(a) ABs , X=~
! OA =A
I I

! I I

~ 6 ~ L ~
~ 4 0 4 0

~ z ~ a ~
~ a 0 a 0

~ z ~ a ~
I

I
I

A2B2 Ok=~
Q~=A

I
I I I I I

~ ~ 0 ~ 0 z

0 a 0 a ~
~ z 0 a 0
~0i 0 i ~
~ i 0 i 0 z

0 i 0 i ~
I I I I
I

a p Y 6 e p

FIG. 8. Residual degeneracy of (a) AB3 and (b) A2B2 for a
model Hamiltonian with nearest-neighbor interaction. The AB
planes a,P, y, p are ordered, but their order is uncorrelated.

The existence of a well-defined crystalline compound is
traditionally taken to imply that its formation enthalpy is
negative. En many cases, this necessary condition is not
suScient: One also requires that possible competing
structures (not necessarily its constituent elements) are
less favorable. We show here that when elastic energies
are significant (e.g., when a large lattice mismatch exists
between the constituent elemental solids) one can obtain
metastable ordered compounds even if the formation
enthalpy is positive.

Figure 6(b) presents an essential feature of the Hamil-
tonian with elastic energy. In this figure, the enthalpy of
formation of the ordered structures EH'"' is taken to be
positive, so that a decomposition resulting in a mixture of
the two pure end-point constituents might be expected at
low temperatures. On the other hand, the kinetics of the
decomposition may be such that the result could differ
from thermodynamic expectation. Consider the point
denoted x in Fig. 6(b}. The decomposition progresses
with the motion of the atoms in the lattice. Now, atoms
do not make long jumps simultaneously, so that the corn-
position of any small volume of material cannot suddenly
change by large amounts. If we understand the decom-
position as a continuous process of disproportionation, in
the first stages, x would disproportionate into neighbor-
ing compositions y and z, and these would progress to-
wards the points a and b. But at these points, there can-
not by any further progress, because a motion towards
the extremes x =0, 1 would necessarily pass through
compositions with higher energies. This means that a
and b would appear to be "stable compounds, "due to the
impossibility of finding a path to a lower energy state.
Thus, the elastic energy opens the possibility of finding
metastable long-range ordered compounds when c.'"' is at-
tractiue (negatiue), euen if the compound enthalpy offor
mation is positive. Obviously, such solutions do not exist
in the pure (e-only) Ising model (dashed lines in Fig. 6}.
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8. Phase diagram for strain-induced

metastable compounds

To illustrate the metastability of ordered compounds
brought by the elastic term G (x), we calculated the CVM
phase diagram of a model with positiue enthalpies AH'"'
but negative chemical energies E'"' (Fig. 9). The phase di-
agram presents a very broad iniscibility gap (solid line)
starting at T= 1987 K (obtained from the CVM), or 1920
K (obtained in the calculation MC). We have verified the
limits of existence of the ordered phases y and 5 (dotted
lines) inside this miscibility gap. These are defined by the
condition

a'F, a
Bx ~p

(7.1)

where F is the Helmholtz free energy of the ordered
phase, and the derivatives are taken at constant tempera-
ture T. When Eq. (7.1) is satisfied, not only does Bx/Bp
become infinite, but so does the heat capacity T dS/dT.
(Here, the CVM natural iterations ' diverge from the or-
dered phase to converge to the A-rich, or B-rich disor-
dered phase. ) Despite the singularity in Bx/Bp, the dot-
ted line in Fig. 9 could be determined with very good pre-
cision. One sees that the ordered phases are metastable in
a very narrow composition range even though thermo
dynamically they should not exist (since b,H'"'&0). This
is a consequence of the sharpness of the minima in Fig.
6(b).

In order to verify that Eq. (7.1) is truly the limit of me-
tastability, we performed Monte Carlo calculations, in a
periodic crystal with 4)&8 =2048 sites, starting from
perfectly ordered y and 5 phases. After a total of 500 Hip

attempts/ site we computed the average probability P„of
occurrence of a tetrahedron A4 „B„to see how ordered
the crystal remained. In Fig. 10 we show the results for
the case of the phase y. Very clearly there is a critical
temperature (892+1 K) above which the order disap-
pears. The Monte Carlo critical temperatures (at selected
values of the chemical potential), marked in the phase di-
agram of Fig. 9 as solid dots, do not differ by more than
9% from the CVM results calculated according to Eq.
(7.1). This is a remarkable fact, showing that the CVM
expression for the entropy is also reliable for calculating
ordered phases.

