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An F center in the lithium fluoride (LiF) crystal is investigated with use of the muSn-tin
Green s-function formalism and a linear combination of atomic orbitals (LCAO) cluster method.
Both of these methods properly embed the defect into the host crystal. With the latter method, we

are able to include the defect-induced charge relaxation on many shells of nearest-neighbor atoms.
We have employed several variants of the density-functional approximation which allow a more ac-
curate description of the ground-state single-electron properties. These methods include an empiri-
cal adjustment of the perfect-crystal band gap [the "LDA scissor operator" (where LDA denotes
local-density approximation)] as well as the inclusion of electronic self-interaction corrections.
Since the validity of the density-functional formalism is questionable for obtaining excited-state
properties, we have introduced a single particle-hole excited-state theory, which is based on many-
electron arguments, in order to gain insight about the behavior of the excited-state effective poten-
tials. We demonstrate that, in contrast to LDA, for localized excitations the long-range behavior of
the effective excited-state potential should exhibit a —1/r tail in neutral systems. While the qualita-
tive behavior of the LDA potential differs from the effective excited-state potential, the self-

interaction-corrected LDA potential of the highest occupied defect level exhibits the correct quali-
tative behavior. By allowing the excited state electron to move in the latter potential, an accurate
excitation energy for the a&~-t &„absorption in LiF is obtained. Further, in contrast to the density-
functional results, the self-interaction-corrected version of the theory correctly places the t,„state
below the conduction-band edge.

I. INTRODUCTION

The F center in LiF and other alkali halides has re-
ceived a great deal of experimental' and theoreti-
cal ' attention for nearly two decades. Experimentally,
it is now well known that when a negative fluorine ion is
removed, it is replaced by an electron occupying a state
of a

&z symmetry in the ground state, forming a so-called
F (color) center. Further, there is a rather broad
ultraviolet-absorption peak which exhibits a maximum at
5.10 eV, ' ' and has a zero-point half-width of 0.60 eV
(Ref. 14) corresponding to an excitation of the defect lev-
el from an a,s (s-type) state to a t,„(p-type) state. The F
center in LiF has also been the subject of many theoreti-
cal investigations, as it is one of the simplest defects. The
formalism used in previous theoretical calculations in-
clude both restricted' ' and unrestricted' Hartree-
Fock (HF} and the Slater-exchange approximation. '

The computational techniques which have been applied
to this system include linear combination of atomic orbit-
als (LCAO) and scattered-wave methods with a varying
number of surrounding atomic shells used in describing
effects due to the defect. Even with this relatively large
amount of work, there is no apparent theoretical con-
sensus on the size of the a& -t, „excitation energy, as esti-
mates range from 3.0 to 5.5 eV. There are several possi-
ble reasons for this rather wide range of theoretical "exci-
tation energies. " First, the differing number of nearest-
neighbor shells used in various calculations makes mean-

ingful comparisons between the results, and with experi-
ment, difficult. Secondly, it has been increasingly clear
that calculations based on the local-density approxima-
tion (LDA) should not be expected to lead to occupied
and unoccupied orbital energies (eigenvalues} that may be
used to quantitatively predict excitation energies. '

Also, the effects of defect-induced lattice relaxation need
to be included to obtain the full picture of the excitation
process.

In this paper we report on several different approaches
for the study of defects in ionic solids and apply them to
the F center in LiF. We have employed two complemen-
tary computational schemes for carrying out our calcula-
tions, the muffin-tin Green's-function (MTGF) formula-
tion' and a LCAO-based embedded-cluster ap-
proach, both of which properly embed the defect
into the host crystal. We discuss the MTGF and LCAO
cluster methods in Sec. II. In Sec. III we present our
LDA results. As expected from other results on ionic in-
sulators, these LDA results lead to a correct qualitative
description of the occupied electronic energy levels, but
do not provide quantitative information regarding the
relative positions of the occupied bands, their widths, the
perfect-crystal band gap, or the exact locations of the de-
fect levels within the valence-conduction band gap. Since
there is little formal justification for utilizing the LDA to
extract such information, in Sec. IV we introduce a
many-electron variational argument which leads to a sim-
ple single-particle picture for localized excitations. This

37 10 319 1988 The American Physical Society



10 320 MARK R. PEDERSON AND BARRY M. KLEIN 37

argument allows one to obtain certain qualitative infor-
mation about the excited-state effective potentials such as
their asymptotic limits. We formally demonstrate that
the LDA potential does not exhibit the correct qualita-
tive behavior for a proper description of electronic excit-
ed states, but that, for localized excitations, the self-
interaction-corrected (SIC) version of the LDA does
indeed lead to a qualitatively correct excited-state single-
particle Hamiltonian. In Sec. V we present the SIC re-
sults for the F-center electron which compare very favor-
ably with experiment.

II. COMPUTATIONAL FRAMEWORK

In order to carry out our calculations, we have utilized
the MTGF and LCAO cluster methods, which each have
certain advantages, for embedding the defect into the
host crystal. While the MTGF method is an elegant and
computationally eScient approach for embedding the de-
fect into the crystal, our current version includes charge
relaxation on the first-nearest-neighbor shell only and is
limited to systems in which the environment around each
atom is nearly spherical. For systems such as LiF, the
latter is not expected to be restrictive, but the former is
worrisome. In contrast, the LCAO cluster method relies
on more of a brute-force embedding method, but allows
us to study charge relaxation on an arbitrary number of
nearest neighbors as well as allowing studies on systems
containing nonspherical atoms. Further, the relaxation
of the core states is treated on the same level as that of
the valence states (at present, our MTGF codes utilize
the frozen-core approximation, but this can be remedied
in a straightforward manner). While some of these
differences may not be important for the F center in LiF,
the greatest motivation for developing our LCAO cluster
codes is that this method is quite amenable to applica-
tions of the self-interaction correction which we discuss
in Sec. V.

