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The apparent barrier height in the scanning tunneling microscope, defined in terms of the rate
of change (at constant bias) of the logarithm of current with tip-sample separation, is calculated
as a function of separation. It is found to be substantially lower than the sample work function in
the range of tip-sample separations commonly used experimentally, and becomes very small in the

region just before contact between tip and sample.

It is often stated that the rate of change of the loga-
rithm of current with tip-sample separation (at a small
constant bias) in the scanning tunneling microscope pro-
vides a measure of the height of the tunneling barrier. If
we note! that for a one-dimensional square barrier of
height ¢ above the Fermi level the tunneling current 7/ at a
small bias V is proportional to ¥ exp(—1.0255/9), where
s is the barrier thickness in A and where ¢ is given in eV,
then it is clear that for constant bias, ¢ =0.952(d Inf/ds)>.
In view of this, an apparent barrier height is often defined
in scanning tunneling microscopy as

dInl
ds(A)

[In atomic units, where |e| =hA=m=1, the correspond-
ing formulas are I« Vexp(—2sv2¢) and ¢4= % (dInl/
ds)2] A number of authors present “local barrier-
height” images of surfaces (that is, images of ¢4) as an
alternative to the more commonly shown “topographic”
images.?

In this paper we will study the apparent barrier height
¢4 as a function of separation for a single-atom tip and a
perfectly flat uniform sample surface. We will consider,
in particular, the case of two planar parallel metallic elec-
trodes, one of which has an adsorbed atom (representing
the tip), with a small fixed bias voltage between them; and
we will use the jellium model® to represent the metallic
electrodes themselves, taking the two to be identical [with
rs =2 bohrs (Ref. 7)].

Now it is clear that for tip-sample separation s— oo,
¢.4(s)— @, the sample surface work function.® The ques-
tion we address here is whether or not ¢4(s) will be close
to @ for the range of tip-sample separations commonly
used in scanning tunneling microscopy. We will begin by
discussing ¢4 for the case of the two electrodes in the ab-
sence of the atom, in order to illustrate several simple but
general aspects of the problem. Before presenting the ac-
tual computational results for this case, however, we give
a short analytic discussion.

The tunneling current, omitting pre-exponential factors,
with energies in eV and distances in A, can be written ap-
proximately for small bias as'

1)

6.4(eV)=0.952 [

ImVexp[—I.OZSJ;Sdz[v(z)—ep] 1/2] , 2)

where v(z) is the barrier potential and v(0) =v(s) =¢f.

3

This last equality sets the origin of z and defines s as the
barrier thickness at the Fermi energy er. In most cases, s
will differ by some nearly constant distance from an elec-
trode separation defined geometrically (such as the dis-
tance between the positive background edges of the two
electrodes).

Now since the barrier potential v(z) is symmetric about
the midpoint of the gap z =s/2, if we assume that v(z)
has its maximum there, we can combine Egs. (1) and (2)
to obtain

s/2
12 o= 4 1/2 __1-120v(z)
94> =ouiax+ fo dzlv(z) —&r) rrt R <)

where @max =v(s/2) — ¢ is the maximum barrier height.
The quantity sv(z) is the variation in the potential that
occurs when the electrode separation is increased by és
(keeping the left-hand turning point always at z =0). If it
were to be true that the potential quickly reached a con-
stant value moving away from each electrode toward the
center of the barrier, and that the variation in v(z) con-
sisted only of an expansion of the width of this constant-
potential region, then 6v(z)/6s would vanish over the
range of integration in the second term of Eq. (3). This
would leave ¢4 =¢@mayx, the barrier height in the constant-
potential region, as we would expect intuitively for this
simple case (where we note again that we have made the
further simplification of omitting preexponential factors in
the expression for the tunneling current).

Now for large s, the major contribution to dv(z)/é8s in
Eq. (3) arises from the fact that v(z) includes the image
potential seen by the tunneling electrons. However, Bin-
nig et al.® have pointed out that for the case with one-
dimensional symmetry, even though at large separations
there are contributions of O(s ~') to each of the two
terms in Eq. (3) due to the image effect, they cancel each
other, leaving only a term of O(s ~2) in ¢ 4. Therefore, we
will neglect image effects at large distances from the elec-
trodes in our calculations of ¢A.'° At shorter distances,
the s1lllrface potential no longer has an image form in any
case.

