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Hardening of the Coulomb gap by electronic polarons
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A one-electron density of states for a system of interacting electrons is obtained in the limit of
strong localization. The method is based on making the ground state stable with respect to elec-
tronic polaron excitations. The resulting density of states presents a relatively small hard gap of the

order of a fifth of the Coulomb gap.

I. INTRODUCTION

The ground-state properties of highly disordered sys-
tems can be strongly affected by the long-range Coulomb
interactions. The importance of the interactions in-
creases as the system approaches the metal-insulator
transition from the metallic side, and is particularly
strong on the insulating side of the transition. There the
Coulomb interactions drastically change the electronic
structure and properties of the system.

One of the most important effects is the depletion of
the single-particle density of states (DOS) near the chemi-
cal potential,' referred to as the Coulomb gap.? Efros and
Shklovskii? obtained a universal parabolic DOS around
the chemical potential by making the ground state stable
against one-electron transitions. Efros,”> Baranovskii
et al.,* and Davies® studied the consequences of stabiliz-
ing the ground state against certain many-electron transi-
tions, obtaining hard gaps (i.e., gaps stronger than para-
bolic) in the DOS. These authors consider transitions in
which an electron is brought from (or taken to) infinity to
(from) a site i near the chemical potential, where it can
interact with other electrons. Of particular importance
are nearby electrons capable of low-energy excitation.
These low-energy excitations are transitions to nearby va-
cant sites. Such compact electron-hole pairs are not de-
pleted by the Coulomb gap. Their effect on the electron
inserted in (deleted from) site i/ can be represented ap-
proximately as a monopole-dipole interaction.

In this paper we want to explore the consequences of
stabilizing the ground state against more general, many-
electron transitions. Specifically, we consider the transi-
tions called in the literature® polaron excitations. These
are transitions where one electron makes a long but finite
hop, while others make short hops near the initial and
final sites of the long hop.

It should be mentioned that many-electron excitations
of another type were argued to be more important at low
excitation energies.® These so-called cascade excitations
are characterized by transitions of a number of electrons,
all of comparable length, and with comparable spacings
between the individual transitions. Computer simula-
tions confirmed the importance of such low-energy cas-
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cade excitations.” However, there may not be an overall
consensus on their importance, and the statistics of the
cascade transitions is also not adequately known. In this
paper we therefore focus on polaron excitations, and cal-
culate how they affect the one-particle density of states in
the Coulomb gap.

Although the treatment here is of general applicability
to strongly localized systems, we will concentrate for the
sake of concreteness on systems exemplified by lightly
doped crystalline semiconductors where double occupa-
tion of sites is forbidden, and where quantum effects can
be neglected, since the tunneling from site to site is ex-
tremely small. The Hamiltonian? then includes only con-
tributions from the Coulomb interactions and from the
random site energies. The latter are assumed to be uni-
formly distributed over a range W, and uncorrelated from
site to site. The single-particle energy E; associated with
site i is defined as the sum of the random energy of site i
plus the Coulomb interaction energy with the electrons in
all other sites. The one-particle DOS is defined as the
density of these energies per unit energy when the occu-
pation is that of the ground state.

The paper is organized as follows. In Sec. II we calcu-
late an upper bound for the energy distribution of elec-
tronic polarons as a function of the length of the long
jump. In Sec. IIT we apply the previous results to calcu-
late the density of long low-energy one-electron excita-
tions. The electron-hole correlation function is obtained
in Sec. IV and the density of states near the chemical po-
tential in Sec. V. Some conclusions are presented in the
last section.