A. The linear combination of atomic orbitals
cluster method

For performing our LCAO cluster calculations, we
have represented both the potentials and wave functions
in terms of Gaussian-type functions. The first step in the
ca1culation is to obtain the self-consistent perfect-crystal
potential, and to do this we have utilized the BANDAID

package, which has been developed by Erwin et al.
With an application of the variational principle, it can be
shown that the self-consistent defect wave functions must
satisfy

[Ho+A, V]g; =e;f;,
p, (r')

Ho ——,'V2+ V,„,+f d——r', + V„,[p, ),
pd(r') —p, (r') QZav =fdr', ' + V„,[p, ]—V„,[p, ]+

(3)

In the above equation, hZ is the difference between the
nuclear charge of the defect atom (in this case a vacancy)

and that of the removed atom, and pd and p, are, respec-
tively, the charge densities due to the defect and perfect
crystal. Unless otherwise stated, Hartree atomic units
are used above and throughout this paper. The external
potential V,„,is due to the nuclear Coulomb attraction of
each atom in the perfect crystal. It is computationally
convenient to represent 3 V as an expansion in terms of
Gaussian functions. For neutral defects, provided the re-
laxation of the density is localized, the difference poten-
tial is also localized. As such, an accurate representation
of the difference potential for a given iteration may be ob-
tained by fitting it to a linear combination of Gaussian-
type functions of the form

(4)

In the above expression, A, is the shell index, and the
function g(y;, A, ) is a properly symmetrized linear com-
bination of Gaussian functions centered on each site (R, )

of shell A, . Both the linear and nonlinear parameters have
been optimized using standard least-squares techniques.

To solve Eq. (l), the wave functions, g, , are expanded
in terms of a linear combination of Gaussian-type orbitals
centered on the atomic sites, and the secular equation
corresponding to Eq. (I) is diagonalized. In order to
make the problem tractable, it is necessary to truncate
the secular equation beyond a certain number of shells.
It is well known that if the truncation is not performed
properly, spurious roots appear which may have energies
lying within the band gaps observed in the perfect crystal.
Examination of the spatial characteristics of the spurious
roots reveals that they result from states residing near the
surface of the cluster and, as such, they are often referred
to as surface states. For an extremely large cluster, the
surface-state contributions to the charge density in the in-
terior of the cluster and the total density of states would
be negligible. Therefore, in principle, it is possible to car-
ry out a defect calculation simply by incrementing the
number of shells used in constructing the secular equa-
tion and monitoring convergence of the defect-level ei-
genvalues. ' However, in practice, the convergence
would be quite slow and it is convenient to truncate the
secular equation in a way which quenches the appearance
of the surface states completely and reduces the number
of shells needed to obtain converged defect eigenvalues.
We now discuss this technique.

When we speak of a defect, we implicitly assume that
the charge density of the host must eventually converge
to that of the perfect crystal far enough from the location
of the defect. In other words, it must be possible to de-
scribe the ground state of the host-defect system in terms
of a set of localized orthogonal atomiclike orbitals, or
generalized Wannier functions, which exactly coincide
with the perfect-crystal Wannier functions far from the
location of the defect. This has been demonstrated ex-
plicitly for one-dimensional model defect systems by
Kohn et al. In order to carry out a defect calculation,
we may use as a basis set the Wannier functions which
are centered on a given number (Q) of nearest-neighbor
atomic shells, plus additional functions which are well lo-
calized in the vicinity of the defect. By well localized, we
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mean that the overlap between the additional basis func-
tions and the Wannier functions associated with the
atoms outside of shell Q must vanish. Suppose this basis
set is used to carry out a self-consistent minimization of
the energy functional. The convergence must be checked
in two ways. First, the density near the shell Q should be
compared to the density of the perfect crystal. Secondly,
it is necessary to verify that, if additional basis functions,
which are slightly more delocalized, are included in the
secular equation, the defect-level eigenvalues are un-

changed. If either of these tests fail, it is necessary to in-
crease the number of nearest-neighbor shells (Q) used in
constructing the secular equation. In addition to the con-
vergence of the defect-level eigenvalues, by using the re-
sults of Ref. 38 it is possible to show, in general, that as
the number of nearest-neighbor shells (Q) is increased,
the occupied bandwidths will increase and converge to
the exact result.

Although we have assumed that the perfect-crystal
Wannier functions are known, other researchers have
noted that other basis sets exist which may be used to
properly embed a defect. ' ' ' In practice, for a cluster
containing Q nearest-neighbor shells, it is only necessary
to have a basis set which spans the same space as the
Wannier functions associated with these shells. This
basis set does not necessarily have to be orthonormal.
For insulators, it is a good approximation to utilize opti-
mized atomiclike orbitals instead of the Wannier func-
tions, and this is the method that we have adopted. We
have compared our optimized atomic orbitals to the
perfect-crystal (LiF) Wannier functions to ensure the ac-
curacy of this approximation (see Ref. 25). For semicon-
ductors, it may be very important to use exact Wannier
functions to accurately embed a defect. We are in the
process of interfacing our Wannier function programs
with our defect codes to deal with such systems.

To illustrate the conclusions of this section, we will

briefly discuss the numerical aspects of our LCAO cluster
calculations. For the LCAO calculations discussed in
this paper, we have utilized a very large Gaussian basis
set on the origin (the defect site) and the first three
nearest-neighbor shells, plus a minimal atomic basis on
the origin and first fifteen nearest-neighbor shells of
atoms. On the F-center site, six s-type and six p-type sin-
gle Gaussians with exponents ranging from 2.69 to 0.1

have been included. On the six nearest-neighbor (100)
lithium atoms, we have included six s-type single Gauss-
ians with exponents ranging from 1.01 to 0.05, and five
p-type Gaussians with exponents ranging from 1.01 to 0.1

On the twelve second-nearest-neighbor (110) fiuorine sites
we have included two single s-type and p-type Gaussians-
with exponents of 0.50 and 0.20. On the eight third-
nearest-neighbor (111)lithium sites we have included one
single s-type Gaussian with an exponent of 0.20. Group
theory has been used to block-diagonalize the resulting
Hamiltonian and overlap matrices. In Table I we
present the valence-band width obtained from our cluster
calculation as a function of nearest-neighbor shells. In
addition, we have included the lowest and highest eigen-
values as measured relative to the top of the perfect-
crystal valence band that has been obtained from a

TABLE I. The lowest (bottom) and highest (top) valence-
band (Kohn-Sham LDA) eigenvalues as a function of cluster
size are shown. Energies are in eV and are given relative to the
energy of the I » state obtained from a Bloch-function calcula-
tion. The valence-band width as a function of shell size is also
given.

Shells

7
11
15

Bloch
functions

Bottom

—2.32
—2.62
—2.70
—2.76

—3.23

Top

—0.43
—0.19
—0.14
—0.06

0.00

Width

1.89
2.43
2.56
2.70

3.23

(LCAO) Bloch-function calculation. As expected, the
valence-band width increases monotonically with the size
of the secular equation. In Table II the a,g and t& LDA
eigenvalues are presented as a function of cluster size.
From Table II it is apparent that the eigenvalues are
rather well converged at nine nearest-neighbor shells.
We have also performed tests to ascertain the adequacy
of our basis set. We find that the occupied a,g

F-center
state is well described by all of the single Gaussians on
the nearest-neighbor lithium sites and the five shortest-
range Gaussians on the origin. However, for the unoccu-
pied t,„F-center state, the inclusion of all of the Gauss-
ians on the origin and first two nearest-neighbor shells
was necessary to obtain a converged t &„eigenvalue. That
is, as expected, the t,„state is more extended than the
a,g state.