C. Limits of stability and metastability

We now consider the necessary conditions for the ex-
istence of a stable or metastable phase with stoichio-
metric composition X„[e.g. , points a and b in Fig. 6(b)].
If one considers a disproportionation of X„into neigh-
boring compositions X„—p and X„+co,the composition
X„willbe stable (or metastable) if this process raises the
energy of the alloy, or

dhE
dx x =x+

n

dhE
dx x =x„

)0. (7.3)

From Eq. (5.6) we obtain these derivatives

bE(X~) ( bE(X„—cv)+ bE(X„+p). (7.2)
p+ co p+ cg

Since p and co are small positive numbers, we can expand
the right-hand side of this inequality to obtain the condi-
tion for stability or metastability in terms of the right and
left derivatives at the stoichiometric compositions.

2QQQ-
~ 198

x =X„+

&(n) (n + 1)
=Q(1 —2X„)+X„—X„+)

(7.4a)
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Composition

1.0

FIG. 9. CVM phase diagram for an alloy with positive
enthalpy. Inside the dotted lines, the ordered phases are meta-
stable (see text). Also shown are the Monte Carlo (MC) results
as solid circles.
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FIG. 10. Probability of the tetrahedron A2B2 in the metasta-

ble ordered phase AB as function of temperature. Each Monte
Carlo calculation started from the perfectly ordered structure
AB, and consisted of a run of 500 flip attempts/site. The dots
are averages over the runs (their size has no significance). The
solid line is the CVM result. The parameters used were
c'"=c"'=—6; c,

' '= —8 and 0=35.2 kcal/mol.
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and

dhE
x=X

(n) ~(n —1)
=Q(1 —2X„)+ (7.4b)

Thus, Eq. (7.2} implies

2&(n) (n +1) E(n —1) 0 (7.5)

If, in addition, the ordered structures are stable relative
to the constituents (AH' '&0), we have the conditions
for relative stability of an ordered system with pair in-

teractions

c' '&0; hH' '&0 stability . (7.7)

Metastability, in the sense defined above, occurs when

c' '&0; hH' '&0 metastability . (7 8)

Obviously, no ordered compounds exist if both the chemi-
cal and the elastic energies are positive, i.e.,

c,
' '~0; hH' '&0 no ordering . (7.9)

Figure 11(a) shows graphically the stability regimes of
Eqs. (7.7) and (7.8). Since strain energy [G(x) of Eq.
(3.15)] is non-negative, we always have hH'2' & e'z'.

Hence, the half plane below the AH' '= c.' ' line is forbid-
den. Using hH' '= Q/4+ e' ', we also give these regions
in the (Q, e' ') plane [Fig. 11(b)] and the (Q, bH' ') plane
[Fig. I 1(c)].

This analysis suggests that metastable long-range or-
dered compounds can exist within the miscibility gap if
the constituents are sufficiently lattice-mismatched [to
give 6(x) »0], provided the chemical interactions are
suSciently attractive. This is likely to be the case for sys-
tems such as Cu-Ag, for which we have recently predict-
ed metastability at low temperatures. This highlights
the difference between the c-G approach and the s-only
approach of Kikuchi et al. these authors were forced
to assume e &0 for Cu-Ag (in contrast with the common
fact that Cu and Ag attract each other, forming a stable
diatomic molecule, and with the fact that first-principles

(a) (b)

MS US US

Stable Stable

FIG. 11. Regions of stability, metastability (MS) and instabil-

ity (US) of ordered compounds in the pair approximation (see
Sec. VII C). Shaded areas denote regions of the parameters in

which no phases exist.

In the case of pair interactions c,"'=c' '=0.75m' ', Eq.
(7.5}, when applied to n =1,2, and 3 means that the
necessary condition for both stability and metastability is

(7.6}

self-consistent calculations reveal c'"' & 0 for
Cu„Ag4 „),since in the absence of 6 (x), fitting the ob-
served phase-separation behavior of Cu-Ag requires as-
suming a ferromagnetic repulsion. In contrast, the
present approach correctly describes the phase separation
behavior without resorting to an unmotivated assump-
tion of c & 0. Furthermore, the use of a physically correct
e'"' & 0 (but 6 (x) »0) provides also a qualitatively
different prediction as to the existence of long-range or-
dered phases at low temperature.