II. ENERGY DISTRIBUTION
OF ELECTRONIC POLARONS

In this section we first calculate the probability distri-
bution for the energy relaxed by the system in response to
a single long electronic hop of length R. As this energy
cannot be greater in magnitude than the excitation ener-
gy of the long hop for the ground state to be stable, this
results in an estimate of the density of excitations as a
function of energy, at a fixed R. This is the natural exten-
sion of previous calculations® for infinite hops, in which
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the distribution for the energy relaxed by the system re-
sults in an estimate of the density of states. This estimate
of the DOS is considered in the literature as an upper
bound for the DOS. The rationale is that not all possible
transitions that stabilize the ground state (e.g., cascade
transitions) are taken into account. However, we believe
that correlations between relaxing pairs, which are
neglected in this treatment, can produce the opposite
effect. Thus, the consideration of these estimates of the
DOS as upper bounds should be taken with care.

As will be seen below, the constraints for finite R men-
tioned above introduce additional correlations in the
electron-hole separation from those present in the model
of Efros and Shklovskii. The correlations produce a de-
pletion around any given site of states with opposite oc-
cupancy. The effective excluded volume, defined as the
average size of this depletion region, around a site close
to the chemical potential becomes greater, which results
in a smaller DOS than the parabolic DOS predicted by
Efros and Shklovskii.?

When a hop of length R occurs, the pairs whose excita-
tion energy is smaller than their interaction energy with
the electric field produced by the transition will polarize.
This latter field is the difference between the fields of the
final and initial configurations of the charges, which for a
finite one-electron jump is the field produced by a positive
charge at the original site and a negative charge at the
final site.

Let us call —x the energy relaxed by the system, i.e.,.

by the set of short pairs that polarize. The distribution of
the values of x will be calculated later. The total energy
involved in the process is then (we use units in which
e=1)

AE=E;,—E;,—1/R—x, (1)

where E; and E; are the energies of the initial and final
sites of the long hop. The sign of x has been chosen such
that x > 0. For the ground state to be stable, AE must be
greater than zero, so that only those long hops with a re-
laxation energy smaller than the energy of the hop,
Ej —E;—1/R, are allowed.

Since we deal with a disordered system, x is a random
variable, with a probability density g(x | R). Long hops
between regions where the density of low-energy pairs is
small due to fluctuations cannot relax much energy and
will therefore contribute to g(x | R) at small x. In accor-
dance with what was said earlier, we will consider
g(x | R) as an estimate of the density of excitations, as a
function of energy, at a fixed R. We shall first calculate
g(x |R). The consequences of the interpretation of
g(x | R) will be analyzed in the next section.

We assume here that the low-energy pairs are uniform-
ly and isotropically distributed in space, with n pairs per
unit volume. The length r and energy w of the pairs are
distributed according to a probability density f(w,r).
The interaction of the pairs with the electric field is ap-
proximated as an interaction of point dipoles. This is
justified because the relevant low-energy pairs are very
short. The most restrictive assumption we make here is
that the interaction between pairs is neglected as far as
the relaxation process is concerned. The assumption
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seems reasonable because of the shorter range of the
dipole-dipole interaction, compared with the Coulomb in-
teraction between charges. The assumption allows us to
calculate the distribution of the energy, relaxed by the
system in response to the hop of length R, from the dis-
tribution of relaxation energies due to one dipole. The
function g(x |R) is the convolution of M functions
g(x | R), which denotes the distribution of the relaxation
energy by one dipole, and M is the total number of di-
poles. It is convenient to perform a Laplace transform,
since the transform of the convolution is a product of
transforms. This procedure follows the method of Chan-
drasekhar,? also applied to this problem by Davies.®

Calculating g(x | R) for the case of a long hop of
length R gives

gx |[R=v=' [ [ [d*d* dw fw,r)
X8(x +w—r-E(l)) . (2)

Here V is the volume of the system, and E(/) is the elec-
tric field associated with the finite hop, i.e., the field of a
positive charge and a negative charge separated by a dis-
tance R. For the distribution of low-energy excitations,
f(w,r), we take a separable form, f(w,r)=f(r)/W,,
with w varying from O to W,. This is justified because
the range for the excitation energy of the dipoles of in-
terest is very small. In this we follow Davies,’ but use a
more refined f(r) which takes into account electron-hole
correlations, as will be explained later.