B. The mu5n-tin Green's-function method

TABLE II. The (Kohn-Sham LDA) eigenvalues of the a&g
and t&„states are given as a function of cluster size. Energies
are in eV and are measured relative to the energy of the I »
state obtained from a Bloch-function calculation. The a,g-tl„
splitting 5 is also given.

Shells

7
9

11
13
15

a&g

4.95
5.86
5.86
5.86
5.87

7.25
10.03
10.08
10.11
10.12

2.30
4.17
4.22
4.25
4.25

We keep the discussion of the MTGF method brief
since a detailed exposition has been given recently. In
order to carry out a defect calculation within the frame-
work of the MTGF, it is first necessary to generate a
self-consistent band structure and mu5n-tin potential for
the host crystal. For the host-crystal calculations we
have employed the self-consistent (SC) augmented-plane-
wave (APW) method. ' In this method, the crystal
charge density and potential is approximated as spherical
within a sphere surrounding each atom and taken to be a
constant in the region outside of the spheres. Once the
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SC muffin-tin potentials and band structure have been ob-
tained, it is possible to carry out a defect calculation in
terms of the Green's-function formalism. The host
Green's function, G can be constructed from the APW
eigenfunctions using the spectral representation, resulting
in

P, (r)l(,*(r')
6 (r, r', E)= g E —c.;

(5)

g, and s, being the wave functions and eigenvalues, re-
spectively. Although the sum is over all the eigenstates,
in practice, for performing the necessary Kramers-
Kronig inversions the summation can be truncated above
a certain large, but finite, cutoff energy. We have varied
this cutoff energy to ensure that it is indeed large enough,
and have ascertained good convergence. For example,
the defect energies obtained using cutoff energies 36.5
and 28.5 eV above the top of the valence band differ by
less than l. I%%uo.

The defect Green's function, G, is related to the host
Green's function by a Dyson equation,

G=G +G AVG, (6)

where hV is the difference between the defect and host-
crystal potential [Eq. (3)]. A self-consistent procedure is
used to determine the charge density using a contour in-
tegration in the complex energy plane (off the real axis).
This method is fully described in Ref. 21.

HI. DENSITY-FUNCTIONAL RESULTS

A. The perfect crystal

All of our LiF calculations have been carried out with
a lattice constant of 7.5954 a.u. We have used both the
Kohn-Sham exchange-only and Hedin-Lundqvist
(HL) exchange-correlation LDA functions in our calcula-
tions. While the latter functional is presumed to be more
accurate from the standpoint of the LDA, much of the
existing literature on the self-interaction correction has
employed the Kohn-Sham exchange-only functional. As
such, in this section we discuss Kohn-Sham LDA results
also. For the APW calculations we have used muffin-tin
radii of 2.39 a.u. for the fluorine ions and 1.4 a.u. for the
lithium ions. We find a direct gap (1,5~1,) of 8.55 eV
and an occupied F 2p bandwidth of 3.21 eV. Owing to
the nearly spherical environment about each atomic site,
the APW approximation should be particularly good for
LiF. In order to estimate the nonspherical corrections,
we have interchanged the muffin-tin radii and repeated
the calculation leading to a direct band gap of 8.23 eV
and a valence-band width of 2.93 eV. While the large-
fluorine —small-lithium muffin-tin calculations should be a
much better approximation, this confirms that the
muffin-tin method should be accurate to a few tenths of
an eV or better. The HL band gap and bandwidth ob-
tained from the LCAO formulation are, respectively, 8.90
and 3.19 eV, ' which again indicates that the APW re-
sults should be accurate to approximately 0.25 eV. Our

LCAO (Ref. 33) Kohn-Sham calculation leads to a band

gap of 8.40 eV and a bandwidth of 3.23 eV. Hence, the
addition of correlation leads to only a modest increase in
the LiF band gap.

There are a variety of experimental estimates of the
band gap ranging from 13.6 to 14.6 eV. Perhaps the
most reliable estimate is 14.2+0.2 eV, which is given in
Ref. 49. Regardless, as expected, the LDA-based esti-
mates lead to band gaps which are approximately 40%o
less than the experimental measurements, in concert with
LDA results for other nonmetallic systems.

B. The F center in LiF with the LDA
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FIG. 1. The MTGF LiF host (dashed curve) and E-center
(solid curve) density of states are shown. The resonance above
the onset of the conduction band is largely composed of t&„(p-
like) symmetry. The occupied state within the valence-
conduction band gap is an a Ig (s-like) state.

When a neutral fluorine atom is removed from the LiF
host, a neutral F center is created with an electron of a,
(s-like) symmetry occupying the vacancy. In Fig. 1 the
perfect-crystal (APW) and F-center (MTGF) local density
of states due the central site illustrate that the theory
gives a localized a&g state lying within the valence-
conduction band gap. In addition to the appearance of a
singly occupied a,g state, an unoccupied resonance,
largely comprised of t,„(p-like) symmetry, has appeared
slightly above the onset of the conduction band. Similar
results have been found for the F centers in MgO and
CaO using the same approach. With the large fluorine
and F-center muffin-tins (R =2.39 a.u.), the a,s-t, „split-
ting (using the center of the t,„resonance peak) is found
to be 4.90 eV. Again, to estimate shape corrections we
have interchanged the muffin-tin radii and repeated the
calculation. While the qualitative placements of the de-
fect levels (with respect to the valence and conduction
bands) are the same as those obtained from the former
more physical muffin-tin radii, the ai t, „splitti-ng is re-
duced to 4.55 eV. The experimental absorption energy of
5.10 eV is in fair agreement with the Hedin-Lundqvist de-
fect eigenvalue differences. However, we believe that this
agreement may be fortuitous since there is little theoreti-
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FIG. 2. The MTGF LiF host (dashed curve) and F-center
(solid curve) scissored density of states are shown.

cal justification for expecting that the LDA eigenvalue
differences should lead to accurate excitation energies.
We have also carried out a SCF (self-consistent-field)
Kohn-Sham exchange-only calculation for the I' center
with our LCAO cluster code. The resulting density of
states for a cluster containing all atoms within fifteen
nearest-neighbor shells (164 lithium atoms and 140
fluorine atoms) is presented in Fig. 2. Again, we find that
the a

&g
state is between the valence and conduction band

and the t,„state lies above the onset of the conduction
band. We obtain an a&g-t, „splitting of 4.25 eV. While
the LCAO and MTGF methods predict the same qualita-
tive features, the placement of the a, state, relative to
the valence-band edge, obtained from our LCAO codes
differs from the MTGF results by approximately 1.0 eV.
Although some of this discrepancy is due to the different
functionals which have been employed, we believe that
most of the deviation is largely attributed to the neglect
of charge and potential relaxation beyond the first-
nearest-neighbor shells in the MTGF codes.

