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Equivalent-crystal theory of oscillatory surface relaxation
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The surface relaxation of the low-index planes of Ni, Cu, Ag, and Al has been computed via
the method of equivalent crystals. Good agreement with experiment is obtained. The sign of the
change in interlayer spacing is observed to alternate with depth in all cases. The relaxations can
be simply understood as a competition between a bond compression energy and an energy which
depends essentially only on distances to neighboring atoms.

A simple and yet accurate method of computing total
energies and structures of defects in solids has long been
desirable and in fact considerable progress has been made
toward that goal. ' 4 We have introduced a new methods
in which the total energy is computed as if each atom were
in a crystal, as described below. Surface energies of a
series of transition metals were computed as a function of
surface grain orientation, and good agreement was ob-
tained with the results of first-principles calculations and
with experimental results.

Recently, ion scatterin and low-energy electron-
diffraction (LEED) studies 's of low-index surfaces of a
number of metals have indicated a relaxation in surface-
layer spacings which is oscillatory in nature. This alterna-
tion with depth of the sign of the change in interlayer
spacing has also been seen in surface calculations on
Al, ' ~ AI-Nt, and Fe alloys

Here we describe calculations of surface relaxations for
all the low-index planes of Ni, Cu, Ag, and Al, providing
the first quantitative agreement with experiment for a
series of transition metals. Because of the simplicity of
this new method, a simple understanding of the factors
controlling the relaxation and the oscillatory character is
obtained. Moreover, the accuracy obtained for interlayer
relaxations bodes well for the intended use of this efficient
new method for materials science phenomena such as
adhesion.

The total energy E of a solid containing a defect is com-
puted as if each atom were in an equivalent crystal This.
single crystal is equivalent to the defect solid in the sense
that it has the same total energy at the appropriate lattice
constant. An exact relationship for the total energy was
written5 as the energy of a crystal plus a perturbation
series, where the perturbing potential is the difference be-
tween the potential of the crystal and that of the defect
solid. The lattice constant of the crystal is then varied un-
til it has the same energy as the defect solid, i.e., until the
perturbation series vanishes. In Ref. 5 we ultimately ap-
proximated the first- and second-order perturbation terms
as g~g(R~, c), where R~ is the distance to the mth
neighbor. This amounts to averaging over functions
which depend only on distances to determine the lattice
constant, and that tends to obscure anisotropic bond dis-
tortion energies. Such distortions do not occur for isotro-
pic deformation. Here, however, we consider relaxations
where, e.g., some bond lengths are expanded while others

are compressed relative to bulk values. This requires the
most general approach. By far the most important distor-
tion energy to include beyond an averaging over R is that
due to bond compression. This is because of the rapid rise
of the energy during compression (see Fig. 1, Ref. 22).
One could keep higher-order perturbation terms to in-
clude such anisotropic compression energies. There is a
simpler solution, however, within the equivalent crystal
approach. We compute each bond compression energy for
the defect solid as if it were the change in the cohesive en-
ergy per nearest-neighbor bond of a crystal having the
same bond-length change. One can take advantage of the
recent discovery22 of a universal relationship between E
for a single crystal and the crystal's scaled lattice constanta:

E AF-tF (a ) —I] -+F-(I+a )e

Here AF- is the cohesive energy of the crystal. This leads
to the following simple relationship for the surface energy
o as a function of interatomic spacings:

1V N
~-(AF-/~) Z F'(pro. )+ Z (~m./L .)F'(tr~. )

n~1 m~1

(2)

Here A is the surface area, N is the number of atoms in
the solid, (}„1if a „~0and 8 „0otherwise, M is
the number of nearest neighbors of atom n, L

„
is the

number of nearest neighbors of atom m or n, which
ever number is smaller, a „(R„/ct—rwsE)/l,
l J'M/(12n8rwsE), 8 is the bulk modulus of the crys-
tal, R