The calculation of g(x | R), as well as of its Laplace
transform, can be performed analytically, using the se-
parable form for f(w,r). However, the inverse Laplace
transform, needed to obtain g(x | R), cannot be per-
formed analytically. A practical approximation for cal-
culating g (x | R) which we use is a separation into two
limiting cases: gp(x | R) for small x, where the field of
the hop is approximated by the field of a point dipole of
magnitude R, located at the center of R, and g, (x | R)
for large x, where the field is represented by a field of two
independent monopoles of opposite sign. The rationale is
that low relaxation energies correspond to large spatial
regions (of order R) depleted of low-energy pair excita-
tions. The pairs outside the region then see the two
charges roughly as a point dipole. On the other hand, a
large energy is relaxed when low-energy excitations are
near the sites involved in the long jump, so they will see a
monopolar field. The value x. of x which separates be-
tween gp(x |R) and gp(x |R) is taken to be
gu(xc | R)=gp(xc | R), e,

gp(x |R), x<x¢,

glx |R)= 3)

gu(x|R), x>x¢ .

The function g,,(x | R) can be directly obtained from
the distribution for the energy relaxed by a single mono-
pole, calculated by Davies,’ and is given by
-3

exp

2E,

, (4)

where
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4 exp(2[Ep /(W )]}

i, (5)

and

_ |78 n  3n
Ep= 715 W1<’ ) (6)

n /W, represents the density of very-low-energy excita-
tions which contribute to this relaxation mechanism.
(r3/?) is the mean value of r3/2, averaged over the pairs
considered.

The calculation of g,(x | R) can be performed analyti-
cally, obtaining

11
X x +w

_1TI'AR(r>

gD(x lR)ZV 6W1

) (7

where (r) is the mean value of r over the considered
pairs and 4'=2+(1)"2In(2+3'?). As mentioned be-
fore, the Laplace transform Gp(s |R) of the function
gp(x | R) is the product of M Laplace transforms of
Zp(x | R). In our case, this can be written in the form

Gp(s |R)= [1_V"f0°°dx[1—exp(—xs)]v
M
Xgplx |R) | . (8)
Substituting Eq. (7) in Eq. (8) and taking the limit

M,V — o so that M /V =n, we finally get

n wA'R
In(Gp(s |R))=— w6 (r)

X[y + In(W,s)+ exp(W,s)E (W s)],

9)

where y is Euler’s constant and E,(z) is the exponential
integral defined in Abramowitz and Stegun.’

The inverse transform of Gp(s | R) can be performed
easily for small values of x, which is the regime of interest
for us and corresponds to large values of s. In this limit
we have

e—BY xB-1
gp(x |R)= e (10)
wt (B—1)
where
p_TAXIR n (11
6 W,

Since we allow for the simultaneous polarization of
many low-energy excitations, we have to consider an ap-
propriately disjointed set of pairs'® in place of all the pos-
sible short pairs which could be formed from N sites. By
disjointed set we mean here a partitioning into pairs
where each electron is assigned a hole, and vice versa.
There are many possible ways to partition the pairs.
Here the partitioning is done in accordance with the exci-
tation energy. The many-electron transition of interest is
that which has the smallest total excitation energy (the
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“best” transition). To approximate this transition we
partition the pairs in such a way that each electron is as-
sociated with the hole which gives the smallest one-
electron excitation energy (‘“‘best” pair). Because of frus-
tration such pairs are not generally disjointed, since two
electrons may use the same hole. For disjointed pairs we
must then use also ‘“‘second-best” pairs, where an electron
uses the hole which gives the second lowest one-particle
excitation. The average value (r) and the density of
pairs per unit energy at low energy n have to be calculat-
ed from the disjointed set of pairs.