Although the calculated position of the a&g state is
qualitatively correct, it should be noted that the t,„state
is incorrectly observed to lie above the onset of the con-
duction band. Experimentally, it is found that the t,

„

state lies just below the conduction-band edge with a
thermal ionization energy of 0.16 eV. ' In addition to the
experimental information pertaining to the t,„state, a
rather general theorem due to Mott and Gurney also in-
dicates that the t,„sttae should lie below the onset of the
conduction band. They showed that, provided the long-
range behavior of the effective potential exhibits an
asymptotic —llr limit, a full Rydberg-like continuum
should appear below the onset of the conduction band.
While the —I/r limit is physically appealing, the LDA
effective potential does not exhibit this asymptotic form.
Therefore, for a LDA Hamiltonian corresponding to a
charge neutral system, there is no formal reason for ex-
pecting that the t &„state should lie below the
conduction-band edge. Since we are interested in incor-
porating improvements to the LDA method which enable
one to qualitatively predict excited-state energies, it is im-

portant to understand the origin of the incorrect place-
ment of the t,„state. That is, before concluding that the
incorrect placement of the t,„stateis due to an incorrect
effective potential, it is appropriate to ascertain whether
or not the defect-level locations may be improved by sim-

ply "fixing" the perfect-crystal band gap. We now ad-
dress this question.

C. The scissor operator

In Ref. 23 similar MTGF calculations were carried out
on the F center in CaO and MgO. In analogy to the re-
sults of the preceding subsection, the occupied a, states
were found to lie between the valence and conduction
band and the unoccupied t &„resonances appeared slight-
ly above the onset of the conduction band. Since the
LDA leads to substantially reduced band gaps, it is clear
that quantitative, and perhaps qualitative, information
regarding the location of the defect levels is not possible.
In Ref. 23 an ad hoc correction to the perfect-crystal
band structure was applied prior to the construction of
the host-crystal Green's function. In this method, re-
ferred to as the scissor operator method, the eigenvalues
of the conduction bands are shifted by a constant, 5, so
that the resulting host-perfect-crystal band gap is in
agreement with the experiment. That is, the host Green's
function is replaced by

g;(r')1(, (r}
G (r, r', E}—+ g

l

with

0 for occupied states,
for unoccupied states .

We note that the resulting Green's function may be asso-
ciated with the nonlocal Hamiltonian,

The Hamiltonian corresponding to the scissored Green's
function has some intuitive appeal since it builds in
orbital-dependent effects in a nonlocal way which is qual-
itatively similar to the canonical representation of the
self-interaction-corrected representation of the local-
spin-density Hamiltoniah. ' ' Also, the Hamiltonian
and form of the resulting Green's function is reminiscent
of the nonlocal mass operator which appears in the
many-body self-energy corrections of Pickett and
Wang 52 53

Once the scissored host Green's function has been in-
troduced, the defect calculation is carried out in the usual
way. In Fig. 3 we present the scissored local density of
states for the LiF crystal with and without the I' center.
Aside from the corrected band gap, the qualitative results
are the same as that of the straight LDA calculations.
There is an occupied a

&
state lying in the gap and an

unoccupied t,„resonance appearing above the onset of
the conduction band. However, the a &g-t &„energy
difference has increased to 6.0 eV, substantially higher
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FIG. 3. The LiF F-center (Kohn-Sham) density of states as
calculated with a cluster of 140 fluorine atoms and 164 lithium

atoms (all atoms within 15 nearest-neighbor shells of the F
center).

In the preceding section, we have demonstrated that
the present form of LDA is incapable of accurately pre-
dicting relative locations of the defect levels in a solid,
and we noted that the Mott-Gurney theorem, which
guarantees a continuum of bound states below the
conduction-band edge, provided the lang-range behavior
of the eff'ective potential exhibits a —Ilr form, is not
satisfied in the LDA. In this section we wish to investi-
gate the proper behavior of the correct excited-state po-
tential. For simplicity, in the forthcoming discussions an
overall neutral system is assumed. However, the general-
izations for charged systems are not difficult. While it
might be expected that the potential observed by a local-
ized occupied state should contain a —llr term outside
the range of that state, and while it is physically appeal-
ing to assume that the potential observed by an unoccu-
pied level should have the same behavior, it is not im-
mediately clear that this is the case. For example, in the
LDA and single-determinant Hartree-Fock formalisms it
can be shown that the long-range behavior of the effective
potential observed by the unoccupied orbitals vanishes
faster than —1/r. While neither Hartree-Fock calcula-
tions or the LDA are guaranteed to be good for obtaining

than the experimental value of 5.1 eV.
Although the modifications of this section have been

empirically motivated, the results of this section indicate
that, in addition to modifications to the occupied orbital
Hamiltonian, corrections to the Hamiltonians observed
by the unoccupied defect levels must also be important in
order to correctly describe the locations of the defect-
induced levels. This is not surprising since, to be
rigorous, corrections to LDA should be applied to both
the host and defect systems, and there is no a priori
reason to expect fully satisfactory results from an ap-
proach that "fixes" the host band structure only. This
subject is discussed in the next section.

IV. LOCALIZED PARTICLE-HOLE
EXCITATION THEORY

excited states from ground-state calculations, the
excited-state transition-state theory is a fairly well-
defined improvement. However, due to the fact that the
latter is usually based on the LDA, it can be shown to
lead to a long-range potential that also vanishes faster
than —1/r. An alternative method for extracting infor-
mation about excited states is to carry out configuration-
interaction (CI) calculations, but a simple interpretation
is lost since this approach generally leads to a density ma-
trix consisting of many partially occupied orbitals for
both the ground and excited states. This makes it
difficult to interpret many-body excited states in terms of
single-electron excitations. Furthermore, from a practi-
cal point of view such calculations are very computer-
time-intensive and therefore may not be economically
feasible for large systems of scientific interest. Therefore,
it is advantageous to search for a computational frame-
work which restores the single-particle picture and is
similar to the LDA method. A good single-particle
excited-state theory should (at least) exhibit the following
characteristics. First, it should be variationally based.
Second, the resulting excited state should, by some
reasonable definition (preferably in the many-electron
sense), be orthogonal to the ground state. Third, from a
practical standpoint it would be convenient to predict
excited-state energies in terms of orbital eigenvalues or
other variationally based, but simple, definitions of orbit-
al energies. In order to gain insight into some of the
qualitative characteristics that a "correct" excited-state
potential should exhibit, it is first useful to study
particle-hole excitations within a more traditional, gen-
eral quantum-mechanical framework. With this analysis,
we will demonstrate that the correct asymptotic behavior
of the potential observed by localized excited states
should indeed contain a term which behaves as —I lr
outside of the range of the active electrons.