This analysis has an important implication on lattice
mismatched pseudobinary alloys of AC+BC. If the sys-
tem has a sizeable lattice mismatch b,a =

~
a„c—asc ~,

the elastic energy is large, yielding positive mixing
enthalpies AH(x, T) and eventually a miscibility gap.
This is the case for most isovalent semiconductor al-

loys, e.g., GaAs-GaSb. However, a large Aa also
implies that the common sublattice C distorts (leading to
near-ideal R„cand Rsc bond lengths). Such distortions
have been observed experimentally ' and calculated
theoretically ' for many isovalent semiconductor al-
loys. These relaxations of the common sublattice consti-
tute in our scheme a part of e'"' (see Sec. III.A}, and con-
tribute to its becoming negative. Hence, one can expect
that lattice-mismatch pseudobinary semiconductor alloys
satisfy condition (7.8) and should exhibit metastable
long-range ordering inside the miscibility gap. This was
indeed observed recently for GaAs-GaSb, exhibiting
chalcopyrite-like Ga2AsSb ordered structures within the
miscibility gap.

Whereas c.-only Ising models need to resort to rather
artificial assumptions on the ratio of second- to first-
neighbor interaction energies to explain metastable
solutions, the present approach shows such effects to sim-

ply result from the interplay between elastic and chemical
effects. Indeed, the existence of concomitant atomic or-
dering and decomposition has been demonstrated to exist
both in metallurgical systems (Cu-Ti, Ni-A1, Cu-Ni-Sn,
and Ni-Ti) and in semiconductor alloys (GaAs-GaSb).

VIII. SUMMARY

We have shown that when molar volumes at fixed com-
position do not depend on the state of order the equilibri-
um energy of the alloy b,E(o ) can be expressed [Eq. (3.9)]
as a sum over configurations n of volume and the compo-
sition independent (chemical) energies c,

'"' plus a
configuration-independent (elastic) energy term 6 (x).
We show that both contributions are significant and
essential. Both can be approximated either from experi-
mental or from first-principles calculations on ordered
compounds. This is illustrated for the Cu& Au alloy
system for which we demonstrate that using structural
and elastic data on the ordered phases Cu„Au4 „suSces
in our approach to predict order-disorder transition tem-
peratures.

We have compared the traditional (e-only) Ising
configurational approach, on which we build, with the
present one ( E-G ) which incorporates both chemical ( e )

and elastic (6) effects. We find the following elastic ener-

gy induced effects.
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(i) Elastic energies G(x) act to narrow the single-phase
existence regions (Fig. 4}, (hence stabilize ordered com-
pounds) and to broaden the two-phase regions in the
phase diagram.

(ii) Whereas the s-only method leads to substantial
overestimation of mixing enthalpies, the present ap-
proach leads to physically correct enthalpies (Fig. 5).

(iii) The incorporation of elastic effects acts to remove
much of the ground state degeneracies characteristic of
the s-only Ising Hamiltonian (Fig. 6}. This leads to a
significant increase of the triple-point temperature rela-
tive to the s-only pure Ising model (Fig. 7}. (Indeed the
pure Ising model, when applied to Cu-Au, yielded a
lower triple-point temperature relative to experiments}.

(iv) Elastic effects lead to the possibility of metastable
long-range ordered compounds even'though their forma-
tion enthalpy bH'"' is positive (Fig. 9}. This is possible if
the chemical energies c'"' are negative, but the positive
elastic energy G (x) overwhelms it. No such solutions ex-
ist in pure configurational pairwise Ising models. Such
metastable solutions are likely to be pertinent in describ-
ing recently observed ordering both in metallurgy and in
semiconductor alloys.

(v) The inclusion of elastic effects makes it possible to
find stable, long-range order as well as miscibility gaps in
the same phase diagram T. his was predicted theoret-
ically in Refs. 22 and 23 and subsequently observed ex-
perimentally.

(vi) Specialization of our general s-G approach to the
case of semiconductor alloys (where Vegard rules gen-
erally apply and where formation enthalpies are small)
produces excellent agreement with the observed high-
temperature a11oy mixing enthalpies.