„
is the distance between atoms m and n, c1 is the

ratio of the equilibrium nearest-neighbor distance in the
crystal to rwsE, and rwsE is the equilibrium Wigner-Seitz
radius (3/4xrw38E=—bulk atom density). The numbers ao„
(one for each atom n) are determined from a simple per-
turbation expression, as described in Ref. 5. Although the
second sum in Eq. (2) is only over nearest neighbors, the
energy depends on all neighbors through Eq. (1). Because
of periodicity, the sum over n includes only one site for
each layer, and typically N 6 is more than sufficient.
The evaluation of Eq. (2) is relatively triviaL

The first term on the right-hand side of Eq. (2) follows
from Eqs. (3) and (8) of Ref. 5. For a single crystal,
an„0for all n, and so the first term in that case is at its
minimum value, which is zero. This term is positive for
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surface atoms, representing an energy of excitation associ-
ated with the formation of the surface, i.e., the surface en-

ergy. The second term is the bond compressional energy
computed as if it were a crystalline bond. It is zero for un-
relaxed surfaces (a „0,m 1, . . . , M) such as those
treated in Ref. 5. Equation (2) appears to be similar in
form to that used in other approaches (see, e.g., Refs. 3, 4,
and 23), where the energy of an atom U; is written as the
sum of a term which depends on the local atom density p;
and a pairwise term: U; f(p;)+ ,' +~V—J. There are
fundamental differences, however. Our first term includes
electronic screening, which is an effect of crucial impor-
tance in surface calculations. Screening enters naturally
via perturbation theory. s Our second term is not a pair
potential. This term is of the form of a cohesive energy,
and is zero for isotropic deformation or when bonds are
not compressed, while pair potentials are nonzero in both
cases. Finally, the accuracy of our defect energy compu-
tations can be arbitrarily improved through the systematic
perturbation theory framework. s This framework not
only leads to improved accuracy but also clarifies the na-
ture of the approximations that are made. Such under-
standing is important in applying the theory to new sys-
tems.

It remains to list values of the four experimental input
parameters: &&, rwsF. , l, and a. The first three are given
in Tables I and II of Ref. 24. Values of a in A ' for Cu,
Ag, Ni, and Al are 2.944, 2.105, 3.336, and 3.015, respec-
tively, as determined from vacancy formation energies.

The interlayer spacings are found by total-energy
minimization. That is, a is minimized as a function of all
interplanar spacings. The results for all low-index planes
of Al, Ag, Ni, and Cu are given in Table I. All surfaces
were fully relaxed in that interplanar spacings dd~q
through d,d4s were varied for all surfaces. If the change in

spacing was ~ 0.3', the result was not included in the
table, with the exception of hd45 for Al(110), because
there is experimental data for the latter.

First, note the size of the changes in interplanar spac-
ings. Take, for example, the case of Ni(110), where the
surface layer relaxation hd ~z

—0.084 A. The energy
change is also rather small, with total-energy change asso-
ciated with the relaxation of all the layers of Ni(110) be-
ing 51 ergs/cmz or 28 meV per surface unit cell. Such
small changes provide a severe test for any theory.

Second, compare the experimental values, where avail-
able, with the predictions. Note that in nearly every case
the experimental values, including error bar ranges, over-
lap each other. Also one can see that in almost every case,
the predictions are within the experimental error bars.
Only two predictions are significantly outside the error
bars, Ad~q for the (111)surfaces of Cu and Al. This pro-
vides more evidence of the progress in the field of surface
spectroscopy. Further, that sort of accuracy (-0.01 A)
is as good or better than one might hope to obtain using
today's first-principles methods, even if one were willing to
expend the relatively large amount of computer time re-
quired to reproduce the results of Table I from first princi-
ples.

Third, note that the predicted hd~q~0 for every sur-
face. This is also true of every experimental result except