A. Particle-hole excitations
within a single-determinant theory

In this subsection we discuss a general many-electron
variational theory which is particularly well suited for
obtaining localized excited states for systems where the
highest occupied orbital is well removed in energy from
the other occupied orbitals. While the theory is based on
many-electron wave functions, in the end a simple
single-particle picture for localized excitations emerges.

Suppose that a Hartree-Fock calculation has been car-
ried out on a given system containing N electrons. At
SCF we are furnished with a complete set of states which
are eigenfunctions of the Fock operator. ' It is useful
to divide this space into two orthogonal manifolds. The
first manifold contains a representation of the ground-
state occupied orbitals, jX„.. . , X~I, and the second
manifold contains a representation of the ground-state
unoccupied orbitals, IX~+„.. . , X~ ), where M is the di-
mension of our function space. The indices on these spin
orbitals include the spatial and spin quantum numbers.
We note that the orbitals in both the occupied and unoc-
cupied manifolds are only determined up to an arbitrary
unitary transformation. This fact will be useful shortly.
The ground-state Slater determinant will be symbolically
represented by,
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(11)

where A
i X„X2,. . . , XN i

indicates that we are to con-
struct a single Slater determinant composed of the
ground-state Hartree-Fock spin orbitals. In Eq. (11) and
the forthcoming discussion, we use kets [ i

. )] as a
shorthand for many-electron states and pointed kets
[ i ) ] for more conventional notation.

The action of the Fock operator (Fg ) on an arbitrary
spin orbital, g(t), is given by

We are interested in obtaining the best single Slater deter-
minant for representing the lowest excited state. In order
to do this, we wish to construct a trial single Slater deter-
minant which consists of N —1 of the ground-state orbit-
als and one of the excited states. For example, we might
consider replacing the orbital Xk (k &N) by X (m )N).
This many-electron state is symbolically written as

I xkx»»» ) = ~
I xi Xk —1»xm»xk+1»»XN I

I'gX; =

N

g Aixj, i &N
j=1

M

AJ»xi, i )N .
j=N+1

(13)

(14)

»

F p(t)= ——,'V + V,„,(r)+ Jdr', ll»(t)g g ext lr —r'l

X;(t')li(t')—yxJ(t) Jdt', , (12)
l
r —r'

l

where p(r') is the density due to the occupied manifold.
The coordinates t and t' represent both spin and spatial
coordinates and the integral over dt' represents an in-
tegral over the spatial coordinates and an inner product
in spin space. The SCF HF spin orbitals satisfy

with the ordering of the spin orbitals as implied above.
Throughout the remaining discussion we will refer to this
as a trial particle-hole excited state (TPHES), with the
particle state represented by the ground-state unoccupied
orbital (X ) and the hole state represented by the
ground-state occupied orbital (Xk ). The TPHES is
guaranteed to be orthogonal to the ground-state Slater
determinant for any choice of particle-hole pair. A fact
of equal importance is that, from Brillouin's theorem,
the many-electron matrix element between any TPHES
and the ground state is guaranteed to vanish, which
means that if we were able to carry out a CI calculation
using the ground-state Slater determinant and any num-
ber of TPHES states there would be no mixing between
the TPHES's and the ground-state Slater determinant.
As shown in Appendix A, the expectation value of a
TPHES is given by

«XkX~ ) =(XkXm
I
H

I XkXm )

=E(vac)+&x IF, lx &
—&xk IFg lxk& —&xkx l(I/rl2) lxkx &+(xkx 1(I/r12) lx xk&.

In Eq. (16a), H is the many-electron Hamiltonian which is given by
N

H = g ——,
' V,'+ V,„,(r, )+-,' g'

(16a)

(16b)

and (XkX
i
H

i XkX ) is the energy of the (many-electron) particle-hole state
i XkX ). In Eq. (16b), Fg is the ground-

state Fock operator of Eq. (12) and (X
i Fs i

X) is the energy associated with the single-particle state
i
X). In Eq. (16b)

we have adopted Slater's notation for the two-electron integrals. That is,

(Xkxt i
( / )2) i

X~x„)—:J d ) 2( / )2)Xk( ))XI ( 2)x~( ))X„(2), (18)

where t& and t2, and their integrals, have been defined
above. The constant E(vac) corresponds to the energy,
(vac

i
H

i vac), of the many-electron ground-state Slater
determinant.

Within this framework, the best approximation to the
lowest excited state is clearly that particle-hole pair
which leads to a minimum excited-state energy. Alterna-
tively, since E(vac) is a constant, we may minimize the
difFerence between the excited-state and ground-state to-
tal energy, which is given by

bE=&X. iF, iX. &
—(X„iF,iX, &

(xkx I
( I/r12)

I
xkx

+&XkX l(1/r„)IX Xk&.

bE = ( C
l Fg l

C) —( V
l Fg l

V) —( VC
l

( I/rg2) l
VC &

+ ( VC
l
(1/r, )

l
CV), (20)

where C and V are, respectively, arbitrary normalized

For example, for a given representation of the occupied
and unoccupied manifolds, we might estimate the
minimum of bE by searching through N(M —N)
particle-hole pairs and finding the pair which minimizes
hE. This would certainly be a tedious endeavor and it
would lead to an excitation energy which would be
dependent on the original choice of representation. A
better method is to, in analogy to Koopmans's theorem
for ionization energies, ' exploit the unitary invariance
of the Fock operator and note that we may write the en-
ergy difFerence of the most general TPHES as
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linear combinations of the unoccupied and occupied or-
bitals. In other words, for any given normalized func-
tions C and V which are constrained to lie in the ap-
propriate manifolds, it is possible to find orbital represen-
tations of the occupied and unoccupied manifolds for
which C and V represent a particle-hole pair. Hence, it is
evident that the best single-determinant particle-hole ex-
cited state may be found by minimizing Eq. (20) subject
to the constraints

