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The integral eigenvalue equation of the Hamiltonian with a Gnite-range potential is transformed
so as to explicitly take into account the particular structure of a potential consisting of a finite col-
lection of nonoverlapping, muffin-tin-type individual potentials (scatterers). The separation be-
tween structure and potential, thought to be obtained as an exact result in the framework of
multiple-scattering theory, is found to represent an approximation which originates in having con-
sidered what is only a necessary condition to be both necessary and sufficient. As an application,
the equation for the energy levels of a muSn-tin periodic potential is discussed and shown to be
represented by the Korringa-Kohn-Rostoker equation only as an approximate result.

I. INTRODUCTION

Since the pioneering work of Korringa, it has been
traditional to study the quantum mechanics of a collec-
tion of nonoverlapping, muffin-tin —type potentials by us-
ing the multiple-scattering approach irrespective of
whether the collection is finite or not. Essentially, this
approach separates the effect of the geometry (i.e., the
relative positions of the scatterers) from the effect of the
particular, single-scatterer potential. Aside from consid-
erable computational advantages, it has generated a rich
series of developments [e.g., the Korringa-Kohn-
Rostoker (KKR) equation, ' the relativistic KKR equa-
tion, the KKR-CPA (coherent-potential-approximation)
inethod, the rigid-muffin-tin approximation and othersj
in solid-state physics.

Our purpose is to reconsider this separation obtained
by the widely used multiple-scattering theory for the
eigenvalue equation of a finite collection of nonoverlap-
ping (i.e., muffin-tin type) potentials and moreover (as an
application obtained by modifying the boundary condi-
tions) for an infinite collection as well. The paper is or-
ganized as follows: We first recall the (algebraic) homo-
geneous system of equations for the multipole coefBcients
of the eigenfunction of a Hamiltonian with a finite-range
(and regular enough) potential —as obtained in the
framework of the variable-phase method. Further, we
consider that the potential consists of a finite collection of
identical, nonoverlapping, muSn-tin —type potentials and
gradually transform the system of equations so as to
reAeet this particular structure of the potential. In doing
so, care is taken to preserve the equivalence with the ini-
tial (integral) eigenvalue equation. Finally, as an applica-
tion obtained by modifying the boundary conditions (i.e.,

by introducing Bloch periodicity), we discuss the case of
the muffin-tin periodic potential and show that the KKR
equation represents only an approximation to the integral
eigenvalue equation and not an exact result. '

II. FINITE-RANGE POTKNTIAI.
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angular momentum index. ) Hereafter, we denote the
solutions of Eq. (1) by qt(E„,r), n =1,2, . . . . If the po-
tential U(r) is regular enough, " then Eq. (1) can be
solved as follows: From Eqs. (1) and (2) we find the
boundary conditions at the origin

%'(E„,r)~gjL(E„,r) AL (E„)as r+0,

where the A coefficients are functionals of the eigen-
function

ALO(E„)= I ng (E„,r)U(r)%(E„,r)dr .

Consider the eigenvalue equation for Hamiltonians
with a finite-range potential U(r),

+(E,r)= fG(E, r, r')U(r')+(E, r')dr', (1)

where
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Then, the (integral) eigenvalue equation, Eq. (1), is now
equivalent to solving the (Schrodinger) equation

V (p} if r=p+R
0 otherwise, (12)

(b, +E„)ip(E„,r) = U(r)%(E„,r),
with the boundary conditions given by Eqs. (3) and (4).
Thus, by constructing the coupled-channel equation for
Eq. (5), we easily find

%(E„,r) =g @L(E„,r ) AL (E„),
where the functions 4L(E, r) are defined as solution of

(5+E)4L(E,r) = U(r}4L(E,r),
@L(E,r)~jL(E, r} as r~0.

Since the 4L(E, r) can be computed (relatively easily)
at any energy E by solving Volterra-type integral equa-
tions, we continue the analysis in terms of these func-
tions. Then, by introducing Eq. (6) into Eq. (4), we find

(b, +E)@L(E,~)= U(~+R)@L(E,I"),

4L(E,~)~jL(E,~) as ~~0 .
(13)

In particular, for ~=p&p i.e., inside the muSn-tin
sphere, we have

with V (~)=0 for ~)p as in Fig. 1 and the functions
VR(p) are regular everywhere. " Clearly, this particular
structure will be reflected somehow in Eqs. (9) and (10)
and we now address this point.