We now present the results of our actual computations
for the pair of electrodes in the absence of the atom. The
tunneling current /(s) is calculated as described in Ref.
12, and ¢ is obtained from I(s) using Eq. (1). Figure 1
shows these results for ¢4, with ¢max given for compar-
ison, '3 as a function of the separation between the positive
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FIG. 1. Apparent barrier height ¢4 and maximum barrier
height ¢max for two electrodes (rs =2 jellium model) in the ab-
sence of adsorbed atom. Separation given is between positive-
background edges of the electrodes. The work function @ for a
single such electrode is shown for comparison. (1 bohr =0.529

A)

background edges of the two electrodes.'* Note that ¢4
goes from 1.9 eV for the smallest separation shown in Fig.
1 to 4.1 eV for the largest separation shown. The work
function @ for one of the electrodes by itself is 3.9 eV,® so
we see that ¢4 can in fact go slightly above this value (it
reaches a maximum of 4.3 eV somewhat further out); of
course at sufficiently large separations, we must have
¢4— ®.° Note also that the actual maximum barrier
height ¢max goes from 0.3 to 3.6 eV over the separation
range shown; for sufficiently large separations, ¢max— P
also.

The striking fact about Fig. 1 is that ¢max is well below
the work function @ for separations in the range relevant
to scanning tunneling microscopy. The difference between
¢4 and @max arises from the second term in Eq. (3), with
an additional contribution from the preexponential fac-
tor'> omitted from Egs. (2) and (3). To the extent to
which we can loosely think of the barrier potential as aris-
ing from the potentials of the two electrodes adding in
some possibly nonlinear way, we see that the behavior ex-
hibited in Fig. 1 is a consequence of the relatively long
range of the potential at a surface, even in the absence of
image effects. We discuss, therefore, in more detail, the
nature of this potential outside of a metal surface.

The total effective potential vg(r) acting upon an elec-
tron in an inhomogeneous many-electron system is the
sum of the electrostatic potential ves(r) and an exchange-
correlation potential vy (r), as discussed by Kohn and
Sham.!¢ The potential v, represents the interaction be-
tween an electron and its exchange-correlation hole; we
recall that as an electron moves from the bulk of a metal
out through a surface, the exchange-correlation hole
around it lags behind, staying on the surface and becom-
ing the image charge.

In the present calculation, we employ the widely used
local-density approximation'é for vy, in which, crudely
speaking, the effect of the exchange-correlation hole asso-
ciated with an electron is taken to be the same as that due
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to the hole that would surround the electron if it were in a
homogeneous electron gas, of density equal to that of the
inhomogeneous gas at the position of the electron. Clearly
this is invalid when the electron and its exchange-
correlation hole become separated, as they do when the
electron moves into the image region far outside the sur-
face. The image contribution to ¢4 can be neglected how-
ever, as noted above, so that the failure of the local-
density approximation to give an image contribution to
the potential far outside does not represent a problem for
our discussion. On the other hand, for distances much
closer to the surface, the approximation is quite ade-
quate!' [and conversely the asymptotic image form
vxc(z) ~ —e?/4z breaks down). It is only in a distance
range intermediate between these two regions that the use
of the local-density approximation might be expected to
have any quantitative consequence for the value of ¢ 4.
The electron density n(z) at our surface decays ex-
ponentially into the vacuum: n(z) ~exp(—az). This has
the consequence that ve(z)~exp(—az). But in the
local-density approximation, the exchange-correlation po-
tential is roughly proportional to the cube root of the local
electron density, so vyc(z) ~exp(— } az) in the vacuum
region. It is this slow decay of vy that causes the relative-
ly slow decay toward the vacuum level of veg=vx.+ves at
a surface, as illustrated in Fig. 2.7 This, as discussed
above, is what leads to ¢max being well below @ in Fig. 1.8
We now return to the case of two flat semi-infinite me-
tallic electrodes in which one of them has an adsorbed
atom representing the tip. We take a Na atom for the tip,
and directly calculate the difference between the total tun-
neling current in the presence of the tip atom and in its
absence, for a small fixed bias, as described in Ref. 12.
(The two total currents are individually infinite because of
the infinite surface area of the electrodes.) We will denote
this current difference by 1. It is computed as a function
of tip-sample separation s, defined as the distance from
the nucleus of the tip atom to the positive background
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FIG. 2. Surface potential barrier ves calculated for jellium
model (r; =2 bohr) using local-density approximation for ex-
change and correlation. Distance is relative to position of
positive-background edge. (1 bohr =0.529 A.)
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edge of the sample electrode. Since the distance d from
the Na nucleus to the positive background of the tip elec-
trode is kept fixed at 3 bohrs,!® the separation s =d =3
bohrs, for which the atom is midway between the two
electrodes, corresponds to the nominal point of contact be-
tween tip and sample. !?

If for purposes of comparison with experiment we wish
to consider the tip atom to be adsorbed on an electrode of
area A, then we can approximate the total current flowing
between this tip electrode and the sample by I(s)
=51(s)+ Ajo(s), where jo is the current density for the
pair of semi-infinite metallic electrodes in the absence of
the atom. If the tip were, e.g., a pyramid in the experi-
mental configuration, with the apex atom adsorbed on a
triangle of three substrate atoms, we would approximate
this by simply taking A4 to be three times the area corre-
sponding to the covalent radius of the substrate atoms.