The ease of incorporation of the new elastic term G(x)
into conventional configurational Ising models promises
to make the present c-6 approach a generally applicable
method for realistic descriptions of alloy phase diagrams.
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holds, the volume-dependent energy of the ordered ar-
rangement n can be written as

bE(n, V) = g X„"Yl,( V),
k

(A2)

k= g Yl, (V)g I
x" 'gg„(0.)(X„—x)',

k I n

(A3)

where the frequencies g„aresuch that

x = g g„(cr)X„, (A4)

1= gg„(o} . (A5)

Define the centered moments

pl(o, x ) = g g„(e)(X„—x )', (A6}

JMO
——1, p] ——0 .

Thus

(A7)

k
bE(o, V)= gpI(cr, x) g Yl, (V) i

x"
k

(AS)

The sums over n, k, and I in Eqs. (A3), (A6), and (AS)
all have a finite number of terms: The sum on n is limited
to the set of ordered arrangements being considered; the
sum over k has the same extent [otherwise Eq. (A2)
would not define Yl, (V) unambiguously]. Finally, the
sum on I is limited by the factor (I ) which is zero if l (0
or l & k. Therefore, interchanging the order of the sum-
mations, as done in Eqs. (A3) and (AS) is permissible.

At given state of order 0., the equilibrium volume is the
solution of

where there are as many powers k of the concentration
X„,as there are ordered arrangements n. The functions

Yl, ( V) are obtained from Eq. (A2) by inverting the matrix
X„.Then

b E(o, V) = g g„(e)bE(n,V) = g YI, ( V) g g„(0)X„"
k n

APPENDIX A: DERIVATION
OF THE ELASTIC ENERGY G (x)

dhE =0= g pi(o. ,x)aI(x, V),
I

(A9)

if n&n' then L„&X„ (Al)

Our central assumption here is that the equilibrium
volumes V(o.,x) have but a weak dependence on the state
of order o, and hence can be approximated by some V(x)
for which we wi11 solve. In this Appendix we prove Eqs.
(3.7}—(3.11}of the text under this assumption.

The results of Eqs. (3.7)—(3.11) are easy to prove when
the different ordered arrangements have different concen-
trations X„,that is

where

dYk
aI(x, V}=g &

x"
dV

(A 10)

The solution V(o,x) of Eq. (A9) can in general depend
on the state of order o.. Under our assumption that the
solution depends only on x, and is independent of o (see
discussion and justification in Sec. IIIB) Eq. (A9) can be
rewritten as

At the end of this Appendix [Eqs. (A34}—(A38)] we dis-
cuss the particular case when X„=X„.When Eq. (Al) +pl(o, x )al [x, V(x)]=0,

1

(A 1 1)
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where we are stressing that the functions ar depend only

on x. Then we consider the set g„ofstates of order o

satisfying Eq. (A4}. We first observe that g„is rich

enough to allow independent variations of the moments

pI with l )2. Indeed, for any arbitrarily chosen set of
values of pt (but with po and pi satisfying Eqs. A4 and

A5), the frequencies g„(a)can be determined by invert-

ing Eq. (A6). This inversion is always feasible, as long as
Eq. (Al) is satisfied because the finite square matrix

tion, so that Eq. (A9) can be rewritten as Eq. (All); and
(iii) that the ordered structures n are such that (Al) is
satisfied, a necessary condition for the inversion of Eq.
(A6). Later we show that assumption (iii) can be discard-
ed if we place another restriction on the functions
AE(n, V) of the ordered structures. These three assump-
tions are rather common in theoretical work on alloys.
What is new here are Eqs. (A12) and (A13) and the conse-
quences we now derive from them.

Eq. (A13) defines the function

1 1 1

(X& —x ) (Xz —x) (X3—x)

(X, —x ) (X2 —x) (Xi —x)i

V= V(x)

and its inverse

x =X(V) .

(A14)

(A15)

Using V as independent variables, Eqs. (A12) and(A13)
are written as

is not singular. In fact, by combining rows of this matrix
one readily sees that its determinant is equal to the deter-
minant of

1 1 1

X) X~ X3

X X X

dYk k
X( V)" '=0 (1&1)

k

while for l = 1 we write
I'

dYk
X( V)" '=Z(V),

k

(A16)

(A17)

a matrix which is clearly nonsingular. Some arbitrarily
chosen sets of pI will lead to nonphysical frequencies for
which

at[x, V(x)]=0 for 1 &2 . (A12)

After arriving at the result above, Eqs. (Al 1) reduces to

g„(o)&0 .