Specifically, the question is whether Eqs. (9) and (10)
can be expressed in terms of a geometrical factor describ-

ing the relative positions R and the solution of Eq. (7) for
each single muflin-tin potential V (p) [hence avoiding
the integration of Eq. (7) over the whole potential U].
Thus, we introduce the function 4L(E, I ) as defined by

Eq. (7) but around the center R (see Fig. 1},

X ~LL-
L'

@L«P}=PL(EP» (14)

X U(r)4L (E„,r) AL, (E„)dr=0,

which, by construction, represents a necessary condition
for the A coeScients. Apparently, this condition is also
sufficient since the solution of Eqs. (5} and (3) is unique
[or, alternatively, because the AL(E„}are not subject to
conditions other than Eq. (8)]. We, therefore, conclude
that the eigenvalues E„and the corresponding AL(E„)
are given by the solution of

where the functions pL(E,p) are determined only by the

cell potential V (p). Moreover, if the potentials V (p)
are identical, then the index R in Eq. (14) becomes ir-
relevant. [We also notice that if the potential U in Eq.
(13) is periodic, i.e., it consists in an infinite collection of
identical scatterers, then the index R in Eq. (13) becomes
irrelevant as well. '

]
In terms of the functions defined by Eq. (13), we easily

find, aside from the expansion defined by Eq. (6), that
there is also a multipole expansion around each R,

X fiLL'
L'

E 1/2

2 f~ (L,Er) U(r)4'L(E, r) rdAL 0'(E„,R+~)=g 4L(E„,~) AL (E„)
L

(15)

=g CLL (E)AL ——0,
L'

where the unknowns are E and AL . Thus, the solution of
Eq. (1) can be found as follows: (i) solve Eq. (7) at any en-
ergy E, (ii) calculate the matrix CLL (E), (iii) find the lev-
els E„from the equation

and, in view of our purpose [i.e., to find in what way the
structure of the potential, Eq. (11), is reflected in Eqs. (9)

detC(E) =0, (10)

and finally, (iv) find from Eq. (9) the corresponding
AL(E„)which, by means of Eq. (6), uniquely determine
the solution of Eq. (1}.

III. FINITE COLLECTION
OF MUFFIN-TIN —TYPE POTENTIALS

Suppose now that the potential U(r) has a particular
structure as given by a finite collection,

N

U(r)=g V (r), (11)
R

of muffin-tin —type scatterers (but not necessarily identi-
cal or arranged regularly),

FIG. 1. Finite collection of muffin-tin —type scattering
centers.
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and (10)], we now focus on finding all the A coefficients
[not only A as in Eq. (8)]. To do this, we now look for
the necessary and sufficient conditions satisfied by these
coefficients.

Thus, since Eq. (15) gives the multipole expansion of
the same function 4, the solution of Eq. (1), these
coefficients should satisfy

g4'(E„, +R)A'(E„)=QC "(E„,}A"(E„), (16)
L L

obtained by writing Eq. (21) for each of the N centers, R,
already contains a part of Eq. (20). More precisely, we

are going to show that the wave function obtained by in-
troducing the solution of Eq. (22) into Eq. (15) satisfies
some —but not all —parts of Eq. (16).

Actually, assume, for simplicity, the case of only two
scattering centers in Eq. (1) as shown in Fig. 2. Then, the
corresponding system obtained from Eq. (22) is given by

C LL.(E)AL —g NLL. (E, R)S—L, L.(E)ALi' =0 ~

for any ~, and R. ' Also, by using the translation proper-
14

L' LII

(23a)

nL(E, R+p}=QNLL(E, R}J'L—.(E,p), p&R, C L~L'(E) AL. —g NLL"(E, R)Sg-L (E)ALO' =0
~

in Eq. (8), we obtain

N

X ~LL'( En )fiOR
R L'

—g NLL (E„, R)SL-L—(E„)AL, (E„)=0,

(23b)

and, in view of checking Eq. (16), we recall the form of
the solutions of Eq. (13),

4L(E,~)=gjL (E,l. )CL L(E,~)+nL (E,~)SLRL(E,~),
L

(18)

where, by convention, NLL (E,O) —=0 and we recall the C
and S matrices of the variable phase method corre-
sponding to the cell potential V (with all the other
centers absent),

(24)

where

E 1/2

CLRL(E, ~)=fiL,L
— f nL. (E,I '}U(~'+R)

2

E 1/2

f nL{E,p)VR(p)yL (E,p)d p,
(19)

&LL «) =fiLL—

E 1/2

ILL(E)= fjL(E p)+ (p)pL(E p)dp
2

XCL(E,~')d~',

E 1/2

SLL(E,~)= f jL (E,~')U(~'+R)
2

(25}

Apparently, Eqs. (16) and (18) represent necessary con-
ditions for the A coefficients. By construction, these
equations are also sufficient [for by introducing Eq. (16)
into Eq. (18) one obtains Eq. (9) which was shown to be
equivalent to Eq. (1)]. Thus, the system of equations ob-
tained by putting together

g 4L(E,~+R) AL ——g 4L(E,~)AL, (20)

taken for all the points ~ and R and

N

PLL.(E)5oR—g NLL. (E, —R)SL L.(E) AL =0,
R L' L II

(21)