that for Al(111) (Ref. 16). The measured expansion for
Al(111) is small, however. The driving force for the
reduction of d~q is the first term of Eq. (2). Because sur-
face atoms are missing neighbors, the equivalent crystal
for atoms in the surface layer has a lattice constant which
is larger than the bulk equilibrium value, i.e., ao~ &0.
This leads to an excitation (surface) energy through the
first term of Eq. (2) which is, for example, 0.94 eV for
Al(110), 0.66 eV for Al(100), and 0.41 eV for Al(111) in
units of energy per surface unit cell. The surface layer
moves toward the second layer in order to lower this exci-
tation energy by increasing the density of atoms around
each surface atom. Because there are five missing nearest
neighbors around each (110) surface atom, four missing
for each (100) surface atom, and three missing for (111)
surface atoms, the surface layers would have to move a
large fraction of the interplanar spacing in order to obtain
volume-averaged density in their vicinities comparable to
that found in the bulk. Those large relaxations do not
occur because some nearest-neighbor bonds are
compressed during the relaxation so that the second term
in Eq. (2) constrains the relaxation. So the price of hav-
ing the local atom density increase to come closer to the
bulk density is a compression of some nearest-neighbor
bonds below the bulk nearest-neighbor spacing. This
occurs because of the anisotropy associated with the sur-
face. For relaxation of an isotropically expanded bulk
solid toward equilibrium density, all nearest-neighbor dis-
tances are equal to each other and ~ the equilibrium
spacing. We see that this is fundamentally different from
what is happening in the surface.

Next, one can see that in every case the sign of the
spacing change alternates with depth. This damped, oscil-
latory relaxation has been observed before as noted ear-
lier. Here we see that it has a somewhat broad applicabil-
ity. This can be understood in terms of Eqs. (1) and (2)
as follows. Let us consider first the somewhat simpler
cases of the (100) and (111) surfaces. The spacing d~q
decreases primarily until the rate of decrease of the densi-
ty energy of layer 1 [first term, Eq. (2)] equals the rate of
increase of bond compression energies between layers 1

and 2 [second term, Eq. (2)], as discussed above. At the
same time, however, the density energy of layer 2 is in-
creased by a small amount by the decrease in d~p, for ex-
ample, by 1.9 meV for Al(111). This increase is enough
to force an increase in dq3. The increase in dq3 will con-
tinue until the rate of decrease in the density energy of
plane 2 equals the rate of increase of density energy of
plane 3. The increase in dq3 is smaller than the decrease
in d&q because the original increase in the density energy
of layer 2 is much smaller than the original increase of the
density energy of layer 1 due to the creation of the surface
[1.9 meV vs 410 meV for Al(111)]. This is because be-
fore the relaxation, layer 2 is at the minimum of the
universal relation F*(a*) where [dF (a*)/da ],~, =0,
while layer 1 is at lower density so that F (a*) has a
significant slope at a =an~. This kind of mechanism con-
tinues on into the bulk for alternating plane pairs, and
hence the damped oscillatory relaxation. Sometimes the
mechanism is a bit more complicated. The increase in dp3
can lead to a further decrease in d ~q by lowering the den-
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TABLE I. Percentage changes in interlayer spacings due to relaxation. Calculated absolute changes are also given in A for refer-

ence.

Element

Cu(110)

Cu(100)

Cu (111)

Ag(110)

Ag(100)

Ag(111)

Ni(110)

Ni(100)

Ni(111)

Al(110)

bd)2

ad»

bd)2
ad»
hd)2

bd(2
b,d23

bd)2
ad»
Ad)2

dd)2
ad»
hd)2
ad»
hd(2

ad»

hd34

b,d4g

—6.5

+2.7 (+0.034)

—3.5 ( —0.063)

+1.6 (+0.029)

—2.8
+1.4
—5.4

( —0.058)
(+0.029)
( —0.078)

+2.4 (+0.035)

—2.9
+1.4
—2.3
+1.1
-6.8

( —0.059)
(+0.029)
( —o.os4)
(+0.026)

( —0.084)

+3.2 (+0.040)

—2.9
+1.4

-10.1

( —0.06S)
(+0.030)
( —0.059)
(+0.028)
( —0.14)

+4.8 (+0.068)

—0.4 ( —0.006)

0.0 (0.0)

Changes in spacing (%)
Theory

(Abs. changes, A)

( —0.083)

Experiment

—8.5+0.6
—7.5 +' 1.5
+2.3 +' 0.8
+2.5+ 1.5
—2.1 +' 1.7
—1.1 +' 0.4
+0.45 +' 1.7
+1.7 +' 0.6
—0.7+ 0.5