On the other hand, given a set p'I ' of moments leading to
positive frequencies g'„', there exists a neighborhood

[pI ' —b„pI '+b, ] within which we can choose pt arbi-
trarily and independently, and for which the frequencies
g„arestill positive. Since for given positive g„sone can
always find many states of order o [see discussion sur-
rounding Eq. (2.5) of the main text], we conclude that, in
the set g„ofstates of order with composition x, we can
find o's that permit arbitrary and independent variations
of p&. Thus, we first write Eq. (All) for a given set of
physical p'I ', i.e., moments that upon insertion into Eq.
(A6) lead to positive frequencies. Next we take a neigh-
boring n in g„whose moments are equal to }uI ', except
for I =2. Taking the difference between the two resulting
Eqs. (Al 1) one finds that

dYt, ( V)
[t+X(V)]"=Z(V)t,

k

(Al 8)

the many values of dYI, /dV can be found by taking
derivatives with respect to t and setting

t = —X(V) . (A19)

Thus

dYO = —Z( V)X( V), (A20)

dY,
dV

=Z( V},

dYk =0 (k &2) .

(A21)

(A22)

On integration

Yo( V) = —f Z( V')X( V')d V',

Y, (V)= f Z(V')dV',

(A23)

(A24)

that is, a function of V named Z. Now, multiplying these
Eqs. by powers of a variable t and adding

ao[x, V(x)]=0 . (A13)
YI,

——Ct, (k)2),
Nothing can be said about a &, except that it is a function
of x.

Equations (A12) and (A13) result from three assurnp-
tions: (i) that the internal energy for the alloy in the state
of order o. can be written as a linear combination of the
energy functions b,E(n, V) of a few ordered arrange-
ments; (ii) that the equilibrium volume is state-of-order
independent, and only a function V(x) of the concentra-

b,F.(n, V) = —f Z( V')X( V')d V'

+X„f Z( V')d V'+e'"',

where

(A26)

(A25)

which does not depend on V. We insert these results in
Eq. (A2)
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y X„"C„.
I& ( &2)

Then, using Eqs. (A4) and (A5) we find

b E((r, V) = —J Z( V')X( V')d V'

z v'dv'+

The derivatives of Eq. (A28) are

(A27)

(A28)

and L12 structure for n =1,3), CVM calculations for
nearest-neighbor interactions with up to four-atom in-
teractions on a tetrahedron were performed for a large
range of interaction parameters c'"'. The solutions for
this fcc spin- —,

' nearest-neighbor Ising model could be fit

to give the following convenient relationships.
(A) The maximum temperatures T„atwhich the or-

dered structure A4 „B„existsin equilibrium with the
disordered phase when both have the same concentra-
tion, can be given by

=[x —X( V)]Z( V),
dv

d E Z( V}+[x —X( V}]dv' dv dv
'

(A29)

(A30)

T2

T3

—453.32 208.92 11.80 E

201.34 —421. 11 201.34

11.80 208.92 —453.32

(Bl)

At equilibrium [Eq. (A15)], the first derivative is null,
while the second derivative defines a bulk modulus also
independent of the state of order

&(V)
V

Z(V) .
dV

(A31)

Using Eq. (A31) in (A28), requiring that for the pure ele-
ments A and B (for which the state of order is denoted
o „and o ~, respectively} the energy is zero, so that we

are actually dealing with the enthalpy of mixing, or

bE(o „,V„)=0,
bE(o ~, V~ )=0,

(A32)

(A33)

we arrive at Eqs. (3.7) and (3.8) of the text.
If two different ordered arrangements i and j had the

same concentration, our basic assumption would require
that they also had the same bulk modulus, thus their en-

ergy could differ just by a volume-independent constant

X =X.
J I

bE(j, V)=b,E(i, V)+b .

Thus in the sum

(A34)

(A35)

b,E((r, V) = g g„(o)b E(n, V) (A36)

(A38)

and the last term in the right-hand side of Eq. (A37)
would be added to the volume-independent last term of
Eq. (B28).