The essential features of the calculation of the density
of disjointed pairs are as follows. First, we obtained a
joint probability density of electron-hole excitations
n(Eg,E,r) as a function of the energy of the occupied site
E,, the energy of the empty site E, and their separation r.
To obtain it we used an electron-hole pair correlation
function n(r), which represents the fraction of unoccu-
pied sites at a distance 7 to a given occupied site, obtained
from computer simulation, and took into account the sta-
bility of the ground state and the properties of short
pairs. Using Poisson statistics we calculate from
n(E,, E,r) the distribution of best and second-best pairs.
As mentioned above, only a fraction of the best pairs be-
longs to the best set of disjointed pairs, and the same is
true for second-best pairs. For our distributions the frac-
tions are £ and 1, respective]y.10

In Fig. 1 we show the results for the distribution of en-
ergy relaxed, g(x |R). The dashed line corresponds to
the monopolar approximation, i.e., when the relaxation is
produced by two independent monopoles. The solid lines
correspond to gp(x | R) for different values of R. For a
given R we set g(x |R)=gp(x |R) for x <x, and
g(x |R)=gy(x |R) for x>xc, where gu(xc|R)
=gp(xc | R). We have chosen the unit of length equal to
the intersite separation a, and the unit of energy equal to
the Coulomb interaction between sites separated by a dis-
tance a. We have considered a disorder energy range W
equal to unity in these units.
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FIG. 1. Probability density g (x | R) for the energy relaxed
by the system in response to a finite hop of length R: dipolar
approximation (solid lines), for several values of R, and mono-
polar approximation (dashed line).
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III. DENSITY OF LONG ONE-ELECTRON
EXCITATIONS

Since the energy of any transition from the ground
state has to be positive, AE in Eq. (1) has to be greater
than zero, and therefore g(x | R) represents an estimate
of the density of one-particle excitations for a given R, in
the same way that the distribution of the energy relaxed
by an infinite jump provided an estimate of the density of
states. To be more precise, we can interpret g(x | R) as
an estimate of the probability density that, given an emp-
ty and an occupied site separated by a distance R, the
sum of their site energies (measured in absolute value
from the chemical potential) is x +1/R. With this inter-
pretation, we can notice from Fig. 1 that, for small R,
g(x | R) introduces no restriction on the density of pairs,
in agreement with the results for the DOS considering a
dipole-dipole interaction.* This criterion must be ulti-
mately verified by the true density of excitations. An ap-
proximate density of excitations, n,(w,r) (w being the ex-
citation energy of the pair, not the sum of the site ener-
gies, and r the length of the pair), can be obtained from
the probability density n(Eg,E,r), as will be briefly de-
scribed below. This density will not incorporate the
effects of relaxation, which will be introduced explicitly
later. For large enough r, n,(w,r) is given by

ny(w,r)=N2n(rZ(w+1/r7,
r>1/W, w<A-1/r, (12)

where A=1/(2W!/?) is the width of the Coulomb gap
and N is the density of sites. This expression for n,(w,r)
corresponds to the self-convolution of the parabolic DOS,
taking into account the excitation term. This expression
is not adequate for the problem of the calculation of the
energy relaxed by the system, because in that problem
short pairs are the relevant ones.

Thus, the more refined expression that we take for the
density of excitations in the region of large separation
and low excitation energy is given by

2
ﬁz(w,r)z_A;_n(r)min[%(w+1/r)5,g(w Ir]. (13)

From the form of g (x | R) we can notice that the prob-
ability of finding an electron-hole pair with a large sepa-
ration and a low excitation energy is very small. This
means that it is very unlikely for an electron and a hole
with given site energies to be separated by a distance
slightly above the minimum distance obtained in the par-
abolic model for the DOS.