X@LR(E, ')d '.
[Note that these coefficients are constant and equal to
8L L(E) and SL L (E) of Eq. (19) respectively, in the
sphere up to the next muffin-tin potential, i.e., for those ~
with pR & ~

~

R—R'
~

—pR .]
If we now consider a point ~ with p (~&R —p', e.g.,

the point C in Fig. 2, then by multiplying Eq. (23) with
jL(E,~) and j L(E,~ R) respectively—, and using Eq. (17),
we have

with the unknown E, AL and AL are equivalent to the

system of equations defined by Eq. (9) and hence to Eq.
(1).

Since Eq. (16) is rather difficult to handle, however, the
question arises if one can possibly absorb these equations
(or at least part of them) into a set of more convenient
equations. Thus, it is easy to see that the system

N

X X ~LL'(E)fiRR'
R' L'

—g NLL ~ (E,R R)SL,.L,(E) A—L, =0,
L It

(22)
FIG. 2. Two scattering centers.
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g [jL(E,~)CIL.(E)AL —nL{E,~—R)EJL (E)AL ]=0,
L,L'

(26a)

g [j&(E,~—R)CLL,(E)A&, &—L(E,~)Q&&.(E)AL ]=0,
L, L'

(26b}

and hence (by subtracting the two equations) we further
obtain

g [jL(E,~)C «{E)+~L(E,~)$«(E)]AL
L,L'

[jL (E ~ R)CL.I (E)'
L,L'

+nl (E,~ R)$—11.(E)]AL, ,

where we recall Eqs. (24), (25) and (19). Thus, the wave
function generated by introducing the solution of Eq. (23}
into Eq. (15) satisfies the matching condition, Eq. (16), (at
least) in the sphere up to the next muffin-tin potential
(e.g., the sphere centered at 0 and having the radius
R —p in Fig. 2}. Hence, the matching condition, Eq.
(16), in this region is already contained in Eq. (23) [i.e., it
appears as a consequence of Eq. (23)] and, therefore, it is
no longer necessary to be taken into account explicitly as
a separate equation.

Consider now a point r with R —p' &~&R, e.g., the
point F in Fig. 2. In this case, care should be taken in
handling the translational properties of the Neumann
function, Eq. (17). Thus, by again multiplying Eq. (23)
with j I (E,~ ) and ji (E,~—R) respectively, and by using
Eqs. (2) and (19), we obtain

g jL(E,~} CLL (E)AL—
L,L'

and

E 1/2

f n,"{E,R+p)V'(p)C,'.(E,p) A,' dp
R+p I

—g f G(E, I- R p)v'(p—)4z,—(E,p)AI'dp=0 (28a)
R+p I

g [nL(E, I )Szz.(E)AI jL (E ~ —R)C)'L. (E—,
~

~—R
~

)AL, ]
L,L'

+&f G(E, R p)V'(—p)C—,'(Ep) A,'dp=o.
p& I~—Rl

Further, since we have (by direct calculation)

f —f G(E,~ R p)V'(p)4—L(E—,p) ALdp
p& l~ —Rl ~( IR+pl

(28b)

we obtain, by adding the two equations in Eq. (28),

g (jL (E,i )rLI.(E,~)+ nl (E,~)XLr (E,~))
L,L'

& lR+pl p( l~ —Rl
G {E,i R p)v'(p—)@L(—E,p) Ai'dp, (29)

= g [JL(E,~ R)CIL.(E,
~

~——R
~

)AL +nL(E, ~ R)SII, (E,
~

~——R
~
)Al. ]

L,L'

where use was again made of Eqs. (2) and (25) and we introduced

~E'" 1

r'«, (E, )=C'„,(E}A,', — f a,'(E,R+p)v'(p)4,'(E,p) Az dp,
2 ~& IR+pl

1/2

XrL (E,~)=Sqq (E}AI + f jL (E,R+p)v'(p)+I (Ep) AI' dp .
2 ~& IR+pl

(30)

(31)

As we can see [by recalling Eqs. (24) and (25)], the match-
ing condition, Eq. (16), for those points ~ which intersect
the next muon-tin sphere, e.g. , the point F in Fig. 2, does
not follow from Eq. (23).' Instead, Eq. (16) for these

points represents a condition which is independent of Eq.
(23) and, therefore, it must be maintained as such.

By means of essentia11y the same algebra we derive
similar results for the system of Eqs. (22) and (20).