APPENDIX B: RELATIONSHIPS BETWEEN
c,'"' AND ORDER-DISORDER TEMPERATURES,

COMPOSITIONS, AND LATENT HEATS
FOR BINARY fcc ALLOYS

For the binary fcc A, „8alloy showing the A4 „B„
ground states (fcc for n =0,4, L la structure for n =2,

the two terms

g, bE(i, V ) +gj bE(j, V) = ( g;+ gi )bE(i, V) +g b (A37)

could be interpreted as a single ordered structure n with
probability

where c'"' is in kcal/mol, and T„is in degrees Kelvin.
This fit is exact in the pair-approximation
(s")=c( '=

—,
's( '). Defining the non-pairwise interaction

parameters'
4 ~(1)a= — —1,
3 g(2)

(B2)
4 ~(3)

P= — —1,
3 f (2)

we find that Eq. (Al) produces errors below 0.3% for a, P
of the order of +0.1. The errors are below 1.6% if a and

P are of the order of +0.2.
(B) The concentrations x„atthe maximum tempera-

tures T„aregiven by

0.3902 —0. 1347 —0.0320 '

())~ (2)

—0.0347 0.0347 (3) (2)

0.0320 0. 1347

0.5

0.6098X3
(B3)

This again is exact for pair interactions (a=P=O); for
a, P of the order of +0. 1, the errors in x„arebelow

0.005, whereas for a, P of order +0.2 the errors are below
0.012. Note that Eqs. (Al) and (A3) show that a max-
imum temperature T„need not always exist (e.g., for
a=O, P= —0.2, the maximum T3 at x3, disappears). ' A

good way to find whether a maximum exists is to calcu-
late the latent heat L„.

(C} The latent heat L„for transformation of phase n

can be given as

L, —0.3161 0.2066 —0.0307 E' "
L2 —— 0.2199 —0.3937 0.2199 c' '

—0.0307 0.2066 —0.3161L3
(B4)

If L„&0, no maximum exists for the order-disorder tran-
sition for phase n. For example, for a=0, L3 first be-
comes negative (indicating the disappearance of the max-
imum at x 3, T3) for P= —0.23, in very good agreement
with the earlier results of Van Baal. '

Although the matrices of Eqs. (Bl)—(B4) were calculat-
ed only for small ( ~0.2)a and P values, we find that they
represent good fits also for a larger range of values. For
example, for a=P= —1 (s")=E( '=0) one has by Eq.
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We found that for high temperatures, and a very broad
range of negative or positive c,'"', P„,and P„' ' could be
related by the following:

(i) At concentration x =0.25,

lnP, n,")
lnP, a ',

"
lnP, lP',R'

lnP, n,("'

177.6
—216.7

82. 1

318.9
745.4

—5.5

40.7
—132.4
230.0
373. 1

—43.4
36.8
53.2

—245. 8
—105.4

(B6)

(B4) L& &0 and L3 &0, so only the phase n =2 has a
maximum in the phase diagram. This maximum at
x =0.5 is predicted by Eq. (BI) to occur at
T2 ———421.11'' '. A direct CVM calculation gives

T2= —378.6e' '. Considering the large range of a and P
involved, the error is reasonably small.

(D) To complete this short description of CVM results
for fcc crystals wc, show how to relate the chemical ener-

gies c.'"' to the tetrahedron probabilities in the disordered
state. In semiconductor alloys, one seldom knows the
transition temperatures, but frequently determines how
much the probabilities diverge from those P„'"'of a com-
pletely random alloy

4
P(R) ( I x)4—nx n (B5)

n

(ii) At concentration x =0.50,

lnP /P"'
lnP, /P', '

lnPz/Pz '

lnP3/P3 '

1P /P'

190.1

—126.4
283.9
94.2

—60.4
0.0

61 ~ 8 —220. 7 61.8
0.0 94.2 —126.4

—60.4 283.9 190.1

(2)

(B7)

(iii) At concentration x =0.75 the result is the same as
x =0.25, if one interchanges subscripts 1 and 3.

Eqs. (B6)—(B7), which resulted from a linearization of
the CVM results for (s"',e' ', e' ')=(+6,+8, +6), are
useful for a qualitative prediction of clustering in semi-
conductor alloys. They also clarify the facts that (i) clus-
tering or anticlustering [P„(x)&P„''(x)] manifests only
the contribution of the chemical energies Ie'"'I (not
strain energies); (ii) since relaxation of the common sub-
lattice is part of c,

'" (see Sec. III A), and since ternary sys-
tems A„B,„Cwith a large AC-BC lattice mismatch ex-
hibit substantial relaxations of the common sublattice,
they are expected to show significant clustering, and (iii)
these equations clarify the conditions (i.e., values of s("')
which give no clustering, or anticlustering, i.e.,
P„(x)=P„' '(x).
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