IV. ELECTRON-HOLE CORRELATION FUNCTIONS

To calculate the increase in the effective excluded
volume around a site due to relaxation, useful in the cal-
culation of the DOS, it is convenient to analyze the corre-
lation function f (7). This is defined as the actual density
of electron-hole pairs, for a given e=E;+E;, as a func-
tion of the distance r, divided by the average density of
such pairs. In the model of Efros and Shklovskii the
correlation function has the simple form
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0’ 7 <Tmin »
= 14
Fe=11 psr_ | (14)
where r;,=1/e. Considering the effects of relaxation
associated with a long hop results in a decrease of the
correlation function for distances just above r;,. In our
model we have

0, ¥ <Tnin »

felr)= fi,(e—1/rr) 13
nye—1/rp) > Mmin -

In Fig. 2 we show the correlation function f (r) for
three values of €: 0.1, 0.16, and 0.2 in our units. The

dashed line represents the results in the model of Efros
and Shklovskii.2 Our result for f,(r) corresponds to the

1 | @ P
f lr)
o ! \
o "min
r
L ) T f
f.(r) i
€ ! l
o 3 N
Y "min r
1+ (C) :—— T
fn f
o [
4] "min

r

FIG. 2. Correlation function f(r) for three different values
of €: (a) 0.1, (b) 0.16, and (c) 0.2. For each r, f.(r) is the max-
imum between the dotted line (dipolar approximation) and the
solid line (monopolar approximation), saturating at unity. The
dashed line corresponds to the results in the model of Efros and
Shklovskii.
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envelope of the dotted line [contribution from the dipolar
approximation to g(x | R)] and of the solid line (mono-
polar approximation), and by the condition f, <1. At
very low energies [Fig. 2(a)] only the monopolar contribu-
tion to f.(r) is relevant, since the field is essentially that
of two monopoles and the dipolar part is negligible at all
distances. In Fig. 2(b) we see how the dipolar contribu-
tion plays an important role for distances close to r,.
This is true for € higher than 0.16, for the range W of dis-
order energies considered. At large € [Fig. 2(c)] we notice
how the dipolar contribution suppresses the decrease in
fe(r) arising from the monopolar part, such that the
correlation function of Efros and Shklovskii’ is
recovered. The energy range over which the dipolar con-
tribution is small enough to suppress f.(r) significantly
below Efros and Shklovskii is quite small, of the order of
0.2 in our units.

The nonmonotonic behavior of f,.(r) is an artifact of
splitting g (x | R) into strictly dipolar and monopolar ex-
pressions. A smoother interpolation would eliminate this
slight anomaly. In any case, this is of very little practical
importance in the calculation of the DOS, due to the very
small energy range over which the dipolar contribution is
neither negligible nor dominant.

It should be noted that the abscissa scale is different in
each part of Fig. 2, since r;, is a function of .

V. HARD GAP IN THE DENSITY OF STATES

From the correlation function f_(r) it is possible to ob-
tain an excluded volume around a site, and from it to cal-
culate the DOS. The excluded volume around a site with
energy E is given by

Vex(E)sz3d3r[1—fE(r)] . (16)

Strictly speaking, this excluded volume is with respect to
sites with opposite occupancy to that of the original site,
and with energy €¢—E. One could produce a self-
consistent method to calculate the DOS from this exact
interpretation of V. (E).> The results of this refined
method are expected to be the same, except for a propor-
tionality constant, as those obtained by simply consider-
ing e=2F and interpreting V. (E) as an effective-energy-
dependent excluded volume.?

Once the excluded volume has been obtained, the cal-
culation of the DOS is performed through the expression

d 1

1
6 dE | V. (E)

N(E)= . (17)

The factor 1, obtained by Efros,® takes into account the
self-consistency of the problem.

Before showing the results for the DOS obtained from
Eq. (17), we would like to consider a simple model which
contains some of the interesting physics of the problem.
Let us assume that the relaxation by the short pairs is at
least x,. Then g(x | R) would be zero for x <x, and
very large for x >x, (this corresponds to the extreme
case in which we only have a monopolar contribution to
g(x | R), and this presents a “completely hard” gap). In
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this case, for € <x, we have f (r)=0 for all distances,
and thus the DOS is strictly zero for energies smaller
than x,/2. For € > x, the correlation function f(r) is a
step function, as in the model of Efros and Shklovskii,
but with a modified r;,, given now by r_.. =1/(e—x,).
This would result in a displaced parabolic DOS:

N(E)<(E—x0/2), E>xy/2. (18)

This simple model represents quite well our quantita-
tive results in the range of very low energy, where typical
distances are large and the dipolar contribution to
g(x | R) is negligible compared to the monopolar one.