N
V= ga, X

j=1
Mc= g a,cx, ,

j=N+1

&viv&=&cic&=1,

(21)

(22)

(23)

with the constraint & V
~

C & =0 satisfied by construction.
Note that the unitary transformation that takes us from
the original IX) spin-orbital basis defines N or M —N
new occupied or unoccupied states, respectively, of which

~

V & and
~

C & are particular states. That is, the expan-
sion coefficients for the particle (hole) states may be
viewed as one row of a unitary matrix which operates on
the occupied (unoccupied) manifold. In order to find the
best particle-hole pair, we apply the variational principle
to Eqs. (20)-(23) which, as outlined in Appendix A, leads
to the following secular equations,

&X, iF, —b, , i C&=s, &X, i
C& (1~N),

&X, )Fs+bc )
V&=sr&X,

(
V& (1&N),

(24)

(25)

b r ~

C &
= fdr',

~

C &
—

~
V& f dt'

where the N —1 P, orbitals (which together with V com-
plete the new occupied manifold) are orthogonal to V.
Hence we see that there is no explicit V dependence of
the operator Fg —6~.

Analysis of the above equations reveals several interest-
ing features. Equation (24) has the attractive physical in-
terpretation that the excited-state electron, C, neither
Coulomb- nor exchange-interacts with the hole state.
Further, it is easily verified that if V is localized within
some region of space, outside of this region, the b, ~ ~

C &

term in Eqs. (24) and (26) behaves as

bv
~

C&~(1/r)
(
C & . (28)

In Appendix B we demonstrate that the term Fs ~

C & in
Eq. (24) has no (1/r)-type contribution. Therefore, the

(26)

and a similar equation for b, c ~

V& with V and C inter-
changed. We note that when the operator Fg
operates on an arbitrary P(t), the electron-electron con-
tributions may be written as

;(t),(t');(t')g(t')
g g(t) fdr', —P, (t)f dt'
i=1

(27)

correct excited-state Hamiltonian, F —b z, contains a
—1/r contribution outside the range of the hole state.

Analysis of Eq. (25) indicates that the hole-state elec-
tron "sees" a potential which contains no net 1/r contri-
butions. That is, as discussed in Appendix B, outside the
range of the hole state the exchange part of the Fock
operator contributes a —1!rterm to the effective poten-
tial which is exactly cancelled by a 1/r contribution out-
side the range of the excited-state wave function. Howev-
er, it is interesting to note that the energy difference is
conveniently reexpressed as

bs=&C ~F, b, ~—C& —&V ~F, b., ~

—V&. (29)

The above equation follows from Eqs. (20) and (26) and
the fact that bz

~
V&=0. The above analysis indicates

that once we are given C and V, the sensible definition of
the orbital energies is the expectation value of the opera-
tor F —hz. In order to test the conclusions of this sub-

section, it is useful to point out that our particle-hole
excited-state formalism reduces to the Hartree-Fock
Koopmans's theorem under certain conditions. That is,
for a finite system, we note that if the hole state is taken
to be the least negative canonical orbital, and the particle
state is taken to be an orthogonalized plane wave, this
particle-hole pair will satisfy Eqs. (24) and (25). Further,
from Eq. (29), the excited energy reduces to

bE = —,
' k —

& V
~ Fs ~

V &, (30)

which is the difference between the least negative
ground-state eigenvalue and the kinetic energy of the
hole state. If the hole state is placed in a state with zero
kinetic energy (k=0), it is evident that an apparent
single-electron ionization between N- and (N —1)-
electron ground states may also be reconciled as a sta-
tionpry particle-hole ¹lectron excited state. However,
we note that this stationary particle-hole ¹lectron state
seldom (if ever for physical systems) coincides with the
lowest N-electron particle-hole excited state.

We now wish to compare the single-particle energies
that have been defined from the expectation value of the
particle-hole energy operator Fg —6 z to the single-
particle energies that were used in the preceding section,
where we have used the expectation value of the ground-
state LDA Hamiltonian to define single-particle energies.
For localized excitations, the LDA Hamiltonian differs
(qualitatively) from the particle-hole energy operator in
two ways. First, the LDA Hamiltonian explicitly de-
pends on all of the ground-state occupied orbitals, includ-
ing the hole electron. Second, outside the range of the
hole wave function, the LDA Hamiltonian does not con-
tain a —1/r term, whereas the particle-hole energy
operator does. However, if we accept the assertion that
the expectation values af the LDA Hamiltonian consti-
tute a reasonable first approximation to the expectation
value of the particle-hole energy operator, we should con-
sider appending an additional term to the LDA Hamil-
tonian which either exactly or approximately removes the
V dependence and restores the correct long-range 1/r be-
havior. A candidate for such a term is the SIC potential
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associated with the hole-state charge density, which is
given by

pv(r }SV"'= —fdr', —V„,[p,O] .
fr —r'f (31)

The above correction leads to an effective Hamiltonian
which exhibits the exact 1/r behavior and correct elec-
tronic Coulomb terms. In addition, it approximately can-
cels the hole density-dependent exchange-correlation
terms. In the next section we apply this correction to the
F center in LiF. However, before doing so, we wish to
point out why these arguments are valid for localized (no
near degeneracies) excitations but not for delocalized
(near degeneracies) excitations.

If one attempts to employ the arguments of this subsec-
tion to obtain delocalized excitation energies, care must
be exercised since there are conceptual pitfalls which one
may run into. In fact, for a perfect crystal, if one as-
sumes that two Bloch states are candidates for a particle-
hole pair, it is apparent that both hz and hz would van-
ish as 1/N (N is the number of unit cells). This leads to
the incorrect conclusion that the Hartree-Fock band gap
is correct. There are two reasons why this is a faulty con-
clusion. First, even though a particle-hole pair construct-
ed from Bloch states leads to a stationary excited-state
energy, it does not guarantee that this energy is a
minimum. Indeed localized excitonic levels generally
correspond to the lowest excited states in the crystal.
Further, if it did turn out that the excitonic levels were
not the minimum in energy, it is still true that there
would be many (of order N) nearly degenerate particle-
hole Bloch states of the same sytnmetry, and it is cases of
this sort where single-determinant theory breaks down

and configuration interaction is necessary. Therefore,
generalizing the above arguments to delocalized excita-
tions is still an open question.