The apparent barrier height ¢,4(s) that we obtain from
I(s) via Eq. (1) is shown in Fig. 3, both for the case in
which we neglect the direct effect of the substrate by tak-
ing A =0 (solid curve) and for the case in which we take
A to be the area of three substrate atoms as described
above (dot-dash curve).? We see that ¢4 is well below
the sample work function @ except at the largest distances
shown in the graph, where in fact, as in Fig. 1, it goes
slightly above (it reaches a maximum of 4.3 eV at s~19
bohrs). That it is below @ for intermediate distances re-
sults from the long range of both the exchange-correlation
part of the surface potential, as discussed in connection
with Fig. 1, and the electrostatic potential due to the
charge-transfer dipole that forms at the Na tip atom.
That it is even further below at the shortest distances?' re-
sults from the complete absence at these separations of a
potential barrier to electron tunneling, as we see below
(the analogous region was not shown in Fig. 1). Near the
point of nominal contact (s=3 bohrs), the tunneling
current reaches approximately a plateau,'? and thus ¢4 is
near zero. In an experiment of Gimzewski and Moller
with an Ir tip and a Ag sample, for one set of data the ¢ 4
was found to be as low as ~1.5 eV (Ref. 21) and for
another set (reproduced in Ref. 12) a current plateau was
seen in the region before tip-sample contact, which corre-
sponds to ¢4 ~0. 2

Figure 4 gives contour maps of the actual barrier poten-
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FIG. 3. Apparent barrier height ¢4 for two electrodes (r; =2
jellium model), one representing the sample, the other, with an
adsorbed Na atom, representing the tip. See text for distinction
between solid and dot-dash curves. The work function & for the
sample electrode by itself is shown for comparison. The tip-
sample separation (defined in the text) is denoted by s. (1
bohr=0.529 A.)

tial for several distances s. It shows the contour
ver(r) =¢r (this is the one closest to the atom), as well as
a number of other contours for values above &f; thus the
contour-filled areas represent regions where a Fermi-level
electron encounters a potential barrier. At s =5 bohrs, for
example, the electrons moving from the single-atom tip to
the sample electrode encounter essentially no barrier
whatsoever, while at s =11 bohrs, there is a barrier for
electrons tunneling along all directions.

For s =9 bohrs, e.g., electrons tunneling along most
directions encounter a barrier, but, in fact, even along
directions close to the surface normal through the atom,
there will be an effective barrier. The reason for this is
that though there is a small opening in the barrier, whose
transverse size we denote by a, electrons moving through
this opening will, by the uncertainty principle, have a
minimum transverse momentum of O(#/a). This in turn
decreases the energy available for motion along the direc-
tion of the surface normal, and thus a Fermi-level electron

FIG. 4. Contour maps of the potential ves for two-electrode case with an adsorbed Na atom (tip). The presence of the atom is rep-
resented by a shaded circle with a cross at the position of the nucleus; the positive background regions of both tip and sample elec-
trodes are shaded also. Maps are shown for four values of s (given in bohr), which is the distance between the nucleus of the tip atom
and the positive background edge of the sample electrode. The nucleus is at the center of each box, so that the sample electrode in
fact lies outside of the box for all but the smallest of the s values shown (s =5 bohr). The contour closest to the atom in each case is
that for ver =&r; the contours shown for higher energy values are spaced by + eV, starting at r. (1 bohr =0.529 A.)
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will in fact have to tunnel through a barrier even in the re-
gion of this opening. 2>

We have seen in this paper that some of the familiar
ideas of macroscopic surface physics break down at the
short distances involved in scanning tunneling microscopy.
The barrier height, both calculated as veg(r) —er, and
measured in terms of ¢4, can fall well below the actual
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work function of the sample for separations commonly en-
countered experimentally.
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FIG. 4. Contour maps of the potential ves for two-electrode case with an adsorbed Na atom (tip). The presence of the atom is rep-
resented by a shaded circle with a cross at the position of the nucleus; the positive background regions of both tip and sample elec-
trodes are shaded also. Maps are shown for four values of s (given in bohr), which is the distance between the nucleus of the tip atom
and the positive background edge of the sample electrode. The nucleus is at the center of each box, so that the sample electrode in
fact lies outside of the box for all but the smallest of the s values shown (s =5 bohr). The contour closest to the atom in each case is
that for vesr =&r; the contours shown for higher energy values are spaced by 7 eV, starting at gr. (1 bohr=0.529 A.)