-5.7
-7.8+ 2.5
+2.2
+4.3+' 2.5

—8.7 ~ 0.5
—9.0+' 1.0
+3.0+' 0.6
+3.5 +' 1.5
—3.2+ 0.5

-1.2+ 1.2

-8.6 ~ 0.8
-8.5 +' 1.0
+5.0+ 1.1
+5.5+ 1.1
—1.6 +' 1.2
+2.2+' 1.3
+0.1 +' 1.3
+1.6 ~ 1.6

Technique

LEED (Ref. 9)
Ion scattering (Ref. 15)

LEED (Ref. 9)
Ion scattering (Ref. 15)

LEED (Ref. 12)
LEED (Ref. 11)
LEED (Ref. 12)
LEED (Ref. 11)
LEED (Ref. 14)

LEED (Ref. 11)
Ion scattering (Ref. 10)

LEED (Ref. 11)
Ion scattering (Ref. 10)

LEED (Ref. 13)
Ion scattering (Ref. 8)

LEED (Ref. 13)
Ion scattering (Ref. 8)

Ion scattering (Ref. 17)

LEED (Ref. 18)

LEED (Ref. 7)
LEED (Ref. 6)
LEED (Ref. 7)
LEED (Ref. 6)
LEED (Ref. 7)
LEED (Ref. 6)
LEED (Ref. 7)
LEED (Ref. 6)

Al(100)

Al(111)

hd)2
h,d23

Ad)2
ad»

—5.0
+2.1

—3.6
+1.8

(-0.10)
(+0.042)

( —0.084)
(+0.042)

+0.9+' 0.5 LEED (Ref. 16)

sity energy of plane 2. This is because the density energy
of plane 2, while much smaller than the bond compression
energy between planes 1 and 2, can nevertheless also in-
hibit the decrease of d~2 to some extent. Now let us con-
sider the (110) surfaces. The effects discussed above for
the (111) and (100) surfaces are also involved in the
(110) relaxation, but for the latter there is a nearest
neighbor two planes away in the (]10) direction. Thus
when d~2 decreases, there is a bond compression energy
associated with layer 3 as well as a density energy increase
for layer 3. As 123 increases, lowering this bond compres-
sion energy and the density energies of planes 2 and 3, d~2
can then decrease significantly more. This oscillatory
mechanism continues on into the bulk.

Note that the magnitudes of relaxation percentages are
ordered as (110)& (100) & (111). One might presume
that this is due to the excitation (surface) energies before
relaxation being in that same order as noted above. How-
ever, that is not the dominant effect. Rather, it can be un-
derstood in terms of nearest-neighbor geometries. The
distances between planes are ordered as
(111)& (100) & (110). For a given percentage change in

interplanar spacing, the smaller the distance between
planes the smaller the percentage change in nearest-
neighbor distance because of the bond angle relative to the
normal to the plane. It is the change in the nearest-
neighbor distance that dominates the change in both
terms of Eq. (2). Thus the smaller the interplanar spacing
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the slower the change in surface energy with change in
interplanar spacing. This is the primary reason for the or-
dering of the relaxation percentages. One must add that
the energies of Eq. (2) include all-neighbor interactions
through Eq. (1), as noted earlier, but the nearest neigh-
bors tend to dominate the energetics.

Finally, we consider the order of the magnitudes of re-
laxation percentages, which is Al & Ni & Cu & Ag. Note
this is the order of predicted relaxations and, although
there is scatter in the experimental results, this is sensibly
the order in experimental results also. If one orders ac-
cording to decreasing elastic constants, one finds
Al & Ag & Cu & Ni. Thus the usual measure of stiffness
of a material fails here, with the exception of Al. This is

perhaps not surprising, because in creating a surface the
energies are moved well away from equilibrium values
where elastic constants apply. Thus the ordering arises
from the energetics of a defect far from equilibrium and it
is not simply related to equilibrium properties.

In summary, the relaxations of a number of surfaces
have been computed simply via a new method which treats
each atom as if it were in an equivalent crystal. The
agreement with experimental results is good. A simple
understanding of the direction of relaxations, including
the oscillatory behavior, is obtained. Because of the ease
of applicability and accuracy of this new method, it holds
considerable promise for the understanding of more com-
plex materials science phenomena.
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