V. THE LIF FCENTER
WITH THE SELF-INTERACTION CORRECTION

In the preceding section we used many-body argu-
ments to investigate the proper behavior of the excited-
state Hamiltonian. We have demonstrated that localized
excited-state energies may be found by defining our
single-particle energies for the active electrons to be ex-
pectation values of a variationally derived particle-hole
energy operator which is qualitatively similar to the self-
interaction-corrected LDA Hamiltonian. It should be
noted that, in applications to excited atomic states, a
similar conclusion has been drawn by Harrison et al. ,
using arguments based on the assumption that the self-
interaction corrected local-spin density (SIC-LSD) energy
functional is equally valid for the excited state as well as
the ground state. Further, they have presented numerical
evidence for approximately 80 first-row transitions,
which indicates that the SIC-LSD Hamiltonian does
indeed lead to accurate excited-state energies.

Therefore, in this section we shall apply the SIC-LSD
to both the ground and excited states of the F center in
LiF. Since numerous articles devoted to the SIC-LSD
formalism have appeared in the literature, ' ' we will
limit our discussion of the problem to the localized levels
in the LiF F center.

With the inclusion of SIC to the LSD energy function-
al, the electronic contribution to the total energy is given
by

E, = g &P '„«(r R, )
~

——,'V—+ V,„,~ P '„«(r—R, ) &+ ,' fdr f—dr', p(r)p(r')+ fdrp(r)e„,(pt p& )
cr, k, , s, n, q

—,
' fdr fdr', p „(r—R,")p"„(r—R, )+fdr'p „(r—R, )e„,(p „,0) .

cr, A, ,s, n, q

(32)

The first three terms of Eq. (32} represent the usual LSD
total energy. The remaining SIC term is constructed
from the orthonormal local-orbital densities p '„and ap-
proximately corrects for any spurious self-interaction
terms in the LSD energy functional. The orbital P „«has
spin index o., band index n, subband index q, shell index
o., and site index s. These orbitals are localized about
their respective atomic sites and coincide with the perfect
crystal SIC-LSD Wannier functions far from the I'
center. By demanding that Eq. (32) is minimized subject
to the orthonormality constraints

(H +V;' )P; =pe;P
J

(35)

In the above equation the single indices i and j represent
the multi-indices A, ,s, n, q and A, ', s', n', q', respectively.

The localization equations ensure that the SCF
Lagrange-multiplier matrix is Hermitian. Therefore, it is
possible to diagonalize the Lagrange-multiplier matrix
and rewrite the SCF equations in terms of the canonical
orbitals according to

( P '„(r —R, )
~ P „'«( r —R,. ) ) =5„„.5««5„5qz, (33) (a,.+s vs.'c )y„.=X„.p„.. (36)

it is found that the orbitals which minimize the total en-
ergy satisfy coupled Schrodinger and localization equa-
tions which are, respectively, given by

Here we note that hV„' is the canonical representation
of the SIC potential, which, for a localized state, is ex-
tremely close to the localized representation of the SIC
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potential given in Eq. (31). We stress the fact that, even
with the orbital dependence of the above Hamiltonian,
the resulting canonical orbitals form an orthonormal set
and are indeed eigenfunctions of their respective Hamil-
tonians. Further, it has been shown in a previous paper
that to first order the eigenvalue corresponds to an ion-
ization energy and that the second-order corrections are
quite small.

In practice, carrying out the above algorithm would be
rather cumbersome. Hence, we have introduced some
simplifications which have been thoroughly explored in
atomic and molecular calculations " and are known
to lead to accurate results. The first simplification is to
ignore the localization equations between different bands.
Secondly, in carrying out the SIC-LSD calculation we
have limited the crystal bands to lie in the same function
space as the corresponding LSD bands. With these
simplifications, the defect levels may be found by first
carrying out a LSD calculation and then finding a self-
consistent solution to the following equation,

(37)

(38)

In the above equation, Ho is the usual LSD Hamiltonian,
V, ' is the SIC potential due to the F-center electron, and

1ge is an operator which projects out the other occupied
crystal states. For a more complete discussion, see Ref.
32.

A. Results

In Fig. 4 we compare the Kohn-Sham LDA defect lev-
els to the Kohn-Sham SIC-LSD defect levels relative to
the conduction band. In presenting the data in Fig. 4, we
have assumed that the onset of the conduction band is
correctly described by the LDA and that there are no
SIC-like or self-energy corrections for the delocalized
conduction-band states. Justifications for this approxi-
mation, which are based on the assumption that the SIC-
LSD energy functional is equally valid for both the
ground and excited states, have been discussed else-
where ' and will not be repeated here since we are pri-
marily interested in the defect. However, we note that
recent work on applications of the SIC-LSD to the alkali
fluorides, alkali chlorides, and solid argon ' indicate
that the resulting perfect-crystal band gap is improved
when this approximation for the conduction band is em-
ployed. From Fig. 4 it is apparent that the addition of
the SIC has pulled the defect levels to lower energies.
The Kohn-Sham a, -t&„eigenvalue difFerence is found to
be 4.25 eV. With the addition of the SIC, the eigenvalue
difference increases to 5.1 eV, which is in perfect agree-
ment with the experimental measurement of 5.1 eV.
While this agreement is extremely good, our calculations
may be uncertain to about 0.1 eV and we note that the
experimental absorption is quite broad with a zero-point
half-width of 0.6 eV. Further, preliminary calculations
indicate that the effects of lattice relaxation will change
the eigenvalue difference by approximately 0.1 eV. In ad-

0
Q

Cg

—CB

p type

—10 LDA SIC—LSD
s type

FIG. 4. The effect of the self-interaction correction on the
defect levels is shown. Energies are given relative to the LDA
conduction-band edge.

VI. CONCLUSION

In this paper we have studied the F center in LiF using
both the MTGF formulation and the LCAO cluster

dition to an improved excitation energy, Fig. 4 illustrates
that inclusion of the SIC potential leads to a better quali-
tative picture of the location of the defect levels relative
to the conduction band. As discussed above, the LDA
results lead to an occupied a,g state in the gap, and an
unoccupied t,„stateabove the onset of the conduction
band, which is in disagreement with experiment and the
Mott-Gurney theorem, which asserts that the t,„state
should lie below the onset of the conduction band. From
Fig. 4 it is evident that, within the framework of the
SIC-LSD formalism, both the a,g and t,„states are
found below the onset of the conduction band. The de-
fect levels are indeed quite localized with root-mean-
square radial moments, (& f ~

r
~ g& )', of 3.01 and 4.20

a.u. for the a&g and t,„states, respectively. Aside from
the occurrence of a-t, „gapstate, additional unoccupied
states have been pulled below the onset of the conduction
band, which indicates that the Mott-Gurney continuum
is being partially restored within the SIC-LSD LCAO
cluster method. Due to the finite basis, it is not possible
to find the entire Mott-Gurney continuum, but it is en-
couraging to see that additional levels are appearing as
the cluster size increases. Experimentally, it is found that
an electron in the t,„statehas a thermal ionization ener-