In Fig. 3 we show the results for the DOS (relative to
the unperturbed DOS g, i.e., that without interactions)
obtained using Egs. (15) and (16) in Eq. (17) (solid line).
For comparison, we also show the parabolic DOS (dashed
line). The calculated DOS presents a small hard gap, of
the order of a fifth of the Coulomb gap, compatible with
the results of computer simulations.!! The DOS is strictly
zero in a small, but finite, interval around the Fermi level,
corresponding to the range in which there is no dipolar
contribution to g (x | R). For higher energies the dipolar
contribution becomes rapidly dominant and we recover
the original parabolic DOS. The small energy range over
which the DOS goes from the hard gap to the parabolic
DOS has its origin in the rapidity with which the dipolar
contribution to g (x | R) takes over, after it appears.

VI. CONCLUSIONS AND SUMMARY

In the preceding sections we studied the consequences
of the stabilization of the ground state of interacting elec-
trons in disordered insulators against polaron excitations.
The main approximations inherent in this treatment were
the following. It was assumed that the important mecha-
nism for the hardening of the Coulomb gap is by polar-
ization of compact low-energy one-electron excitations,
as has also been done in previous works.>*> The approxi-
mate nature of this assumption lies in the fact that relaxa-

0.09

N(E)/ 9o

E/ZA

FIG. 3. DOS, relative to the unperturbed DOS g, obtained
considering the relaxation of the system in response to finite
hops (solid line), and parabolic DOS (dashed line).
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tion by low-energy many-electron excitations may be
more important, in part because of their huge number.
Preliminary results on the simultaneous low-energy two-
and three-electron excitations seem to indicate that their
importance is in fact comparable to that of low-energy
one-electron excitations.!> The effect of the n-electron ex-
citations could be partially simulated by an effective new
density of one-electron excitations, if their importance is
limited to a relatively small n, and if their statistics be-
comes better known.

Considering that the function N (E) given by Eq. (17) is
an upper bound for the DOS implicitly assumes that
there is no clustering. That is to say that sites with the
same occupation and with energy close to the chemical
potential are essentially independent and do not correlate
to form clusters. Also, the distribution of relaxing pairs
considered is not independent of the stabilization of the
ground state against other transitions, which could
prevent our estimate from being an upper bound.

The contribution of one-electron transitions to the ac
conductivity at T =0, assuming a parabolic DOS, turns
out to be linear in frequency, with a logarithmic correc-
tion at low frequencies. This results in a divergence in
the static dielectric constant, as can be seen from the
Kramers-Kronig relations. A gap harder than parabolic,
such as the one we have obtained, removes such a diver-
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gence. Furthermore, the electron-hole correlation func-
tion obtained in Sec. IV makes the calculation of the con-
ductivity and dielectric constant more realistic.

In summary, in this paper the single-particle DOS for
interacting localized electrons is obtained by stabilizing
the ground state to polaron excitations, where an electron
makes a long jump, and the rest of the system relaxes.
The distribution of relaxation energies results in an esti-
mate of the density of long low-energy one-electron exci-
tations. The stability condition against the more general
excitations considered here produces an increase in the
separation between electrons and holes near the chemical
potential, with respect to the separation in the model of
Efros and Shklovskii. Through the evaluation of the
electron-hole correlation function we calculate the
effective excluded volume around each site, and from this
an estimate of the DOS. We find that stability of the
ground state with respect to polaron excitations results in
a hard gap, of the order of a fifth of the Coulomb gap.
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