Hence, we finally conclude that the system obtained by
taking Eq. {22) together with the boundary conditions,

(32)

«r adjacent R and R' and those ~ with
~

R —R'
~—p &~ &

~
R —R' ~, is equivalent to the system of Eqs.

(20) and (21) and hence to Eq. (9) which, in turn, is

g 4 I.(E,~+R ) AL g@L (E,~+R R——') AL ', —
L L
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equivalent to Eq. (1).' As we can see, the system of
equations defined by Eq. (22) alone' is not sufficient for
finding the A coefficients of Eq. (15): we have to add the
boundary conditions, Eq. (32).

In other words, the A coefficients of Eq. (15}satisfy the
system of equations

N

X X ~LL'( n @RR'
R' L'

—QNLL-(E„,R R')S—l L (E„)AL, =0, (33)

[with NLL ~ (E,O) =0] which surely represents a necessary
condition [from Eqs. (4), (15) and (17)] for these
coefficients. If it were also sufficient, then Eq. (22) would
be equivalent [by means of Eq. (15)] to Eq. (1). However,
Eq. (33} is not sufficient [for, as shown in the example
above, it does not generate Eq. (16) which is required by
Eqs. (1) and (15)]; therefore Eq. (22) is not equivalent to
Eq. (1).

By contrast, multiple-scattering theory simply
disregards the matching conditions, Eq. (16) and consid-
ers Eq. (33) not only as a necessary but also as a sufficient
condition for the calculation of the A coefficients. In
other words, multiple-scattering theory considers the
AL (E„)in Eq. (16) to satisfy only Eq. (33), which is seen,
from the example above, to clearly represent a necessary
condition but not a sufficient one.

that is, by imposing a supplementary relation (i.e., Bloch
periodicity) among the A coefficients of different cells. In
doing so, we find that the solution of Eq. (36) admits a
multipole expansion

%(»,E,~+R)=e'" g'4L (E„,~) AI (»,E„),
L

(40)

cLL.(E) QNL—L (», E)sl I. (E) AL ——0,
LIS

(41)

where NLL (», E) stand for the structure constant

NLL. '{»,E)= g e '" "NLL (E,'R) .
R (~0)

(42)

The matching condition, Eq. (32), now becomes

+[@AD (E,p) —e '"
@L (E,p+R)]AL ——0,

L
(43)

in the sphere up to the next neighbor where the
AL (»,E„}are obtained from the corresponding equations
derived from Eqs. (22) and (32}. The system of Eq. (22),
which contains N equations corresponding to N scatter-
ing centers, reduces in this case [from Eq. (39)] to only
one equation represented (up to an arbitrary phase) by
the well-known KKR equation

IV. AN APPLICATION: MUFFIN-TIN
PERIODIC POTENTIAL

V(r+R) = V(r), (34)

As an application of these results, we discuss brieAy the
case of a periodic potential,

for minR —p &
~
p+R

~

& minR and expresses, essential-

ly, the Bloch periodicity requirement upon the solution of
Eq. (36) described in a multipole expansion representa-
tion. In view of the discussion in Sec. III, the KKR
equation of Eq. (41) alone is thus seen not to be
equivalent to Eq. (36) but the A coefficients of Eq. (40)
are given by the solution of both Eqs. (41) and (43).

of the muffin-tin type,

V(p) if p&p
V +R='

0 otherwise . (35)
V. CONCLUSIONS

Since the corresponding eigenvalue equation'

0 (»,E,p) =f Q(», E,p, p')V(p')+(», E,p')dp'

where

(36)

Q(», E,p, p')=g e'"' G(E,p,p'+R),
R

(37)

can be obtained from Eqs. (1), (11) and (12) by dropping
the R dependence of the cell potential, taking N = ~ and
introducing Bloch periodic boundary conditions, '

%(»,E,p+R)=e'" %(»,E,p),

P'O(», E,p+R)=e'" V%'(», E,p), '
(38)

A R(» E ) e ia"(R—R')
A R'(» E ) (39)

it follows that the case of the muffin-tin periodic potential
can be obtained from the previous results by simply tak-
ing the limit N= 00 and introducing the (boundary) con-
ditions,

In conclusion, we have considered the (algebraic)
homogeneous system of equations for the coefficients of
the rnultipole expansion of the eigenfunction for a finite-

range potential and gradually transformed it so as to ex-
plicitly take into account the structure of the potential as
a finite or infinite collection of nonoverlapping, rnuffin-

tin —type potentials. Essentially, we have found that the
separation between structure and potential (considered an
exact result within multiple-scattering theory and re-
cently claimed to have been generalized for the non-
muffin-tin periodic potential) represents, in fact, only an
approximation which disregards the matching condition
imposed by the representation of the eigenfunction as a
multipole expansion.
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