gy of 0.16 eV, which is quite a bit smaller than the 3.5-eV
location of this state below the conduction-band edge
found in our work (see Fig. 4). There are several possible
reasons for this discrepancy. First, if the F-center elec-
tron occupies a t &„state,the point-group state is reduced,
so there may be a rather large Jahn-Teller distortion after
the a, -t&„excitation takes place. Indeed, while we are
unaware of any data for the LiF Stokes shift, for 14 other
alkali-halide F centers such shifts are typically found to
be 1.0 eV, ' which indicates a great deal of relaxation of
the excited state. Another possibility, is that SIC-like or
self-energy shifts for the conduction band may not be
completely negligible.
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method. Within the framework of the LDA, we find that
the qualitative placement of the occupied levels of the
host-defect system are correctly described. However, the
LDA predicts that there is only one defect level within
the valence-conduction band gap, which is in disagree-
ment with both experiment and the Mott-Gurney
theorem. We have utilized a many-electron variational
argument to extract information about particle-hole ex-
cited states and find that, within a single-determinant
theory, the excited-particle state should neither Coulomb
or exchange-interact with the removed hole density. A
direct manifestation of this fact is that the lang-range be-
havior of the effective potential for the excited-particle
state should behave as —1/r for charge-neutral systems.
In addition to information about effective Hamiltonians,
a logical definition for "single-particle energies" emerges
from our arguments. We note that this definition is qual-
itatively, and nearly quantitatively, the same as a previ-
ous definition for particle-hole excited states which has
been utilized for SIC-LSD atomic calculations. Hence,
we have included the SIC in our F-center calculation and
find that the resulting a 1g-t,

„

transition energy is in very
good agreement with experiment. Further, the SIC-LSD
calculation correctly predicts that the t,„statelies below
the onset of the conduction band, and, within the con-
straints of our finite basis, begins to build in the Mott-
Gurney continuum. While the agreement between our
SIC-LSD LCAO cluster calculations and experiment is
quite encouraging, the effects of ground-state lattice re-
laxation and excited-state Jahn-Teller distortion should
be included to obtain a full picture of the excitation pro-
cess.
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APPENDIX A

In this appendix we provide some of the details which
lead to Eqs. (16) and (20) and outline the variational argu-
ments which lead to Eqs. (24)-(26). Using the notation
of Sec. IVA, the Hartree-Fock energy of the vacuum
state may be written as

E(vac) =(vac
I
H

I
vac)

N
= y &x, l--, v'+v.„,lx, &

s, = g &x, I

—
—,'v'+v, „,lx, &,

i=1
(i&k3

g [&X;X, I
(1/r„)

I
X,X, &

i =1 j=l
(i~k3 (i~k3

(A2)

—&X;XJ I
(I/r)2) IXJX; &], (A3)

where S~ and T, respectively, refer to the single-electron
and two-electron contributions to the total energy due to
the passive orbitals (those that are not involved in the ex-
citation). The energy of the vacuum state may then be
rewritten as

E(»c)=&p+&p+ &Xk I Fg I Xk &, (A4)

where Fg is defined by Eq. (12). In a similar way we may
decompose the trial excited state as

E(Xk,X )=Sp+Tp+&X I F„I
X (A5)

In the above equation, F„is the Fock operator for the ex-
cited state, which differs from Fz in that all occurrences
ofpk are replaced by+ . In other words,

&X IF„IX &=&X IF IX

&Xkxm I
(1«12) I xkxm &

+&xkx l(1/r„)lxmx„& . (A6)

By substituting Eq. (A6) into Eq. (A5) and subtracting
Eq. (A4), we obtain

E(xk» )=E(»c)+&X IFg IX &
—&Xk IFg lxk&

&Xkx
I
(1/r12)

I
xkx

+ &XkX I (1/rl2)
I
X Xk & (A7)

which is identical to Eq. (16). We now proceed with the
derivations of Eqs. (24)-(26).

We start by reiterating that the energy of an arbitrary
TPHES is given by

b,E = & C
I Fg I

C &
—

& V
I Fg I

V &
—

& VC
I
(1/r &2) I

VC &

+ & VC
I
(1/r, )

I
CV &, (A8)

where C and V are given by Eqs. (21)—(23). The first vari-
ation of AE is given by

5(&E)=[&5C
I (Fg —br) I

C&

—&5V
I
(F +bc) I

V&]+C.C. , (A9)

—&x;x, I
(1/ „)I x~x, &] . (Al)

To derive Eq. (16) it is useful to introduce the following
notation,

with &r I
C & and b c I

V & defined according to Eq. (26).
Now, if C and V minimize Eq. (A8), it follows that Eq.
(A9) must vanish. Since 5C and 5V are arbitrary varia-
tions which conserve the constraints imposed by Eqs.
(21)—(23), we must have
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N

5V= y 5a,'X, ,
j=l

M
5C= g 5a, XJ,

j=N+1

&5v
i
v&=&5c ic&=0.

Owing to Eq. (A12), we may rewrite Eq. (A9) as

5(AE)=[(5C
~
(Fs —b, t

—Ec)
~

C)
—(5V

~
(Fg+bc —st, )

~
V)]+c.c.=0 .

(A10)

(A 1 1)

(A12)

(A13)

asymptotic —1lr contributions will be due to the ex-
change operator whose action on an arbitrary function g
is summarized by

X,'(t') g(t')
F,"t((t)= —QX, (t) J dt' '

J
(B1)

If all of the functions 7 are localized within a given re-
gion of space, or if tP is localized within a given region of
space, outside that region Eq. (Bl) may be approximated
as

Substituting Eqs. (A10) and (Al 1) into Eq. (A13) and re-
quiring that each coefficient of 5a~. and 5a vanish in-

dependently leads to Eqs. (24) and (25).

APPENDIX B

We have been discussing systems which are charge
neutral. Hence the nuclear Coulomb potential is exactly
screened by the electronic Coulomb potential, so any

Fgp(t)~ ——g ~X, )(XJ
~
p)+O(llr ) .

T
(B2)

F"p(t)~ ——t1(r) +O(llr ) . (B3)

Hence it is apparent that if g lies entirely in the unoccu-
pied manifold, (Xl

~
f)=0, and there is no long-range

I/r behavior. In contrast, if P lies entirely in the occu-
pied manifold, the above expression reduces to
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